Гущина Е.Г.¹, **Гущин Г.К.**²

1 Институт геохимии окружающей среды

² Карадагская научно-исследовательская геофизическая обсерватория Госгидрометеослужбы Украины, Крымский научный центр.

СУММАРНАЯ УЛЬТРАФИОЛЕТОВАЯ РАДИАЦИЯ ЗА ДЕСЯТИЛЕТНИЙ ПЕРИОД В ЗОНЕ КАРАДАГСКОГО ПРИРОДНОГО ЗАПОВЕДНИКА

Приведены осредненные данные наблюдений за ультрафиолетовой радиацией (УФР) в диапазонах УФР-А и УФР-В в Карадагской научно-исследовательской геофизической обсерватории за период 1990—2000 гг.

Введение

Доля ультрафиолетовой радиации (УФР) с длиной волны $\lambda < 400$ нм в общем потоке солнечной радиации занимает небольшое место (всего 7%). Около 48% энергии приходится на видимую часть спектра (λ 400–760 нм), 45% — на инфракрасную часть спектра ($\lambda > 760$ нм). У земной поверхности доля суммарной ультрафиолетовой радиации уменьшается до 3–4%. Несмотря на сравнительно малый вклад ультрафиолета в общий поток солнечной радиации, УФР выполняет как положительную, так и деструктивную функции в жизни нашей планеты. По результатам воздействия на живую клетку УФР подразделяют на три диапазона: УФР-А (315–400 нм), УФР-В (280–315 нм) и УФР-С (10–280 нм). УФР-С является губительной для всего живого вследствие разрушения ею молекул белка. К счастью, эта часть УФР полностью поглощается в высоких слоях атмосферы.

Умеренное облучение ультрафиолетом благотворно воздействует на организм человека и животного, способствуя образованию витамина D и защищая от проявлений рахита. Однако при повышенных дозах облучения УФР может привести к нарушениям работы эндокринной и сердечно-сосудистой систем, воспалительным глазным процессам, раку кожи. Под действием УФР происходит изменение свойств и разрушение ряда материалов и лакокрасочных покрытий. УФР-А также участвует во всех указанных выше процессах, но её роль намного скромнее, так как энергия квантов для длин волн этого диапазона значительно меньше, чем для УФР-В. Негативные последствия воздействия УФР наиболее всего затрагивают такие отрасли как курортология, сельское и лесное хозяйства. При неблагоприятном режиме УФР может быть уничтожен весь произведённый растительностью органический продукт. Уже одно это обстоятельство позволяет отнести УФР к важнейшему фактору, контролирующему жизнь на нашей планете.

Для измерения УФР за пределами территорий СНГ используются три типа приборов [1]: с одним или несколькими интерференционными светофильтрами, выделяющими узкие полосы шириной 2–10 нм; с широкополосными фильтрами, выделяющими в результате комбинации стеклянных или интерференционных фильтров полосы пропускания шириной 20–80 нм; спектрофотометры, использующие фиксированную полосу пропускания. Все приборы ориентированы, в основном, на получение данных о влияющей на здоровье человека эритемной составляющей УФР в диапазоне 280–320 нм. С этой целью стремятся достичь как можно лучшего совпадения спектральной чувствительности прибора со спектральной кривой эритемной чувствительности кожи человека, чего в принципе достичь невозможно [2].

В Карадагской научно-исследовательской геофизической обсерватории (КНИ-ГО) измерения суммарной УФР в диапазонах А и В проводятся с 1990 г. с помощью, разработанных в СССР, озонометров М-124, оснащённых коррегирующими насадками (шар Лярше) для сбора ультрафиолетового излучения от небесной полусферы. Метрологическое обеспечение этих наблюдений проводится Научно-исследовательским центром дистанционного зондирования атмосферы (НИЦДЗА) в п. Воейково Ленинградской области (Россия), где оборудована специальная лаборатория для проверки работы и ремонта всех систем, указанных ультрафиолетометров, проведения поверок и калибровок этих приборов. Межповерочный интервал составляет 2–3 года. Наш прибор калибровался последний раз в 1998 г. Поэтому для анализа архивного материала был выбран интервал 1990 – 2000 гг. Данные за последующие годы, возможно, уже содержат погрешности, которые могут быть выявлены при поверке прибора, осуществление которой тормозится из-за финансовых возможностей.

Результаты измерений и их обсуждение

В обсерватории измеряется суммарная УФР Q_B и Q_A в Bт/м² соответственно в диапазонах A и B, а также эритемная составляющая спектральных интервалов 280–320 нм ($Q_{\ni B}$) и 320–400 нм ($Q_{\ni A}$) в эр/м² (1 эр/м² = 1Вт/м² для длины волны λ =297 нм, отвечающей максимуму кривой эритемной чувствительности кожи человека).

Поскольку наблюдения каждый день проводились в разное время, а величины УФР сильно зависят от высоты Солнца, не имело смысла обобщать непосредственно измеренные данные. После обработки полученных данных были установлены значения Q_B и Q_A для конкретных высот Солнца θ (кратных 5°). Для каждого дня значения интересующих нас высот Солнца определяли на графиках зависимостей того или иного параметра от θ . Были проанализированы параметры Q_B и Q_A при облачности не более 3-х баллов, расположенной вдали от солнечного диска и получены осреднённые характеристики Q_B и Q_A для 1990—2000 гг. За указанный период было выделено около 700 дней. Результаты обработки представлены в табл. 1 и 2.

0°		Месяц											
9	Ι	II	III	IV	V	VI	VII	VIII	IX	Х	XI	XII	
10	0.03635	0.031 ⁷	0.0284	0.02811	0.041 ³²	0.026 ⁵	0.050 ¹	0.020^2	0.03448	0.032^{28}	0.044 ¹⁸	0.037 ²¹	
15	0.08742	0.077 ¹³	0.072 ⁵	0.076 ¹¹	0.079 ³²	0.079 ⁹	0.110 ²	0.055 ²	0.07948	0.075 ³⁰	0.086 ³⁴	0.084 ²⁴	
20	0.174 ⁴⁶	0.15925	0.163 ²⁴	0.14611	0.140 ³²	0.145 ¹⁴	0.163 ³	0.15548	0.155 ⁷⁶	0.187 ⁹³	0.181 ⁵¹	0.180^{29}	
25	0.327 ¹⁴	0.303 ³⁶	0.277^{50}	0.24915	0.237 ⁵⁰	0.25613	0.249 ³⁰	0.266 ⁸²	0.284 ¹²¹	0.303^{108}	0.31847		
30		0.45735	0.43763	0.402^{40}	0.38357	0.420^{62}	0.41497	0.43188	0.448^{148}	0.526 ¹¹⁰	0.507^{18}		
35		0.78115	0.65265	0.578^{49}	0.560 ⁷¹	0.605 ⁶⁶	0.61795	0.621 ¹²¹	0.655 ¹⁵⁹	0.716 ⁸³			
40			0.880 ⁵⁵	0.806 ⁵⁴	0.769 ⁹¹	0.82880	0.842133	0.849 ¹⁴⁴	0.896 ¹⁶³	0.919 ³⁵			
45			1.18329	1.09157	1.00695	1.067116	1.084 ¹⁵⁷	1.095148	1.162135				
50			1.270^{1}	1.317 ⁵²	1.270 ⁹⁶	1.337 ¹²⁰	1.349 ¹⁶²	1.375145	1.44244				
55				1.783 ²³	1.54394	1.636 ¹²²	1.626 ¹⁵⁹	1.664 ¹³⁵					
60					1.80188	1.857^{120}	1.892 ¹⁵⁰	1.881 ⁹¹					
65					2.069 ²¹	2.120113	2.178127						
67						2.241110	2.284 ⁵⁵						

Таблица 1. Среднемесячные значения УФР-В Q_B Вт/м² в ясные дни при разных высотах Солнца в Карадаге за период 1990—2000 гг.

Примечание: число случаев, которое использовано для вычисления средних величин, указано справа вверху над значениями Q_B .

Интенсивность УФР на уровне моря зависит от высоты Солнца, облачности, альбедо подстилающей поверхности, ОСО, спектральных оптических плотностей атмосферы (βλ) и аэрозоля (δλ). Важнейшим из перечисленных факторов является высота Солнца, с увеличением которой возрастают также потоки УФР.

Наблюдений за УФР с земной поверхности проведено сравнительно немного, и те трудно сравнимы между собой из-за того, что часть результатов измерений приводится в относительных единицах [3, 4], а другая часть относится к различным спектральным интервалам или различным периодам осреднения [5, 6–9]. Поэтому данные наших

измерений можно сравнить лишь с величинами УФР (λ < 400 нм), полученными для Карадага расчётным путём [10] (табл.3).

		Месяц											
9	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	
5	3.8 ³⁰	3.47	3.7 ³	2.8 ¹¹	3.2 ³¹	3.5 ²	_	4.0 ¹	3.449	2.948	3.84	3.67	
10	7.9 ³⁶	8.4 ⁷	7.5 ⁴	6.7 ¹¹	6.6 ³¹	7.2 ⁵	9.0 ¹	6.5 ²	7.4 ⁵²	6.6 ⁴⁹	8.5 ¹⁸	8.6 ²⁰	
15	13.344	12.9 ¹³	13.0 ⁵	11.3 ¹¹	11.3 ³¹	11.7 ⁹	12.0 ²	10.5 ²	12.0 ⁵⁵	11.049	12.9 ³⁴	13.9 ²³	
20	18.647	18.0 ²⁵	17.3 ²⁴	16.211	16.2 ³¹	15.8 ¹⁴	16.0 ³	16.7 ⁴⁶	16.6 ⁸⁰	16.4 ⁹⁶	18.6 ⁵¹	19.6 ³⁰	
25	24.3 ¹²	24.2 ³⁶	22.5^{50}	22.1 ¹⁵	20.849	20.5 ¹³	22.1 ³¹	21.2 ⁸⁰	21.3 ¹¹⁶	22.2 ¹¹¹	24.247		
30		30.8 ³⁵	29.2 ⁶²	28.7 ⁴¹	26.4 ⁵⁸	25.5^{66}	26.3 ¹⁰⁰	26.5 ⁸⁸	25.7 ¹⁴⁸	28.0111	30.511		
35		36.4 ¹⁴	36.0 ⁶⁵	34.949	32.1 ⁷¹	31.5 ⁷¹	32.2 ¹⁹⁸	32.1 ¹²³	32.2 ¹⁵⁸	33.5 ⁸⁴			
40			42.2 ⁵²	41.4 ⁵⁴	38.490	37.6 ⁹¹	38.2 ¹³⁷	38.6 ¹⁴⁶	38.3 ¹⁶¹	40.235			
45			49.1 ²⁹	47.857	44.4 ⁹⁴	43.4 ¹¹⁸	43.9 ¹⁶¹	44.9 ¹⁴⁸	44.4 ¹³³				
50				54.052	50.495	49.5 ¹²¹	49.7 ¹⁶⁶	51.2143	48.3 ⁴⁵				
55				58.9 ²⁵	55.8 ⁹³	55.0123	54.7 ¹⁶²	57.6 ¹³⁰					
60					61.4 ⁸⁴	59 .8 ¹²¹	60.4 ¹⁵¹	63.1 ⁷³					
65					67.046	64.1113	66 .1 ¹¹⁶						
67						66.6 ¹¹¹	66.2 ³²						

Таблица 2. Среднемесячные значения УФР-А $Q_A BT/M^2$ в ясные дни при разных высотах Солнца в Карадаге за период 1990—2000 гг.

Примечание: Число случаев, которое использовано для вычисления средних величин, указано справа вверху над значениями $Q_{\rm A}$.

Таблица 3. Сравнение результатов модельных расчетов и экспериментальных измерений суммарной ультрафиолетовой радиации в районе Карадага (полдень)

	Суммарная радиация, (Вт/м ²)											
	Месяцы											
	Ι	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
(Q _A +Q _B) эксп. данные КНИГО	24,6	37,2	50,4	60,7	69,1	68,8	68,5	65,0	49,7	41,1	31,0	19,2
(Q _A +Q _B) _Т расчетные данные [10]	22	32	46	57	66	68	68	62	52	40	27	20

Величины суммарной радиации, полученные расчетным путем, были сопоставлены с потоками суммарной УФР ($Q_A + Q_B$), осредненной за 1990—2000 гг. в полуденные часы в Карадаге. Как видно из табл.3, экспериментальные суммы ($Q_A + Q_B$) довольно близки к расчётным значениям ($Q_A + Q_B$)_Т.

Были получены зависимости УФР-А и УФР-В от высоты Солнца и получены уравнения регрессии (рис.1 и 2). Так как законы, отображающие зависимости Q_A и Q_B от высоты Солнца, разные при более низких и более высоких ее значениях, были найдены оптимальные высоты, на которых по обоим уравнениям получены одинаковые значения $Q_A (Q_B)$. Для Q_A это значение 35°, для $Q_B - 30°$. Рассчитанные коэффициенты корреляции для Q_A при высоте Солнца менее 35° составили – 0,987, более 35° – 0,976; для Q_B при высоте Солнца менее 30° – 0,973, более 30° – 0,962.

Рис.1. Зависимость Q_A от высоты Солнца: *при высоте Солнца менее* 35°(1) и выше 35°(2)

Рис.2. Зависимость Q_B от высоты Солнца: (1) — *при высоте Солнца менее* 30° ; (2) — *выше* 30°

Выводы

В результате систематизации и обобщения данных измерений УФР в диапазонах 315–400 нм и 280–315 нм получены среднемесячные значения суммарной УФР в зоне Карадага при ясном небе для разных высот Солнца. Значения суммарной УФР можно трактовать как климатические нормы, что дает возможность в дальнейшем использовать их при решении вопросов, связанных с изучением воздействия ультрафиолетовой радиации на биологические процессы в районе Карадагского природного заповедника.

- 1. Руководство по метеорологическим приборам и методам наблюдений: Издание 6. Часть I. Измерение метеорологических переменных. Глава 7 измерение радиации.7.6. Измерение ультрафиолетового (УФ) излучения. ВМО, N 8, с. 1.7–21 1.7–26.
- 2. Гущин Г.П. Методика, метрология и некоторые результаты измерения ультрафиолетовой радиации в спектральных диапазонах УФ-А и УФ-В. Метеорология и гидрология, 1999, N 12, c.102–110.
- 3. Анисимов В.К. Напряжение ультрафиолетовой радиации Солнца на различных высотах над уровнем моря. Метеорология и гидрология, 1937, N 8, с. 96–101.
- 4. Полякова Е.А. Некоторые результаты экспериментального изучения ультрафиолетовой радиации Солнца. Метеорология и гидрология, 1938, N 9–10, с. 14–22.
- 5. Белинский В.А., Гараджа М.П., Меженная Л.М., Незваль Е.И. Ультрафиолетовая радиация Солнца и неба. М.: Изд-во МГУ, 1968. 228 с.
- 6. Grasnik K.H. Einige Bemerkungen zu der Erdboden erreichenden UV-Strahlung. Abhand. Meteorol. Dienst DDR, 1985, Bd. 18, N 134, S. 47–50.
- 7. Peeling J. The solar ultraviolet-B environment at Dhahran, Saudi Arabia. Arabian journal. scie. and eng., 1984, v. 9, N 4, p. 373–380.
- 8. Reiter R., Munzert K., Sladkovic R. Results of 5-jear concurrent recordings of lobal, diffuse and UV-radiation at three levels (700, 1800 and 3000 m a.s.l.) in the orthern Alps. Arch. Met. Geophys. Bioklimatol., 1982, Ser. B, Bd. 30, S. 1–28.
- 9. The ultraviolet radiation environment of Antarctica: Mc Murdo station during september october 1987. J. Geophys. Res., 1989, vol. 94, N D6, p. 8491–8496.
- 10. Белинский В.А. Меженная Л.М. Расчёт элементов ультрафиолетового климата Карадага на основании радиационной модели атмосферы Труды УкрНИГМИ, 1967, вып. 65, с. 58–69.

Гущина Е.Г., Гущин Г.К. СУМАРНА УЛЬТРАФІОЛЕТОВА РАДІАЦІЯ ЗА ДЕСЯТИРІЧ-НИЙ ПЕРІОД В ЗОНІ КАРАДАГСЬКОГО ПРИРОДНОГО ЗАПОВІДНИКА

Наведено усереднені дані спостережень за ультрафіолетовою радіацією (УФР) в діапазонах УФР-А і УФР-В, проведених в Карадагській науково-дослідній геофізичній обсерваторії за період 1990—2000 роки.

Guschina E.G., Guschin G.K. INTEGRAL ULTRAVIOLET RADIATION FOR TEN YEARS IN THE ZONE OF KARADAG NATURAL RESERVE

The averaged observation data of ultraviolet radiation (UVR) in the range of UVR-A and UVR-B in Karadag Research Geophysical Observatory for the period 1990 to 2000 is given.