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Using the probabilistic Kolmogorov approach for the description of the material frag-
mentation process, it is shown that in the typical physical situation when the intensity
energy inflow in the system is constant the Kolmogorov equation must be temporally
inhomogeneous. In this case, for the special model with the uniform scale energy distribu-
tion expended for the subdivision, the limit Kolmogorov distribution law for fragment
sizes is proved.

Ucnonssys BeposaTHocTHEI moaxon A.H.Komxmoroposa mis onucaHusi mpoiiecca (pparmes-
TaUU MaTepuaJa, MOKa3aHO, YTO B TUIIMYHON (PUBUUYECKON CHUTyallMU, IIPU IIOCTOSHHON
MHTEHCHBHOCTH HAKAUKHU 9HEPIruM B CHCTEeMy ypaBHeHue KoiMoroposa JOJIKHO OBITH HEOLHO-
POAHBIM IO BpemeHu. Il 9TOro ciaydas, B CHEIUAJIBLHON MOIEJM C PABHOMEPHBIM II0 MAac-
mrrabaM pacrpejesieHrneM dHePruu, PacxoayeMoil Ha apobJieHue, JOKa3aH IIpeaesbHbII 3aK0H
Koamoroposa aisi pacupejeneHusi BePOsaTHOCTEl pasMepoB ()parMeHTOB.

In the classical paper [1], it have been proposed the probabilistic approach to investigation of som
complicated processes which have got later the common name the fragmentation processes. In genera
case, these temporal physical processes connected with subdivision of large system to some single-type
weakly connected subsystems having sizes less than the initial system size. This subdivision is fulfillec
due to the energy pumping from outside. Usually, such processes consist of subdivisions of large solic
sample to pieces with more and more small sizes with different random geometric forms and values o
parameters characterizing them. In connection with the complication of mathematical description of sucl
processes, it have been propose by A.N.Kolmogorov to describe the fragmentation processes by only one
parameter  which characterizes the size of each fragment in average. Its value is random. Of course, sucl
an approach is not suitable in all cases. However, in many cases, it succeed to describe correctly, from the
physical point of view, the time evolution of the distribution function F(r,t) on sizes r. In the work [1], it
frameworks of some assumptions, it has been obtained also the limit logarithmically normal distributior
at ¢ — oo for the function F(r,t). At the obtaining of this limit distribution, it is important that i
have been assumed that the conditional probability of breakdown to parts with different sizes at the
subdivision of one fragment during one evolution step does not depend on the time moment (it has beer
assumed that the time is discrete). In the work [2] it was pointed out that full volume of all fragments is
usually conserved in natural fragmentation processes. Moreover, it is important that the energy pumping
into the fragmentation system is fulfilled with an intensity which determines really the time dependence
of the conditional transfer probability. From this point of view, the case analyzed by Kolmogorov is nor
physical since, for its realization, the energy pumping is done with the exponential intensity increasing
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However, using the constant energy pumping intensity and another problem formulation, it has been
obtained the limit distribution in the work [3], which is differed of the Kolmogorov law.

In this work, we demonstrate in frameworks of the Kolmogorov approach [1] that, at first, the
fragmentation models have the time depending conditional probability distribution for the fragment
subdivision at one evolution step, if one takes into account the constancy of the energy pumping intensity
and, at second, we demonstrate that there exists the physical situation when it is possible the appearance
of the logarithmically normal limit distribution if one takes into account the mentioned special time
dependence.

Basic equation. As in the paper [1], we assume that the time is discrete. Let us designate by N (r, )
the average number of fragments in the time moment ¢ such that their sizes are less then r and the number
N () is the average value of the corresponding total number of fragments at the same moment. Further,
let S (r,r’;4) = S (r/r';t) be the mathematical expectation of the fragment number with sizes which are
not exceed the value r and formed at subdivision at the time moment ¢ by one fixed fragment with the
size . Thus, it is assumed that the fragmentation process is characterized by the scale invariance.

The number of fragments with sizes being less than r at the time ¢ 4 1 is equal to the sum of the total
number of splinters of all fragments having sizes which are less then r at the previous evolution step and
those splinters with sizes being less than r which are formed by the subdivision of large fragments. Let
us assume that, for such average physical variables, the next balance relation takes place

r—0

N(r,t—l—l):/S(l;t)dN(r’,t)—l—/S(r/r’;t)dN(r’,t), (1)

0 r

from the general physical concepts and the definition of functions N(r,t), S(r, r';t). Here, the inequality
S(1 4+ 0,t) < 1 is fulfilled at any physical reasonable choice of the function S(k,%). Tt is possible to
consider the relation (1) as the equation that connects the average values of above described random
physical variables in the "average field"approximation. Thus, on its plan, the form of the equation (1)
does not depend strongly, in definite frames, on the concrete statistical model using for the description of
the fragmentation process. Nevertheless, it is necessary to point out that there exists the more important
fact using for the postulation of this equation. It is its Markov property, i.e. the size distribution at each
next moment depends directly only on the distribution at the previous one and, moreover, it depends by
linear way.
Integrating by parts in Eq.(1), we obtain

N(rt+1)=SOGONE O+ S/ 0N )2, -

(o]
— / N (¢, t)dS (r/7';1) .
r—0
Here, the terms being outside of the integral disappear since it is necessary to assume naturally that
S5(0,¢) = 0, N(0,t) = 0. Introducing the integration variable k& = r/r’, we obtain the fundamental
evolution equation in Kolmogorov’s form

140
N(ri+1)= /N(r/k,t)dS(k,t). )
0
Difference of this equation from the analogous one in the cited work consists of the possibility of nonzero
probability for the fact that the fragment breakdown is absent during one evolution step. Correspondingly,
the function S(k;t) may have the jump at the point & = 1 which is necessary to account in the integral

on all system states that, in turn, brings to the Stiltjes integral in Eq.(2) with the jump on the upper
bound of integration.
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Conservation laws. Since N (1) = N (00,1), the changing of the total fragment number at one
evolution step is defined by the recurrent relation

140

N(t—i—l):/N(oo,t)dS(k;t):N(t)S(l—l—O,t). 3)

More important difference of our buildings, in comparing with the classical work [1], together the
pointed out evolution equation modification, consists of the evident account of the conservation law of
total fragment volume and also the fact that the energy pumping in the system is expended, in general, to
the formation of new surfaces of their separation. Usually, in the fragmentation processes, there exists the
limitation on the energy inflow to the system. This brings to the slowing of the fragmentation process when
the fragment number grows. Consequently, the function S(k,t) defining the system evolution depends on
time t. This may lead to the appearance of the final probability distribution for fragment sizes which is
not connected in any way with the central limit theorem in the probability theory (this fact is signed in
the work [1]). We use further the assumption that the intensity of energy pumping is constant. Together
with the volume conservation law, it gives us the additional limitation for the function S (k,t). We take
into account the volume conservation law, in frameworks of using approach, by the following relation
which has been proposed in [2],

oQ

V= /rSdN(r,t) = const .
0
Than, using the equation (2), we obtain
00 o0 140
V:/rSdN(r,t—l—l):/rSd /N(r/k,t)dS(k;t) =
0 0 0
140 0 140 oo
= /dS (k;t)/rSdN(r/k,t) = /deS(k;t)/r?’dN(r,t) =
0 0 0 0
140
=V / k3dS (k;t).
0

Thus, the requirement of volume conservation brings to the limitation
140
/ E3dS (k;t) = 1. (4)
0

At the obtaining of limitation connected with the constancy of the energy pumping intensity, we consider
as in the work [2] that all of energy is expended for the increasing of the total surface of all fragments.
Thus, the constancy of energy pumping intensity brings to the fact that the total surface area X(¢) defined
by analogous way as the total volume
(o]
() = /erN (r,1),

0

is changed in time by linear way
Y(t) =%¢+ot, o =const.

Consequently, using the equation (2) again, we find

e} [e%) 140
E(t+1):/r2dl\7(r,t+l):/r2d /N(r/k,t)dS(k,t) =
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140
=X (1) / k2dS (k1)
0
that is
140
Yo+ o(t+1)=(Zo+ot) / k*dS (k1) ,
0
140
(30 + o) / k*dS (k,t)—1] =o.

0

One may notice that the equation (4) gives the inequality
140
/ k2dS (k,t) > 1.
0

Then, from the obtained equation, it follows the condition of the energy pumping constancy in the next
form

140
/ k2dS (k) =1+ (L + So/o) ™" . (5)

General analysis of fragmentation process. As one can viewed from Eq.(2), the function N (r,?)
at t > 0 is determined from the initial distribution N (r, 0) by consecutive iterations,

N(r,t):/l /1 /1N(r/k0k1...kt_1,O)dS(kO,O) x

X oo | dS (kg t —2) | dS (ke_1,t — 1) . (6)

Let us introduce the normalized functions
F(r,t)=N(rt)/N@t), P(kt)=5(k1)/5(,¢).

They satisfy the conditions F(c0,t) = 1, F(0,t) = 0, P(1 4+ 0,t) = 1, P(0,¢t) = 0. Therefore, one
may consider them as the probability distribution functions of some "effective"random values which we
designate 7, k¢, t = 0,1, ... correspondingly. In terms of these functions, the equation (2) is represented

by the following way
140

F(rit+1)= / F (r/k,t)dP (k,t) . (7)

Further, following the work [1], we go to logarithmic variable y = In k. Let us designate the distribution
functions

G (x,t) = F(roe”, 1), Q(y,t) = P(e?,1)

expressed by this new variable. In terms of these functions, the equation (7) turns into the equation with

the difference kernel,
40

Glat+1)= [ G-y (8)

— 00
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Correspondingly, the time changing of the function Gz, ) is represented by the convolution sequence,

40 / 40 +0
Gmwzf / .. /G@—%+m+m+wﬂﬁwmw® x

X ... dQ(yt—Zat_Q) dQ(yt—lvt_l) )

i.e. G(z,t) is the distribution function of the sum
T =To+Po+ G+ Je-1, (9)

where #; = In(#;/70). Characteristic functions G, @ of the distribution functions G' and @ are defined by
formulas

Glen= [ G, Qen= [ Qunds.

According to the equation (8), connection between functions G(£,t) and Q(&,t) is represented by the
relation

Glet) =Gl ﬁ (10)

i.e. Eq.(9) represents the sum of statistically mdependent random values.

To obtain the final probability distribution corresponding the distribution G(x,t), we pass from the
random values zy, ¢ = 0,1,... to random values obtaining from them by centering and normalizing
over the average squared deviation for each t, i.e. & = (& — M(t))/DY2(t), where M(t) = (&) and
D(t) = (#?) — M?(t). Here, the angle brackets designate the averaging on the probability distribution
G(z,1). Probability distribution function of the new random value is

H(z, 1) = Pr{(#, — M(1))/DV*(1) < 2} = G (D1/2(t)x + M(t),t) .

Correspondingly, the characteristic function H(f,t) of this distribution is represented by the following
transformation of the characteristic function G(&,1),

G(&,t) = G(E/DY2(1),t) exp(—i€ M (t)/ D' (t)) = H(&,1).
Then, on the basis of Eq.(10), this function is represented in the form

i N
A(es) = & a0 o (i gy ) H @ (o)
If D (t) increases in time, then, due to G(0,0) = 1, the next asymptotic relation is realized
In H(&, 1) Zan( /DY (1), ) — Q€M (t)/ D (t) + o(1).

From other hand, taking into account Q(0,s) = 1 and

s=0

the decomposition In Q(&, ) on powers of ¢ gives

In H(&,t) = _21§)2(t) z_:é(s) + o(1)
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where §(s) = (§2) — (g, )?. If the remainder in this asymptotic formula is small uniformly on € € R that it
is supported by realization of the so-called Lindenberg conditions [4], then the central limit theorem for
sums of independent random values (9) takes place since in this case

N _ 2
Jim H(&, 1) = exp(=£7/2)
and, therefore, it takes place

hm H(z,t)= \/_/exp (—y*/2)dy (11)

uniformly on z € R [4].
In the next section we show that such a circumstance takes place certainly for the special model of
temporal dependence of the function S(k, ).

Model with changing uniformed on scales. In this section we analyze the special model which
has the uniformed on scales temporal changing of the fragment breakdown probability. To construct such
a model, we put

Sk t) = A1) 0k — 1)+ p(t)S (k) (12)

where 6(-) is Heaviside’s function being right-continuous and, besides, we put S(k) = S(k — 0,0). Here,
as in the work [1], we assume that the following condition takes place

1
/lnk ) < 00
0

It means that the energy deficit at the creation of new surfaces affects equally on all fragments not
depending on their sizes. For introduced model, the volume conservation law of the form (4) connects the
functions A(¢) and p(t),

[0k =14 0(0)8 (1) =1,

At + () =1. (13)

The requirement of the energy pumping uniformity brings to the equation
1
[ ROk~ 1)+ 1 (08 (1) =1+ (¢ + So/o) ",
0

A1) + (1) (1+0/S0) = L+ (1 + Sofo)™"

since it follows from Eq.(5) that

1
/kZdS(k) =1+0/%.
0

From obtained relation, it follows taking into account Eq.(13) that
1 (1) = (ot/So+1)7" . (14)

Thus,
S (k)

S (k,t) = (1 — (0t/%0 + 1)‘1) Ok =D+ o1

_ (o1/Z0)6 (k= 1)+ S (k)
a O't/Eo—Fl
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and, consequently,

S(k,t)  (ot/%0) 0 (k— 1)+ S (k)

Pk, t) = = 15
(k1) S (1,t) ot/Xo+ S (1) (15)
Let us find the mathematical expectation and the dispersion at { — oo,
1 1
- -1 miXo
<yt>:/lnde(k,t):(O't/Eo—I—S(l)) /ln kdS (k) ~ g
0 0
1 1 .
/mk dP (k,t) = (0t/S0+ S (1 1/1nk ~m2t°
o
0 0
We have at ¢ — oo the following asymptotic expression of the sum dispersion,
t—1 t—1 m
DIUED SRICEN) P — (16)
s=0 s=0 O-S/EO + o (1)
that is the sum
t—1 2
my
= (0s/S0+ 5 (1)

tends to finite limit. That is why, the dispersion D(¢) is proportional to In ¢ asymptotically at ¢ — oo

since .
1 =t mao mo ds mQEO
D(t) ~ ~ ~ Int.
®) S(1) ; os/S(1)Xg+1  5(1) / 14728 s

0 S(1)%e
Now, it is necessary to solve the problem of applicability of the central limit theorem to study the

introduced model. It is needed to inspect the possibility of the Lindenberg condition realization. To do
this, we formulate this condition in the form of the zero equality of the following limit value

t—

. 1
lim ——
t— oo D(t

—_

(v — (3,))2dQy, 5) = 0. (17)

:O -
*Toly—(g)I>nD/2(t)

The value being under the limit sign in the last equation is the ratio of the conditional dispersion of the
sum consisting of g,, s = 0,1,...,¢ — 1 to their unconditional dispersion D(t) at any n > 0 where the
condition is represented by the inequality for all deviations |g, — (g )| > nD'/2(t). If Eq.(17) is realized,
the following limit equality takes place [4]

t—1
. _1/2 2
tlggoPr{D E —{(Fs))? x} \/— / exp —y /2) dy,

s=0

which brings to Eq.(11) taking into account that the term (& — (#0))?/D"?(t) gives only a negligibly
small contribution to the sum (9).
To verify the condition (17), we notice that

(0t/%0) 0 (y) + 5 ()
ot/S0 + 5 (1)

Q(y,t) = P(e?,1) =

according to Eq.(15). Since, for the integral in Lindenberg’s condition, the following upper estimation is
true,

b- @R <2 [ @+ Q)

ly—(G:)|>nD1/2(¢) lyl>nD/2(t)-C
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where we take into account that all averages (y;) are uniformly bounded on their absolute value and
the corresponding bounding constant C' has the order myXg/c, then the sum expressing the conditional
dispersion in Lindenberg’s condition is upper estimated by the following way

S [ w-e)ewe<

=0 -
STy (@:) > D2 (t)

t—1
<2 (Z (S(1) + 0'5/20)_1) / (y* + C?)dS (¢¥) .
=0 lyl>nD1/2(t)-C
In view of the fact that D(t) — oo, the last integral tends to zero at ¢ — oco. And the expression in
the brackets coincides asymptotically with D(t)/my according to (16). That is why, we conclude that
Lindenberg’s condition for the considering model under consideration is realized.

Let us formulate the main result of the work. We have investigated, in frameworks of Kolmogorov’s
approach to the fragmentation processes study, the special breakdown model in which the subdivision
probability of each fixed fragment to fragments with less sizes depends on time. This temporal dependence
arises due to the conservation laws at the fragmentation, i.e. we formulate the conservation of the fragment
volume and the energy spending during the breakdown process in frameworks of our model. These facts
are not take into account in the work [1]. The introducing model is characterized by the uniform on scales
energy distribution spent for subdivision. The obtained final distribution for the function H(x,t) shows
that in the model under consideration is realized also the logarithmically normal law for fragment sizes
(for this, it is needed to return to initial physical variable, namely, the fragment size r). Indeed, taking
into account the connections between the distribution functions F, G and H,

In(r/ro) — M (1) t>
D/2(1) )
it follows from Eq.(11) that the following asymptotic at ¢ — oo equality takes place
(I (r/74))

D2(1)
F(r,t) ~ — e_yQ/Zdy.

F(r,t) = G(n(r/ro),t) = H <

Thus, we have shown that there are some physical situations when Kolmogorov’s law is realized even
if we take into account the pointed out natural physical requirements. In what follows, it is important to
come from frameworks of investigated model and to extend the applicability field of the obtained result.
It is also important to explain how to combine the results of works [3], [2] in frameworks of the used
approach in this work.
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HocmiaxkeHusa Moaes ¢pparMeHTarli Mareplajy 3 pIBHOBaXKHIM
3a MacmTaboM PO3MO/iJIEHHM eHeprii ApobJieHHs

P.E.Bpodcvrudi, 10.11. Bipuenxo

SacTocoByroun imMoBipHOocHHU# miaxia Komamoroposa mo ommcy mporecy dpparmenTarii MaTepiaiy,
MOKa3aHo, M0 y THHOBIHA pisvUHIN cHUTyalli, TpH HOCTIHHIA 1HTEHCHBHOCTI HAKaYyBaHHA €Heprii 10
cucremu piBHaHHA KosMoroposa mMae 6yTH HeoMHOPITHUM 3a dacoM. JJig 1poro BHIAAKY, ¥ CHEIla b-
HIfl MoJesi 3 PIBHOBAXKHHUM 3a MaclUITabaMH POSIIOIIEHHAM €Hepril, 0 BUTPAYAETHCA HA JPOOJICHH,
JIOBEJIEHO IpaHudHni 3akoH KoJiMoropoBa i posmoiijiy iIMOBIpHOCTEH po3MipiB ¢dhparMeHTiB.
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