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Submicron permalloy magnetic dots have a vortex ground state, and application of an
in-plane magnetic pulse will result in precession of the vortex about the dot axis at a
frequency in the sub GHz range. The precession frequency of this mode is calculated using
a perturbation technique based on vortex-magnon scattering including the magnetostatic
interaction. These calculations show that the frequencies vary between 0.2 and 0.8 GHz
for 60 nm disks or radii between 250 and 1000 nm, which agrees with recent experimental
data. There is also a higher frequency mode between 5 and 7 GHz.

CyOMUKpPOHHBIE IIePMAaJJIOeBble MArHUTHEIE TOUKKM MMEIOT BUXPEBO€ OCHOBHOE COCTOAHNE,
¥V IPUIOXKEHNEe MACHUTHOI'O HMIIYJbCA B IIJIOCKOCTH TOUKM NPUBOAUT K IIPEIECCUM BUXPS
BOKPYI' OCHM TOYKM C YAacTOTOM B CyOrurarepieBoM [uama3oHe. JacToTa 3TOM IIpelecchuu
BRIUMCJIEHA C KCIIOJL30BAHMEM TEOPHM BO3MYIIeHUM, 6Gasupyloleiica Ha TEOPHU PACCeTHUS
MArHOHOB Ha BHUXpe, BKJIOUAIOIIell MAarHUTOCTATHYECKOe B3auMojeiicTBue. PacueTr MoKasbIBa-
eT, UTO YacTOThI n3MeHsioTcs B mpegesax or 0.2 mo 0.8 GHz gia 60 HM AUCKOB ¢ PagmnycoMm
mexkay 250 m 1000 HEM, UTO coryiacyeTcsi C IIOCJEIHUMU SKCIEPUMEHTAJbHBIMU JaHHBIMU.
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CyiecTByeT Taxk:ke Moma ¢ 0ojiee BLICOKOM 4acToOTOl, Jesxareir mexkay b u 7 GHz.

Arrays of magnetic dots constructed
from soft magnetic materials such as per-
malloy have applications in the area of
high-density magnetic storage. For this rea-
son, many experimental investigations have
been done investigating both the static and
dynamic properties of isolated dots [1, 2] as
well as arrays [3, 4] of dots. One of the
most interesting properties of the cylindri-
cal dot from a theoretical perspective is the
presence of a vortex ground state when the
dot radius is in the submicron range owing
to competition between the exchange and
the magnetostatic interactions. In this arti-
cle the dynamic properties of a single dot in
the vortex state are investigated by calcu-
lating the magnon normal mode frequencies
with the magnetostatic interaction as a per-
turbation.

The particular case that we are inter-
ested in is vortex precession that arises
from an initial displacement of the vortex
core from the dot center by a magnetic field
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pulse. It is known that an in-plane magnetic
field pulse will move the vortex in a direc-
tion perpendicular to the applied field, and
when the field is switched off vortex pre-
cession results. This effect has been ob-
served [5] by making time-resolved Kerr mi-
croscopy measurements on single permalloy
dots of different radii to obtain the preces-
sion frequency. Previous theoretical calcula-
tions [6, 7] of this precession frequency
have been based on three different models
that have included both the exchange inter-
action as well as the magnetostatic or dipo-
lar interaction. The magnetostatic interac-
tion in the vortex-state dot arises from ef-
fective magnetostatic volume and surface
charges, which are from the divergence of
the magnetization and the components of
the magnetization normal to the dot sur-
faces, respectively. In the vortex ground
state the only contribution to the effective
magnetostatic charge comes from the small
out-of-plane magnetization at the vortex
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core, which is equivalent to easy-plane an-
isotropy. Therefore, the dot in this ground
state is equivalent to the two-dimensional
(2D) easy-plane ferromagnet without the
magnetostatic interaction, and the consid-
eration of vortex dynamics will be a pertur-
bation on this system. Previous models in-
clude the rigid vortex model and the pole-
free model. For the rigid vortex model it is
clear that vortex motion will result in an
effective magnetostatic surface charge at
the dot edge, which will increase the system
energy resulting in oscillation. On the other
hand, the pole-free model has no additional
magnetostatic charge from motion of the
vortex core, but an increase in exchange
energy leads to a vortex core oscillation. It
has recently been shown using micromag-
netic simulations that the pole-free model
gives a better estimate of the magnon fre-
quency. A more recent technique uses the
vortex-magnon interaction [7] with the
magnetostatic interaction arising from sur-
face charges only with the frequency ob-
tained from an effective boundary condition
at the dot edge. In the following the preces-
sional frequency of the vortex-state dot is
calculated the full magnetostatic interaction
using all of the contributions to the magne-
tostatic charge.

Considering small oscillations of the
magnetization about the vortex ground
state, where the magnetization is expressed
as M =M, (sin® cosg, sin® sing, cos®) for
polar and azimuthal angles 6 and ¢, and
these can be written in terms of polar coor-
dinates (r, %) in the dot plane as

0=0yr), @=x+n/2. (1)

For 2D easy-plane ferromagnets this
magnetization has the general form such
that 0y(r) - n/2 exponentially for large r
and sinf; — 0 at the origin eliminating the
singularity and lowering the energy. First
it is assumed that the aspect ratio, L/R is
small, where L and R are the dot thickness
and radius. Then the magnetization is uni-
form along the dot axis, and in the contin-
uum approximation the two contributions to
the energy can be written as

W= % [] [(A/Mg)(VM)2 - MHdezx. (2

The first term is the contribution from
the exchange interaction, which is short-
range and local in nature. The second term
contains the nonlocal magnetostatic field,
obtained from the potential, H,, = -VO.

Hm
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The sources of this field are both volume
charges arising from V-M and surface
charges from the normal component of M at
the surface. For the ground state magneti-
zation given by Eq.(1) the only source of
magnetostatic charge is the surface M, at
the two dot faces close to the dot axis giv-
ing the energy density, -M-H,, = 21tM?2 cor-
responding to the easy-plane ferromagnet,
which is local in nature. Then, for the con-
siderations of excitations for L <<R the
only other contributions to the magneto-
static potential are from the volume and
edge contributions,

f YMED - aray dz, 3)

r

_ r- MR, ,,,

q)s =-R _[ mdx dz .

where (r — )2 = r2+ r2 - 2rrcos(y — )+

+ (z — 2))2, and the z direction is along the

dot axis.

Now consider small deviations from the

static vortex solutions having the symmetry
of translations of the form

0 = 0y(r) + f(r)cos(y + wt) and 4)

o=yx+mn/2+ 1 g(r)sin(y, + wt),
sind

where Oy(r) and ) + m/2 are the polar and
azimuthal angles of the static vortex mag-
netization, and the last terms are small,
time-dependent corrections. Linearizing the
Landau-Lifshitz equation using Eq.(1) re-
sults in the set of coupled equations

Qf=H;g+Vf+ Uy, (5a)
Qg=Hyf +Vg+U,, (5b)

where Q = 0w/4nyM,, and the operators are

R V2(sin20y) (6)
H,=-§V2+ 13—,
sinb
. 12 . 2[3cosh,
Hy=-1gV2 + (ﬁ - 1]cos290, V=—"g9—"

with the exchange length given by [j=
NA/4tM 2. The local part of the magneto-

static field is contained in the Schroedinger-
like operators, Hl and Hz with the edge and
volume magnetostatic effects included in
the integral operators,
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For this mode the solutions [8] of Egs.
(5a,b) without the magnetostatic term are
known for any boundary condition. In gen-
eral, far from the vortex core the magnon
mode solutions are of the form g(k,r) =
Jy(kr) + o1(Bly) Y, (kr), where k is the
wavenumber and 6y(kr) = nkl,/4 is the scat-
tering amplitude. It has previously been
shown [7] that the edge contribution to the
magnetostatic energy results in a concentra-
tion of magnetostatic charge at the dot edge
leading to an effective boundary condition

dg - ()
dr + Ag(R) - 09

=R

RLIn(4R/L)/(2nlg). Therefore,

the only remaining nonlocal part of the
magnetostatic interaction is from the vol-
ume contribution. Without the volume con-
tribution the scattering problem has already
been solved, the solutions g; and f, are
known, and the wavenumber is determined
by the effective boundary condition. Next a
perturbation technique is developed to ob-
tain the frequency in terms of the nonlocal
magnetostatic operators with
®,/4ntM_ = L/R being a small parameter.
Then combining Egs.(5a,5b) the following
expression for the frequency can easily be
obtained

where A=

20<f 080> = <foU; + 8Us> )

where [71 and sz contain only the volume

contribution, and the brackets indicate the
R

integration, <...>= 21'5'{ ...rdr. Integration
0

by parts gives the simple expression for the

frequency

R 1 R R (10)
20 fogordr = 4_f drf drp(Sr,rper),
0 T o

d .
where p(r) = cosOyf, + E(rgo). The function

S is obtained from the magnetostatic poten-
tial, which after integration over 2z’ for the
case when L <R is approximately
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S s J = L had b
(r,r) '([ NF2 + 2 1+ 1L.2/4 — 2rr'coso

which is just a combination of elliptic inte-
grals or modulus x = 4rr'/[(r + r)2 + L2/4].
Next it is necessary to know the form of the
zeroth order functions to use in Eq.(10) and
obtain the frequencies for any modes. We
begin with the solution [8] of Egs.(5a,b) with-
out the magnetostatic interaction which is

g = (%Jl(kr) + %Yl(kr) sing, (12
and fj = 0, + Qg
Also the function S has the form
4L (13)

S(r,r’) =

Nr+ )2+ L2/4
G - B9 - K|,

where K and E are elliptic integrals of the
first and second kind.

Using the effective boundary condition
given by Eq.(8) the smallest solution is
ky= lO/Rz, which is used in the numerical
integration of Eq.(10) to determine the fre-
quencies of this mode at various dot radii.
It is also remarked that the condition
kr << 1 is valid for all r resulting in
fo = 0y, and gy = —sinBy/r, and since Q << 1
it is sufficient to include only the term that
is linear in Q from Eq.(10) giving the fol-
lowing expression for the frequency

1 R R (14)
20 = E£ dr{ (dr' oS r)p(r).

Numerical integration of Eqgs.(13,14)
with the k values from Eq.(12) now give the
R dependence of the frequency for permal-
loy dots with [y =4.8 nm and 4nyM, =
30 GHz. These calculated frequencies for
L =60 nm dots are indicated by the solid
curve in Fig. 1, and experimental data from
Ref.[5] for of radii 250, 500, and 1000 nm
are also included. Notice also that the meas-
ured radial dependence of the frequency
agrees very well with the calculated fre-
quencies.

There are also higher frequency m =1
modes corresponding to the next zero of
Eq.(12), that is approximately ky = jy/R,
where jo is the first root of the J;(kR) Bes-
sel function. Numerical solution of the ef-
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Fig. 1. Frequency of the translation mode
versus L/R for L =60 nm calculated from
Eq.(14), solid curve. Experimental data from
Ref.[5], symbols.

fective boundary condition gives the
wavenumber for this mode, and these values
of k£ are used in Eq.(10) to obtain the fre-
quency of this mode. In this frequency
range fy = Qg, so the quadratic term on the
left hand side is dominant and the linear
term is neglected. In this case the frequency
is approximately proportional to VL/R, so
the frequency is plotted in Fig. 2 as a func-
tion of this quantity. Both of these m =1
modes correspond to vortex displacement
with this higher frequency superimposed on
the lowest frequency precession mode.

In conclusion, vortex-magnon dynamics
including the full magnetostatic interaction
without additional model assumptions gives
dot radius-dependent frequencies that agree
very well with experimental observations.
Moreover, the generality of this method
will allow the determination of frequencies
of other modes.
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Fig. 2. Frequency of the higher translational
mode versus VL/R calculated from Eq.(10).
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HopmaasHi MOau O MArHIiTHHX TOYOK Y BHXPOBOMY CTaHi

K.E.3acnen, B.O.Ieanoes

CyOMiKpOHHI IIepMaJjiIoEBI MArHiTHI TOYKM MalOTh BUXPOBUIl OCHOBHUII CTaH, i HOZATOK
MAarHiTHOTO iMOyJbCy B IJIOIIWHI TOYKW IPUBOLUTH IO IIpelecii BUXPs HABKOJO Bici Touku
3 YacTOTOI0 y cyOrirarepieBomy faiamasoHi. Hacrory 1iei mperecii o0uncIeHO 3 BUKOPUCTAH-
HaIM Teopii 30ypioBaHb, 10 0a3yeThcsi Ha Teopil posciloBaHHA MarLHoHOB Ha BUXPi, IO
BKJIIOUAE MATHITOCTATHUYHY B3aeMOZil0. P03paxyHOK IIOKasye, IO YaCTOTH 3MiHIOIOTHCA ¥
mexxkax Bim 0.2 mo 0.8 GHz gna 60 um guckiB 3 pamiycom mixxk 250 i 1000 HM, 110 y3rof-
JKYETBCS 3 OCTAHHIMU eKCIepUMEHTAJLHUMU HaHUMHU. ICHYe TakoX Moza 3 OiJIbII BHCOKOIO

YacTOTOIO, IO JEeXUTh Mixk 5 i 7 GHz.

Functional materials, 11, 3, 2004

559



