Фізико-хімічна механіка матеріалів. – 2012. – № 3. – Physicochemical Mechanics of Materials

УДК 669.15-194.57

ПРОГНОЗУВАННЯ РОЗПОДІЛУ РОЗМІРІВ ЗЕРЕН У СТАЛІ 03Х18ТБч

В. Ю. ОЛЬШАНЕЦЬКИЙ¹, І. Ю. КИСІЛЬОВА²

¹ Національний технічний університет; Запоріжжя; ² Запорізький національний університет

З використанням стохастичного підходу оцінено технологічну пластичність корозійнотривкої сталі 03Х18ТБч за розподілом розміру зерен у ній після двох варіантів термообробки.

Ключові слова: розмір зерен, щільність ймовірності, корозійнотривкі сталі.

Формулювання задачі. Розмір зерна – один із показників, який застосовують для оцінювання технологічної пластичності складнолегованих сталей. Відомо, що оптимальним для штампування є розмір 4...6 балів. Однак важливо знати не лише середній розмір зерен, а ще їх розподіли. Для розв'язання цієї задачі використали стохастичний підхід.

Розподіл зерен та мікрочастинок у металах залежно від термічного оброблення вивчали досить детально [1, 2]. Однак стохастичний підхід з використанням диференційних функцій розподілів механічних характеристик не застосовували.

Нижче побудовано диференційні функції розподілу діаметрів зерен корозійнотривкої сталі 03X18ТБч за стохастичним підходом.

Основний матеріал дослідження. Раніше [3, 4] отримали диференційні функції законів нормального розподілу границі текучості легованих сталей у вигляді гаусівської густини:

$$f(\tau) = \frac{1}{S_{\tau}\sqrt{2\pi}} \cdot \exp\left[-\frac{1}{2} \cdot \left(\frac{\tau_i - \bar{\tau}}{S_{\tau}}\right)^2\right], \qquad (1)$$

де τ_i , $\overline{\tau}$ – характеристики текучості матеріалу; S_{τ} – середньоквадратичне відхилення. Параметри розподілів $\overline{\tau}$ та S_{τ} для двох спеціальних режимів оброблення сталі наведено в табл. 1.

Закон розподілу діаметрів зерен фериту D встановимо за методом перетворення випадкових величин [5]. Далі використаємо співвідношення Петча–Холла, яке пов'язує границю текучості τ із діаметром зерна D [6]:

$$\tau = \tau_0 + K / \sqrt{D} , \qquad (2)$$

де т₀, *К* – коефіцієнти, які для стандартної феритної сталі можна розрахувати, користуючись експериментальними результатами [5]:

 $\tau(250) = 238 \text{ MPa}; \ \tau(2) = 475 \text{ MPa}; \ \tau(500) = 110 \text{ MPa}.$ (3)

За методом перетворення випадкових величин шукана диференційна функція

$$\varphi(D) = f\left[\tau(D)\right] \cdot \left|\frac{d\tau}{dD}\right|.$$
(4)

Використавши рівняння (1) та (2), з формули (4) отримали розподіл діаметра зерна у вигляді закону вейбулівського типу:

Контактна особа: І. Ю. КИСІЛЬОВА, e-mail: inna261973@rambler.ru

$$f(D) = \frac{K}{S_{\tau}\sqrt{8\pi}} \cdot \frac{1}{\sqrt{D^3}} \cdot \exp\left[-\frac{1}{2} \cdot \left(\frac{D^{-1/2} - (\bar{\tau} - \tau_0)/K}{S_{\tau}/K}\right)^2\right].$$
 (5)

Цей результат збігається з отриманими раніше [7, 8], де розподіли густини дислокацій, мікрочастинок і розмірів зерен подано також у вигляді розподілу Вейбула.

№ режиму	Оброблення	τ M	S_{τ} Pa
1	Гарячевальцьований підкат + холодне деформування 20% + відпалювання 780°С + холодне вальцювання + + рекристалізаційне оброблення 920°С	291	17,9
2	Гарячевальцьований метал + відпалювання 780°С + холодне вальцювання + рекристалізаційне оброблення 920°С	533	32,5

Таблиця 1. Параметри розподілів границі текучості

Для сталі 03Х18ТБч, обробленої за режимом № 1 (табл. 1), співвідношення (2) матиме вигляд

$$\mathbf{r}_1 = 239 + 372/\sqrt{D} \ . \tag{6}$$

Тоді закон розподілу (5) буде:

$$f_1(D) = \frac{K_1}{50, 6\sqrt{\pi}} \cdot \frac{1}{\sqrt{D^3}} \cdot \exp\left[-\frac{1}{2} \cdot \left(\frac{D^{-1/2} - 0, 139}{0, 048}\right)^2\right].$$
 (7)

А для обробленої за режимом № 2 крива розподілу розташовуватиметься вище, ніж крива розподілу для режиму № 1, згідно зі співвідношенням

$$\tau_2 / \tau_1 = 533/291 = 1,8$$
 (8)

У стільки ж разів збільшаться і коефіцієнти τ₀ та *K* у рівнянні (2) для сталі після оброблення за режимом № 2:

$$x_2 = 430 + 669 / \sqrt{D} \ . \tag{9}$$

Тепер відповідний вейбулівський закон розподілу діаметрів зерен запишемо так:

$$f_2(D) = \frac{K_2}{91,9\sqrt{\pi}} \cdot \frac{1}{\sqrt{D^3}} \cdot \exp\left[-\frac{1}{2} \cdot \left(\frac{D^{-1/2} - 0.15}{0.047}\right)^2\right].$$
 (10)

Визначили (табл. 2 і рис. 1) характеристики законів розподілу діаметрів зерен (7) та (10) для обох режимів оброблення сталі.

Таблиця 2. Характеристики розподілів діаметрів зерен сталі 03Х18ТБч

Режим обробки	Математичне сподівання, µт	Бал зерна за ГОСТ 5639-65	Середньоквадратичне відхилення
1	69	5	62
2	54	6	52

Знайшли інтервали розмірів та балів більшості зерен у структурі сталі, а також точки перегину диференційної функції. При цьому визначили інтервали розмірів зерен, які відповідають половині медіани та рівню 10% (табл. 3).

Точки перегину шукаємо як екстремуми першої похідної диференційної функції (режим обробки № 1) (5):

$$\frac{df}{dD} = 0 = \frac{k}{S_{\tau} \cdot \sqrt{8\pi}} \cdot \left[\frac{1}{0,0046} \left(D^{-3,5} - D^{-3} \right) - 0,0069 D^{2,5} \right] \exp\left(-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,139}{0,048} \right)^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,048} \right)^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0048} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,0069}{0,0069} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,006}{0,0069} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,006}{0,006} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,006}{0,006} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,006}{0,006} \right]^2 + \frac{1}{2} \cdot \frac{D^{-1/2} - 0,006}{0,006} \left[-\frac{1}{2} \cdot \frac{D^{-1/2} - 0,006}{0,006} \right$$

Для режиму № 2 вигляд похідної аналогічний.

Режим	Між точками перегину			На рівні половини медіани			10%-ий рівень		ень
оороолення	D	В	q	D	В	q	D	В	q
1	1545	69	57	2062	58	77	2255	58	75
2	1550	69	67	1845	69	62	1747	69	67

Таблиця 3. Інтервали розмірів та балів зерен сталі 03Х18ТБч

D – розмір зерен, µm; B – бал зерна; q – частка (в %) зерен певного розміру, які потрапляють у визначений діапазон.

Отже, для режиму № 1 маємо широкий діапазон розмірів зерен, і між точками перегину 57% зерен належать до інтервалу балів 6...9. Однак значна їх кількість розташована в інтервалі 5...8, якщо розглядати точки, які відповідають половині медіани й 10%-му рівню (77 і 75% відповідно). Така структура сприятлива для штампування, що підтверджують результати визначення механічних характеристик і технологічних випроб (шляхом витягування за Еріксеном).

Рис. 2. Мікроструктура сталі 03Х18ТБч (×200): світлі ділянки – структурно-вільний ферит; темні – продукти розпаду мартенситу; *а*, *b* – режими обробки № 1 і 2.

Fig. 2. Microstructure of 03X18TE4 steel (×200): light regions – structure-free ferrite; dark – products of martensite disintegration; a, b – treatment conditions \mathbb{N} 1 and 2.

Для режиму № 2 маємо вужчий розподіл: 67% зерен між точками перегину належать до інтервалу балів 6...9, у якому розташована практично така ж кількість зерен, як і між точками, що відповідають половині медіани чи 10%-му рівню (62 і 67% відповідно). З цим пов'язують дещо нижчі технологічну пластичність і механічні характеристики металу.

Перевіримо отримані результати та визначимо розподіл розмірів зерен за даними металографічних досліджень. Використали два зразки: один обробляли за режимом № 1, а другий – за режимом № 2. Фрагменти структури ілюструє рис. 2.

За відомою методикою [9] знайшли розподіл розмірів зерен. Дослідили розміри 200 зерен та отримали гістограму їх розподілу з розмежуванням за діаметром на вісім груп (рис. 3).

Рис. 3. Експериментальні гістограми розподілів діаметрів зерен сталі 03Х18ТБч: *a*, *b* – режими обробки № 1 і 2 (див. табл. 1).

Середній діаметр зерен (табл. 4)

$$\overline{D} = \sum \frac{N_i D_i}{N_i} \,.$$

Таблиця 4. Експериментально визначені діаметри зерен сталі 03Х18ТБч

Режим обробки	Математичне сподівання, µm	Бал зерна за ГОСТ 5639-65
1	26,5	78
2	30,1	7

Отримані експериментальні результати не виходять за межі теоретично визначених діапазонів зміни діаметра зерна.

ВИСНОВКИ

Запропоновано методику оцінювання розподілів діаметрів зерен на основі стохастичного підходу. Для хромистої корозійнотривкої сталі 03Х18ТБч теоретично та експериментально визначено такі розподіли. Отримано задовільний збіг результатів порівняння.

PE3ЮME. С использованием стохастичского подхода оценена технологическая пластичность коррозионно-стойкой стали 03X18ТБч. Получено распределение размеров зерен в ней.

SUMMARY. Using a stochastic method a technological plasticity of the corrosion resistant 03X18T64 steel is evaluated. A distribution of the grain sizes in the steel is obtained.

- Псарьов В. І., Пархоменко Л. О., Куликов О. Ф. Комп'ютерний аналіз розподілу карбідних частинок в хромистих сталях // Металознавство та обробка металів. – 1999. – № 4. – С. 64–67.
- 2. *Farghali A. Mohamed.* Deformation mechanism maps for micro-grained, ultrafined-grained, nano-grained materials // Mater. Sci. and Engng. A . 2011. **528**, № 3. P.1431–1435.
- 3. Ольшанецький В., Нагорна І. Імовірнісні форми розподілу густини дислокацій у сталі // Фіз.-хім. механіка матеріалів. 2003. № 5. С. 96–100.
- 4. Ольшанецький В., Нагорна І. Еволюція дислокаційної структури корозійнотривкої сталі під час пластичного деформування // Там же. 2004. № 4. С. 114–116.
- 5. Герасимович А. И. Математическая статистика. М.: Высш. шк., 1983. 279 с.
- 6. Гуляев А. М. Материаловедение. М.: Металлургия, 1978. 647 с.
- 7. Степанов Ю. Н., Алехин В. П. О распределении плотности краевых дислокаций в металлическом образце при возникновенни стоячей волны // Металлы. – 2000. – № 2. – С. 97–101.
- Компьютерное моделирование влияния параметров распределения размеров зерен на статистические характеристики прочности поликристаллического железа в хрупком состоянии / Г. П. Зимина, С. А. Котречко, Ю. Я. Мешков и др. // Металлофизика и новейшие технологии. – 2001. – 23, № 6. – С. 821–831.
- 9. Салтыков С. А. Стереометрическая металлография. М.: Металлургиздат, 1958. 450 с.

Одержано 05.04.2011

Fig. 3. Experimental charts of 03X18TE4 steel grain diameters distribution: a, b – treatment conditions No 1 and 2 (see Table 1).