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Local limit theorem concerns the probability distribution of the random passage time of
the given level m by the sum of independent poissonian random values is proved. It is
supposed that m is increased infinitely. The probability distribution with the asymptotic
accuracy is represented in the Wald form that is obtained earlier in the case of random
statistically independent {0,1}-sequences.

Honyqua JIOKaJIbHasa IpeaeJbHasd TeopeMa OJd BEePOATHOCTU MOMEHTa MJOCTUMKEHUA 3a-
JaHHOT'O YPOBHA M CyMMOﬁ HE€3aBUCUMBIX ITYaCCOHOBCKUX cnyqaﬁme BE€JIHUYNH. Hpe;monara-
€TCcA, YTO M BO3pacTaeT HeOorpaHM4YeHHO. Pacnpe/:(eJIeHI/Ie BepOﬂTHOCTefI C aCUMIOTOTUYECKOH TOU-
HOCTBIO IIPEACTABJAECTCA paclipegeJieHrneM Baﬂbﬂa, KOTOpoe OLLJIO M3BECTHO B AHAJIOMMYHONI 3amaue
IJIA CTATUCTUUYECKN He3aBUCUMBIX cayuaiinwix {0,1}-mocregosaTenbHoCTeH.

1. Problem setting. The following problem arises in the statistical theory of material destruction by
the penetrating clectromagnetic radiation. It is required to find the probability distribution of the random
destruction time 7 of the matcrial, i.e. the probability distribution of the destroying of the functional
element executed on the basis of this material when the definite energy level defining its degradation is
attained [1]. Earlier, it was proposed to solve this problem considering the destruction process as the
formation of the defective cluster in the material picce (for example, this cluster consists of some ceracks).
In this approach, the above mentioned energy level is defined by the size of the defective cluster relative
to the piece size when it may be considered as completely destroyed. The destruction scenario consisting
of the defective cluster formation covering a macroscopic part of the sample was named the percolation
one [1], [2]. When the percolation scenario realizing, it is possible to characterize the degradation level
of the material (i.c. the cluster size) by the value of energy absorbed in the material and obtained from
destroying disturbances. The value J(t) of the energy is the random temporal function since rendered
influences are random. For this reason, the time 7 when this function attains the given level F representing
the destruction criterion is the random variable and the problem consists of its probability distribution
calculation.

The natural problem setting within frameworks of the above described approach which has been
analyzed in papers [3],[4] assumes that the energy is pumped to the system with the average intensity
£(t) being temporally constant. It means that

J(t) = ’/s(s)ds. (1)
Q

Here {e(t);t € Ry = [0,00)} is a stationary ergodic random process having nonnegative realizations
with the probability one. Physically, one may suppose that the process of random cnergy absorption may
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possess some temporal intervals such that all of them have random duration and there is not any external
influence on the system. As a consequence, the material destruction is absent during these intervals. For
this reason, after the attaining the given level E by the continuous function J(¢) at the moment 7, i.e.
J(r) = E, it cannot change during any interval pointed out. Besides, it is necessary to assume that
at some random time moments of 7, k& = 1,2..., the absorption of appreciable portions of energy &y,
k=1,2... can occur so quickly that it is rcasonable, from the mathematical point of view, to neglect the
duration of this process. Such kind of absorptions give the contribution in the form )~ e4d(t — 73) to
the intensity. In turn, the appropriate contribution to the absorbed energy (1) will be represented by the
discontinuous function. Then solution of the equation J(r) = E can generally not exist. In connection
with the specified reasons, it is more correctly to consider that the time 7 is defined by the formula

T=min{t: J(t) > E}. (2)

This variable is correctly determined since realizations of random process {£(t)} are nonnegative and,
in view of its stationarity, the value of the integral J(t) monotonically increases. This increasing is carried
out such that the time average has the linear character. Therefore, with the probability one the integral
(1) will be really exceeded any level E at sufficiently great values t.

Exact calculation of the probability distribution of the random variable 7 represents itself a sufficiently
complicated problem. However, there is not the necessity of the reception of such exact solution. If the
random process {e(¢)} has sufficiently fast correlation separation (really, the exponentially fast onc),
we may present the variable J(¢) as the sum of weakly connected random variables, i.e. as the sum of
integrals over time intervals with the duration being much more than the correlation time. If the value
of the level E is very large in comparison with the correlation time, then the number of summands
in this sum are very large too. In this case, the centered and appropriately normed value of this sum
will be submitted to the Gaussian distribution. For this reason, it is possible to expect that probability
distribution of the random variable 7 will have the analogous universality at the limit £ — oc. Certainly,
this statement requires the rigorous justification. In the present work we analyze the special problem. Tts
solution confirms the above stated hypothesis. Namely, we shall solve the model problem by means of
the simple analysis. The setting of this problem is closely connected with the representation of J(t) as
the sum of equally distributed variables. In the proposed model, we consider the time as the discretely
changing one; i.e. it has values multiplicd to a time constant ¢y, t = ntg, n = 1,2,.... In this case, the
random process () = &, is represented by the sequence of independent and equally distributed random
variables e, multiplicd to a constant Ey having the energy dimensionality, e, = £Fy, £ =0,1,2.... We
suppose that the common probability distribution of all variables &,,, i.e. of the integer variable £ is the
poissonian one since it is naturally to consider the random influence action on the system as a rather
rare random event. It is well-known that the Poisson distribution is used in the statistical physics for the
registration description of very rare identical random events. Thus, we suppose that

A"

Pr{f:n}:mef, A>0. (3)

The paramecter A in the Poisson distribution in our model is the inverse value of the average energy
injection to the system during one disturbance.

In the above described problem setting, the energy absorbed in the system is modelled by the random
sequence {J,[er];n € N} with realizations

J,L[Ek} - iEh (4)
k=1

The time 7 of the attaining of the given level F is determined on the basis of Eq.(2) by the integer random
variable

Vy = min{n; Jylex] > E=mEy}, (3)
T = tor. The problem consists of the calculation with the asymptotical accuracy of probability distribution
of the random variable v at the limit m — oc.
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2. The limit probability distribution. We shall obtain the general formula for solution of the
formulated problem when the common random variable £ is lattice, i.e. we suppose that & € N .
Let us introduced into consideration the sums 7,, n = 1,2,... of independent random variables

51552,.... ie.
n
M — Z & -
k=1

Then, in terms of these sums, using Eq.(4) and Eq.(3), we obtain
Vy, = min{n;n, > m}.

We notice that, using the condition of mutual statistical independence of random variables &1, &... and
on the basis of the total probability formula, one can find

m—1

P(n) = Pr{u, =1} = > Pr{p 1 =k}Pr{g>m—k}. (6)
k=0

We obtain now the representation of probability distribution P, (n) being suitable for the further analysis
using Eq.(6). In view of the infinite divisibility of the Poisson distribution, we have

k
Pr{¢i +..+ & =k} = (n]j\l) exp(—An) . (7)

Since following cqualitics are taken place

A Lom—1
o oC . o
A7 /\r+m / 2T
S =Y =Y [ [ Zan, =
ERY Z 1 / I m
=1 ! r=0 (’ + HL). 7:0.0 ) T
A Tmot g r A Ton —1
x,
= [ | (Z )d = [an. [ ewten) don =
0 0 r=0 0 0
)\HL L
= 1 y)™m I(J,\yd7
0

it is valid

x b /\mfk p
Pr{€>m -k} = Z F@’)‘ = e’/\m /(1 *?/)mfkflekydy.
0

Using the obtained formula and Eq.(7), we transform the right hand side of the expression (6),

1

m—1 ; 3
[/\ n— 1 } /\m*kil m—k—1_X —
Pu(n) = Xexp(=An) Z k! k- 1)1 (1-4) “tdy =
k=0 0
Lo m—1 k m—k—1
_ Al D" [AA—y)] _
= Acexp(—An) / <Z x k1) exp(Ay)dy =
o \k=0
ATTL l
— AN m 1 /\y
¢ (m—1) (m —1)! / dy.- (8)
0
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Let us prove the following statement.
Ifn,m — oc like that the variable (m — An)n~'/? remains bounded, the asymptotically exact formula

()\n)mfl

Prin) ~ A (m —1)!

exp(—An) (9)

takes place.

We introduce the variable z, m — 1 = 2(An)"/2 + An which remains bounded at n — 0o ,m — oc due
to the condition of our statement. Then

(1 B 1) m—1 _ (1 B g)z(,\n)lﬂ (1 B g)/\n
n n n

and, at the passing to the limit, we have

Yy m—1 Y An
lim (1 - ‘—) = lim (1 — '—) = cxp(—Ay),
T—> O Y n

n N—0oC
since e
. 1 T
lim (1 — i) =1.
n—r oG n

Eq.(8) may be written in the form

e Am)m gt yy ™y
Pole) =2 g ), () e

For the obtaining of the asymptotically exact formula, we go to the limit m,n — oc¢ in the factor
represented by the integral. Passing to the limit in subintegral expression that is possible in view of the
compactness of integration domain, we shall obtain

1 Y m—1 A -1 A
lim (1 - '—) My == e Merldy =1,
m,n—oo [y n Jo

We notice now that, for the Poisson distribution, the local limit theorem like the Moivre-Laplace one is
valid [3],

A, 1 1,
Y~ T
Here { — 0o, A = oc and (I — A)A~™'/2 = z is bounded variable (the proof is realized by means of the

Stirling formula). If we put { = m — 1, A = An then application of this asymptotic formula to Eq.(9)
gives us the following formula

A z? [ A m—1—n*
Pm(n) ~ 2,—)\n exp (7) == ﬁ CXD <T) .
Il [

After the assigning z = (An)/(m — 1), dz = A/(m — 1), the obtained local limit theorem is represented
in the Wald form [6], [7]

m—1 m—1 A 2\ 2
Prn(n)~ exp 7_(1_1/27'”71/2) dz .
Howecver, there is the difference from the Wald distribution in this distribution. The degree of the variable
z In a pre-exponential factor is equal (—1/2) instead of (=3/2).
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RSN

-7 & Ot

3azadya JOCATHEHHS 33aHOro PiBHA
Yy Teopil mepKoAdIiiiHOTO pyliHyBaHHSA MaTepiary.
IIyacconiBcbkuii Iponec NOTJIMHAHHA €Hepril

1011 Bipuenro, M. I Sempybenxo

O1epyKaM0 JIOKALLHY IPAHUUHY TEOPEeMY ALIsi POMOALIY 1MOBIPIIOCTCH ©acy AOCATTICHITA 38,1aH0-
"0 PIBHS 771 CYMOI0 HE3A/IeKHUX IIYACCONIBCLKUX BUIIAIKOBUX Bemdun. lIpumnyckaerned, wo m 3poc-
ra€ HeoOMexeHo. Po3nofiil IMOBIpHOCTEN 3 aCHMIITOTHYHOK TOYHICTIO ysiBise OG0 po3molT Baas-
J1a, AKAE 6yB O7CPXKAHNE ¥ amaoriHIN upobiiemi II CraTucTHiHO He3a1exkHuX Bunaaxosux {0, 1}-
HOCT1A0BHOCTCH.
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