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Expansion of complex mechanical spectroscopy spectra into components defined by depend -
ences with Debye maxima and hysteresis curves has been proposed. An algorithm for approxi -
mation of experimental data basing on generalized Debye functions has been developed.

Hpe,aﬂomeHo pas3yioiKeHue CJIOMKHBIX CIIEKTPOB MeXaHUYeCKOH CIIEKTPOCKOIIMM Ha COCTaB-
JAKINEe, KOTOPphIe OIIpeAesIAITCA 3aBUCUMOCTAMU C ,Z[eGaeBCKI/IMI/I MaKCUMyMaMU U TuUcCTepe-
3UCHBIMU KPUBBIMMU. Pa3pa60TaH aJIrOPpUTM HpI/I6JII/I}ReHI/IH OKCIIEpUMEHTAaJbHBIX OJaHHBIX Ha

oCcHOBe 00OOIIEHHBIX Ae0aeBCKUX (PYHKI[UIA.

The mechanical spectroscopy suggests ex -
amination of mechanical systems exhibiting
both weak and strong nonlinearity to provide
information on the properties and structure
state thereof. Temperature, frequency, and
amplitude spectra are used. The engineering
materials show as a rule complex relaxation
spectra presenting a superposition of several
non-elastic processes at different mechanisms
of the processes running. A necessity arises
to analyze the mechanical spectra, to expand
those into components as well as to describe
the object physical model. It is just the de-
scription using mathematical characteristics
with parameters adequate to the nature of
processes occurring in the material that will
be the most comprehensive.

Let a temperature dependence of @1 be presented
by a background and a sum of m maxima [1]:

QUT) = Qglexp(-Hy/RT) + (1)
+ > Quiy/ €h)H/ BT - Tl
k=1

where the index %2 numbers individual max-
ima; QO_I is the pre-exponential background
factor; H¢, the activation energy; Tm(k)’
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temperature of the maximum at the specified fre -
quency f. The spectrum consists of a limited num -
ber of maxima having the regular Debye shape
with the broadening parameter 3 = 0.

In most cases, the measured maxima of @1
are wider that the Debye peak due to superpo -
sition of several relaxation processes, each
having its proper relaxation time Ty The
maximum obtained in experiment can be ex-
panded into a sum of Debye ones if the relaxa -
tion time spectrum is discrete, that is, the
number of processes is small enough and the T,
values corresponding thereto differ signifi-
cantly. When the spectrum is continuous [2],
the distribution parameter [ is introduced
that, as well as the T, parameter (relaxation
time) and H (activation energy), is an impor-
tant characteristic of physical processes. The
B value defines changes in the @1 maximum
height and shape as compared to the Debye one
having = 0. Even at low [ values when the
peak broadening o) does not exceed 1.25, the H
value (determined from the peak half-width [1])
becomes changed substantially. Then the items of
(1) are changed by functions [1]
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The higher is grad T, the more broadens
the maximum while its height is lowered.

The decrease of Q;}(k) is the more, the
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higher is the activation energy Hj charac-
terizing the maximum to be measured [3].
The Hj, values determined using different
methods can be different (sometimes by a
factor of two) [4], because all the methods
in use were elaborated under assumption
that the maximum has the Debye shape [1].
It is impossible to assess the errors of H
determination as well as to expand the spec-
trum into its components g, when the shape
variations of the items g, are not known
exactly. Therefore, of a great importance is
the choice of a mathematical curve having a
more general form than the function of (2)
type and including parameters having a de-
finitive physical sense at the same time. Let
a function §p(x) = dp(x, Ay, O, By Vi X3)
be chosen as such a function (with abstract
parameters used in order to provide inde-
pendence of the computer program of any
specific problem):

Ake_ak(x_xk)
1+ B’ 3)
A, > 0,0, >0,3,>0,y, >0,

that coincides with the Debye curve for 3, = 2ay,
Vk = ]., Ak = 2:

2e 0, (x—x,)
1 + e20,(x—x,) ~

¢k(x,2,dk,2ak,1,xk) = (4)

= ch™(x,0,,x;)

as well as coincides with the curve (2) (the
Debye one at a broadened peak) if B, = 2a,,
A, #2 and y, # 1. When the absolute value
of the curve ¢,(x) change rates in the points
positioned to left of its maximum and to
right thereof are different, then [, # 2a,.
Such dependences are observed for ampli-
tude-dependent internal friction when
studying magneto-mechanical dampings in
magnet fields of different strength [5, 6]. It
is easy to prove that the function ¢,(x) has
a maximum only when B, > a, > 0; the
maximum point is determined by formulas
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x =x, - —lp—<2

max = %k Br Ya(Br —ap)’ G
Omaxte = Ap(l = OBy, PBva, = 1) Pe.

Note that ¢(x)
only when vy, =

= Ak(l + yk)71 and Xmax = Xk
(Bva, — 1)71. The curve symme-

try with respect to x = x,,,, = x; is possible
only at B, = 204,

When studying the concentration depend-
ences of the Snook hydrogen maximum in nio-
bium [7] (non-elastic Gorsky relaxation [2]), an
unsymmetrical experimental curve of (3) type

has been obtained.
The relaxation maxima caused by intersti -

tial atoms in hexagonal metals exhibit some
singularities. The maximum shape is close to
the Debye one both in polycrystals [8, 9] and
in single crystals [10]. In high purity metals,
no maxima are observed at all at low concen -
trations of interstitial atoms [11]. If the ¢,(x)
function is chosen as the mathematical
model, then aj = 3, > 0 should be posed.

The amplitude dependence of internal
friction associated with dislocation motion
[12, 13] may be of linear, exponential, or
more complex character [14-18]. As the
modeling function, let ¢,(x) for B, = a;, be
chosen having two horizontal asymptotes:
¢ro when x - 4o and ¢, ; = A,/Y, when

x - —o. A pair of such functions ¢f) =

(I)k(x’ Ak’ Gk’ Bk9 yk9 xg)), ¢$¢2) = ¢k(x9 Ak9 ak,
Br» Vi x(2) with biased centers xfl) # x{2)

forms a hysteresis loop. When studying
continuous spectra, arbitrarily broadened
maxima can be constructed using the differ -

ence of those functions:
Ao A e @?) (6)

1+ e @)

Pr(x) =

1 + yke_ak(x_xg)).

The function Y,(x) attains its maximum
in the point

xsal) + xﬁ?) 1

Xmax ~ 9 + (X_klnyk;
xfD) = %2
" _ ﬁ Sh(akT)
max,k 2yk , x;gl) _ x$e2) :
ch4(a,——
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xg) + x&?)
When vy, =1, then x_ . = -

function ,(x) has a Debye character but
with more independent parameters, thus
making it possible to describe the physical
process in a more comprehensive fashion (the
Debye curve has three independent parame -
ters, the Yi(x), four ones). A generalization
of the y,(x) dependence is the function

The

_ alke_akx GZke_ka
Ek(x) - 1+ —.x _[3 X’
YirO1ge Ok 1+ Yoplgpe™e
O1p _ Ogp
Yir Yo

allowing to study characteristics of more
complex forms as compared to the Debye one
(asymmetric curves with respect to x = x,,,,,).

Substituting functions ¢,(x), Wu(x), &x(x)

for Debye ones gqp(x,b,x;) = 4 ¥ by = 1)
in (1) and approximating @ 1 according to
various criteria, we obtain the spectrum ex -
pansion into components making it possible
to consider the physical processes if the pa-
rameters have a physical sense.

It is just the least square method that is
chosen usually as the approximation crite-
rion (for experimental curves set discretely
or continuously). Such a choice is justified,
since, first, it makes it possible to process
experimental data including errors and, sec-
ond, the method algorithm is easy to be
programmed. The methods drawbacks are a
strong dependency on the selection of initial
parameters and a slow convergence. More
robust results can be obtained using a crite -
rion with weight coefficients, if there is a
confidence that the specified section of the
temperature or frequency dependences
image the actual process at a highest accu-
racy. Note that if the items of (1) are line-
arly independent functions in the section
under study, then the approximation will be
always highly accurate although it may be
physically senseless. Therefore, a mathe-
matical model (that is, the choice of mathe-
matical functions) will be adequate to the
actual process only when the parameters are
proven in experiment.

We have developed an algorithm to ap proxi-
mate the experimental curves by a polynomial

n

k=1
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with basic Debye functions (parameters A,
{A;, by, x;,} are abstract quantities, b, > 0, k
=1, 2,...n). Let an experimental curve be
specified by a data set (X;,Y;), i=0,1...m,
m >> n. It is necessary to determine the
minimum number of items n and parame-
ters Ay, {4, by, x3}, B =1,...n under condi-
tion

’” (7

8, =min}y (P,(x;) = Y)? <g, ¢,0Q,
i=0

n

where ¢, is the pre-specified error, ¢, =
{Ao,{Ak,bk,xk}, k= 1...n}; Q= {Ao, A].""’
A,0R; b,2by>0, x,20, kE=1...n}, the
convex closed set. The problem (7) is a non-
linear one, so that it is necessary to pre-
specify the initial parameters a priori or
basing on the experimental curve shape.
The determination procedure for the pa-
rameters consists in the determination of
the initial vector (A,b,w) from the charac-
teristics of the maximum peak (x;, is the
peak center, b, defines its half-width) and
optimization of the deviation 9, until the
condition (7) will be met. At each procedure
step, the least square method was used in
the vicinity of the maximum peak for suc-
cessive rough determination of each b, pa-
rameter. When the parameters (4, b, x;)
were determined, an algorithmically new
network function {X,, Y,(x)} was con-
structed by subtracting the Debye function
gp(x). Using the Newton method, the non-
linear system of equations was solved mak -
ing it possible to find approximately
mind,(c,). This was the end of the first
procedure step of a P,(x) polynomial con-
struction. At the second step, the compo-
nents (b, x,) of the vector ¢, were fixed
and the function 9,(a,), a, = (4¢, 4;, ...4,)
was minimized as the convex function of
the parameter vector a,, thus allowing to
find the vector a, when the components (b,
xp), B =1,...,n were specified. The procedure
was repeated until the iteration convergence.
The construction algorithm for a polyno-
mial with Debye functions g,(x) can be used
to construct the polynomial P,(x) with basis
functions ¢p(x), Pp(x), &,(x). The algorithm
was generalized for the multidimensional
case using tensor concepts. Figs. 1, 2 show
the steps of experimental data processing,
that is, the spectrum expansion into Debye
components. Note that the linearization of
nonlinear equations in the least square method
[1] can be used only to obtain the initial ap-
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Fig. 1. Expansion of a spectrum into compo-
nents: square — experimental, I—peak 1(x),

2 — peak 3(x), 3 — peak 4(x), 4 — approach (x);
5 — Dest.

proximations. This is due to a linear con-
vergence rate is observed at the lineariza-
tion.

Thus, functions have been proposed that
generalize the Debye characteristics. Those
functions have been used to expand the me-
chanical spectra into components and to
analyze the physical model of an object. The
multidimensional functions can be used to
construct the numerical-analytical methods
for solution of boundary problems being
mathematical models of magnet-mechanical
processes in materials [19].
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YuceabHe MOJEJIOBAHHS IPU 00poOIri
€KCIIePUMEHTAJBHUX JAaHUX MEXaHIUHOI CIEKTPOCKOIIil
MarepiaJjiB

0.B.Mo3zoeuii, B.C.A6pamuyx, I.B.Abpamuyx

BaHpOHOHOBaHO PO3KJIagJaHHA CRJIaIHUX CHeKTpiB MexaHigHOI CHeKTpOCKOHﬁ Ha CKJa-
,HOBi, OO0 BH3HAYAIOTHCA 3aJIEKHOCTAMU 3 ﬂeﬁaiBCLKHMH MaKCHUMyMaMu Ta I‘iCTepeBI/ICHI/IMI/I
KpUBUMU. P08p06JIeHI/Ifl aJITOPUTM HaOIMKeHHS €KCIIepUMEeHTa/JbHUX NJaHUX Ha OCHOBI y3a-

rajJbHeHuX Ae0alBCbKUX (PYHKINIHA.
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