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TIДC  

НОВІ МЕТОДИ В СИСТЕМНОМУ АНАЛІЗІ, 
ІНФОРМАТИЦІ ТА ТЕОРІЇ ПРИЙНЯТТЯ РІШЕНЬ 

УДК 517.9 

METHOD OF APPROXIMATION OF EVOLUTIONARY 
INCLUSIONS AND VARIATIONAL INEQUALITIES BY 

STATIONARY 

P.O. KASYANOV, V.S. MEL’NIK, L. TOSCANO 

The method of finite-difference approximations, advanced by C. Bardos and 
H. Brezis for the nonlinear evolutionary equations, is generalized on differential-
operational inclusions which are tightly connected to evolutionary variational ine-
qualities in Banach spaces. 

INTRODUCTION 

At studying of nonlinear evolutionary equations the some spread methods are 
used: Faedo-Galerkin, singular perturbations, difference approximations, nonli-
near semigroups of operators and others [1, 2]. The dissemination of these ap-
proaches on evolutionary inclusions and variational inequalities encounters a se-
ries of basic difficulties. The method of nonlinear semigroups of operators in 
Banach spaces was developed for evolutionary inclusions in works of 
A.A. Tolstonogov [3], A.A. Tolstonogov and J.I. Umanskij [4], V. Barbu [2] and 
others. A method of singular perturbations H. Brezis [5] and Yu. Dubinskiy [6] on 
evolutionary inclusions have disseminated in A.N. Vakulenko’s and V.S. Mel’nik 
works [7–9], a method of Galerkin’s approximations in P.O. Kasyanov’s works 
[10, 11]. 

In the present work the attempt to disseminate a method of difference ap-
proximations [1] on evolutionary inclusions and variational inequalities is under-
taken for the first time. 

PROBLEM FORMALIZATION 

Let Φ  be separable locally convex linear topological space; Φ′  be the space 
identified to topologically conjugate to Φ  space such, that Φ′⊂Φ ; ),( ϕf  is the 
inner product (canonical pairing) of devices Φ′∈f  and Φ∈ϕ . 

Let the three spaces HV ,  and V ′  are given, moreover  

 Φ′⊂′⊂ΦΦ′⊂⊂ΦΦ′⊂⊂Φ VHV ,,   (1) 

with continuous and dense embedding; 
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H  is a Hilbert space (with inner product Hhh ),( 21  and corresponding norm 

Hh |||| ); 
V  be reflexive separable Banach space with norm Vv |||| ; 
V ′  is the conjugate to V  space with dual norm Vf ′|||| . 

If Φ∈ψϕ, , that H),(=),( ψϕψϕ  is inner product of devices V∈ϕ  and 
V ′∈ψ . 
Let 21= VVV   and 

21
||||||=|||||| VVV ′′ ⋅+⋅⋅ , where )||||,(

iViV ⋅ , 1,2=i  is ref-

lexive separable Banach spaces, embedding Φ′⊂⊂Φ iV  and Φ′⊂′⊂Φ iV  is 
dense and continuous. Spaces )||||,(

iViV ′⋅′ , 1,2=i  are topologically conjugate to 

)||||,(
iViV ⋅  concerning the bilinear form ),( ⋅⋅ . Then 21= VVV ′+′′ . 

Let 11: VVA ′→ , RV →2:ϕ  be a functional, Λ  is non-bounded operator, 
which operates from V  to V ′  with definitional domain ),;( VVD ′Λ . The follow-
ing problem on searching of solutions by a method of finite differences is consid-
ered (see [1, chapter 2.7]): 
 ),,;( VVDu ′Λ∈   (2) 

  ,)()( fuuAu ∋∂++Λ ϕ   (3) 

where Vf ′∈  fixed element; 22: VV ′∂ →
→ϕ  is subdifferential from the functional 

ϕ  (see [13]). 

THE BASIC GUESSES 

Let us assume, that a set Φ  is dense in space  

 )||||||||,( VV vvVV ′+′ .  (4) 

Remark 1. From (4) it follows, that  

 .HVV ⊂′   (5) 

Really, if Φ∈v , that VVH vvv |||||||||||| 2
′≤  whence, due to (4) it follows (5). 

Remark 2. If HV ⊂ , it is possible to not introduce Φ  and identifying H  
and 'H , at once receive the following line-up of embeddings:  

 .VHV ′⊂⊂  (6) 

Definition 1. The family of maps 0)}({ ≥ssG  refers to as a  continuous semi-
group in a Banach space X , if 0≥∀s  );()( XXLsG ∈ , IdG =(0) , 

)()(=)( tGsGtsG +  0, ≥∀ ts , xxtG
w
→)(  as +→ 0t  Xx∈∀ . 

Operator Λ . Let the family of maps 0)}({ ≥ssG  be such that 0)}({ ≥ssG  is 
continuous semigroup on VHV ′,, , that is there are three semigroups, defined in 
spaces HV , , and V ′  correspondingly, which coincide on Φ . Each of them we 
shall designate as 0)}({ ≥ssG ; 
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 0)}({ ≥ssG  is non-expanding semigroup in H , 

 that is 1||)(|| );( ≤HHLsG  0≥∀ s .  (7) 

Further let Λ−  be the infinitesimal generator of a semigroup 0)}({ ≥ssG  
with a definitional domain );( VD Λ  (accordingly );( HD Λ  or );( VD ′Λ ) in V  
(accordingly in H  or in V′ ). In virtue of [14, theorem 13.35] such generator ex-
ists, moreover, it is densely defined closed linear operator in space V  (according-
ly in H  or in V′ ). 

Let 0
* )}({ ≥ssG  be the semigroup conjugated to )(sG , which operates ac-

cordingly in HV , , and V ′ . Let *Λ−  is the infinitesimal generator of a semi-

group 0
* )}({ ≥ssG  with definitional domain );( * VD Λ  in V , );( * HD Λ  in H  

and );( * VD ′Λ  in V ′ . The operator *Λ  in H  (accordingly in V  or in V ′ ) is con-
jugated in sense of the theory of unlimited operators to the operator Λ  in H  (ac-
cordingly in V  or in V ′ ). It takes place the following. 

Lemma 1. The sets VVD );( ′Λ  and VVD );( * ′Λ  are dense in V . 
Proof. Really, Vu∈∀  0>ε∀  Φ∈∃ϕ : ,<|||| εϕ Vu −  =:nϕ  

VVD
n

I );(1 1
′Λ∈






 Λ−=

−

ϕ , ϕϕ →n  in V  as ∞→n .  

The lemma is proved. 
Now we define Λ  as non-bounded operator, which operates from V  to V ′  

with definitional domain ),;( VVD ′Λ . Let us put  

 ),(formthe|{=),;( *wvwVvVVD Λ→∈′Λ  is continuous on 

 }spacefrominducedtopology,in);( * VVVD ′Λ .  (8) 

Then there is unique element :Vv ′∈ξ ),(=),( * wwv vξΛ . If );( VDv ′Λ∈  
V , that vv Λ=ξ . Thus, generally we can put vv Λξ = , whence  

 VVDwwvwv );(),(=),( ** ′Λ∈∀ΛΛ .  (9) 

If we enter on ),;( VVD ′Λ  the norm VV vv ′Λ+ |||||||| , we receive a Banach 

space. Let us similarly define space ),;( * VVD ′Λ . 
Remark 3. If HV ⊂ , then 

 ).;(=),;(and);(=),;( ** VDVVVDVDVVVD ′Λ′Λ′Λ′Λ   

In case when V  does not include in H  we assume that 

  ),;(indense);( VVDVDV ′Λ′Λ , 

 ),;(indense);( ** VVDVDV ′Λ′Λ .  (10) 

Remark 4. ([1, chapter 2, remark 7.5., 7.6.]).  
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 ),;(0),(),,;(0),( ** VVDvvvVVDvvv ′Λ∈∀≥Λ′Λ∈∀≥Λ .  (11) 

Let us enter some new denotations. Let Y  be some reflexive Banach space. 
As )(YCv  we designate the system of all nonempty convex closed bounded sub-
sets from Y . For nonempty subset YB⊂  we consider the closed convex hull 
of the given set ))(co(cl:=)(co BB Y . With multi-valued map A 
it is comparable upper Y

yAd
wdyA >,<sup=]),([

)(∈
+ω  and lower =_]),([ ωyA  

Y
yAd

wd >,<inf=
)(∈

 function of support, where ., Yy ∈ω  Properties of the given 

maps are considered in works [15–17]. Later on yy
w

n→  in Y  will mean, that ny  
weakly converges to y  in space Y . 

THE CLASSES OF MAPS 

Let us consider the next classes of maps of pseudomonotone type: 
Definition 2. Operator VVA ′→:  refers to pseudomonotone, if from 

Vy nn ⊂≥ 0}{ , 0yy
w

n →  in V , and 0)),((lim 0 ≤−
∞→

yyyA nn
n

 it follows, that 

11 }{}{ ≥≥ ⊂∃ nnkkn yy :  

 VwwyyAwyyA
knkn

k
∈∀−≥−

∞→
)),(()),((lim 00 . 

Definition 3. The next set:  

 })()(>,<|'{=)( VuvuvupVpv ∈∀−≤−∈∂ ϕϕϕ  

refers to subdifferential map form functional R→V:ϕ  in point Vv∈ . 

Definition 4. Multi-valued map *: VVA →→  refers to: 

1) λ -pseudomonotone, if from Vy nn ⊂≥0}{ , 0yy
w

n →  in V  and 
0),(lim 0 ≤−

∞→
yyd nn

n
, where )(co nn yAd ∈  1≥∀n  it follows, that it is possible 

to choose such 0000 }{}{,}{}{ ≥≥≥≥ ⊂⊂ nnkknnnkkn ddyy  that  

 ;]),([),(lim _00 wyyAwydVw
knkn

k
−≥−∈∀

∞→
 

2) bounded, if A translates arbitrary bounded in V  set in bounded in *V ; 
3) coercive, if +∞→+

− ]),([|||| 1 vvAv V  as +∞→Vv |||| ; 

4) satisfies condition )(κ  if the map R]),([|||| 1 ∈→∋ +
− vvAvvV V  is 

bounded from below on bounded in 0\V  sets, that is  

 Dvc
v

vvA
cVVD

V
∈∀≥∈∃−⊂∀ +

11 ||||
]),([

:Rin bounded}0{\ . 
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Remark, that the bounded multi-valued maps and monotone multi-valued 
operators, including subdifferential maps, are satisfying condition )(κ . 

Definition 5. Multivalued map )(: *VCVA v→  satisfies  property )(M , if 

from Vy nn ⊂≥0}{ , )( nn yAd ∈  1≥∀n : 0yy
w

n →  in V , 0dd
w

n → in V ′ , 
),(),(lim 00 ydyd nn

n
≤

∞→
 it follows, that )( 00 yAd ∈ . 

Definition 6. Operator *)(: VVLDL →⊂  refers to maximally monotone, if 
it is monotone and from )(0)),(( LDuuvuLw ∈∀≥−−  it follows, that 

)(LDv∈  and wvL =)( . 
Lemma 2. Let V , W  be Banach spaces, densely and continuously embed-

ded in locally convex linear topological space Y , VVA ′→→: , WWB ′→→:  — 
multi-valued λ -pseudomonotone maps and one of them is bound-valued. Then 
the multi-valued operator WVWVBAA ′+′→→+ ::=  is λ -pseudomonotone. 

Proof. Let yy
w

n →  in WVX =:  (that is yy
w

n →  in V  and yy
w

n →  in W ) 
and the next inequality is holds:  

 0>,<lim ≤−
∞→

Xnn
n

yyd ,  (12) 

where 
 )(co)(co=)(co nnnn yByAyAd +∈ .  (13) 

Let us prove the last equality. It is obvious, that +)(co=)(co nn yAyA  
)(co nyB+  and, moreover, )(co)(co)(co nnn yByAyA +⊃ . Let us prove the in-

verse inclusion. Let x  is a frontier point of )( nyA . Then =⊂∃ ≥ )(co}{ 1 nmm yAx  

)(co)(co= nn yByA + : xx
w

m →  in X  as ∞→m , because of Mazur theorem 
(see [14]), for an arbitrary convex set its weak and the strong closure is coincide. 
Hence, 1≥∀m  ),( nm yAv ∈∃  )( nm yBw ∈∃ : mmm xwv =+  and, taking into 
account bound-valuededness of one of the maps and Banach-Alaoglu theorem, we 

obtain, within to a subsequence, vv
w

m →  in V , ww
w

m →  in W  for some 
)(co nyAv∈ , )(co nyBw∈ . The statement (13) is proved. Consequently 

,= nnn ddd ′′+′  where )(co nn yAd ∈′ , )(co nn yBd ∈′′ . From here, within to a sub-
sequence, we obtain one of two inequalities:  

 0>,<lim0,>,<lim ≤−′′≤−′
∞→∞→

Wnn
n

Vnn
n

yydyyd .  (14) 

Without loss of generality, let us consider, that (within to a subse-
quence) 0>,<lim ≤−′

∞→
Vnn

n
yyd . Then, due to λ -pseudomonotony of A , 

1}{}{ ≥⊂∃ nnmm yy : 

 .]),([>,<lim _ VvvyyAvyd Vmm
m

∈∀−≥−′
∞→
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Let us put in last equality yv = , then 

 0=]),([>,<lim _yyyAyyd Vmm
m

−≥−′
∞→

. 

Hence, 0=>,<lim Vmm
m

yyd −′∃
∞→

. Then, due to (12), −′<
∞→

mmn
yd ,lim  

0> ≤− Wy . Taking into account (14), λ -pseudomonotony of A  and B , we have 

 ,]),([>,<lim _ VvvyyAvyd Vknkn
k

∈∀−≥−′
∞→

 

 .]),([>,<lim _ WwwyyBwyd Wknkn
k

∈∀−≥−′′
∞→

 

Then from last two relations it follows  

 ≥−′′+−′≥−
∞→∞→∞→

Wknkn
k

Vknkn
k

Xknkn
k

xydxydxyd >,<lim>,<lim>,<lim  

 .]),([=]),([]),([ ___ WVxxyyAxyyBxyyA ∈∀−−+−≥  

The lemma is proved. 
Lemma 3. Let V , W  be Banach spaces, densely and continuously embed-

ded in locally convex linear topological space Y , VVA ′→→: , WWB ′→→:  are 
multi-valued coercive maps, which satisfies condition )(κ . Then the multi-valued 

operator WVWVBAA ′+′→→+ ::=  is coercive. 
Proof. We obtain this statement arguing by contradiction. Let’s assume, that 

:}{ 1≥∃ nnx +∞→+ WnVnXn xxx ||||||=||||||  as ∞→n , but <
||||

]),([
sup

1 Xn

nn

n x
xxA +

≥
 

+∞< . 
Case 1. +∞→Vnx ||||  as ∞→n ,  cx Wn ≤||||  1≥∀n ;  

 0>,
||||

]),([
inf:=)(,

||||
]),([

inf:=)(
||||||||

r
w

wwB
r

v
vvA

r
WWw

B
VVv

A
+

=

+

= γγ
γγ . 

Remark, that +∞→+∞→ )(,)( rr BA γγ  as +∞→r . Then 1≥∀n  

VnVnAnnVn xxxxAx ||||)||||(]),([|||| 1 γ≥+
−  and ×≥+ )||(||

||||
]),([

VnA
Xn

nn x
x

xxA
γ  

.||||and||||as
||||
|||| cxx

x
x

WnVn
Xn

Vn ≤+∞→+∞→×  

In this case, due to condition )(κ , 1≥∀n   

 ∞→→≥≥+ n
x
x

c
x
x

x
x

xxB

Xn

Wn

Xn

Wn
WnB

Xn

nn at0
||||
||||

||||
||||

)||(||
||||

]),([
1γ , 

where R1 ∈c  is the constant from condition )(κ . It is clear, that  

 ∞→+∞→+ +++ n
x

xxB
x

xxA
x

xxA

Xn

nn

Xn

nn

Xn

nn as
||||

]),([
||||

]),([
=

||||
]),([

. 
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We have an inconsistency with boundedness of the left part of the given ex-
pression. 

Case 2. The case cx Vn ≤||||  1≥∀ n  and ∞→Wnx ||||  as ∞→n  is investi-
gated similarly. 

Case 3. Let us consider the situation, when ∞→Vnx ||||  and ∞→Wnx ||||  
as ∞→n . Then, 

 +
+

≥∞+ +

≥ WnVn

Vn
VnA

Xn

nn

n xx
xx

x
xxA

||||||||
||||)||(||

||||
]),([

sup>
1

γ  

 
WnVn

Wn
WnB xx

xx
||||||||

||||)||(||
+

+ γ .  (15) 

It is obvious, that 1≥∀n  0>
||||
||||

Xn

Vn

x
x

 and 0>
||||
||||

Xn

Wn

x
x

. And, if even one of 

limits, for example 0
||||
||||

→
Xn

Vn

x
x

, that 1
||||
||||

1=
||||
||||

→−
Xn

Vn

Xn

Wn

x
x

x
x

. We have an 

inconsistency with (15).  
The lemma is proved. 

THE MAIN RESULT 

Theorem. Let a) 11: VVA ′→  be bounded pseudomonotone on 1V  operator, which 
satisfies the following coercive condition:  

 +∞→+∞→
1

1

||||as
||||

)),((
V

V
u

u
uuA ;  (16) 

b) functional R: 2 →Vϕ  is convex, lower semicontinuous and the following 
takes place:  

 +∞→+∞→
2

2

||||as
||||

)(
V

V
v

v
vϕ ;  (17) 

c) The operator Λ  satisfies all listed above conditions, including conditions 
(7) and (10). 

Then for every Vf ′∈  there exists such u , that satisfies (2) and (3). 
Remark 5. If HV ⊂ , inclusion (2) implies, that );( VDVu ′Λ∈  . 
Proof. The approximate solutions. Natural approximation of inclusion (3) is 

inclusion  

 0)>()()()( hfuuAu
h

hGI
hhh ∋∂++

−
ϕ .  (18) 

Though, if V  does not include in H  (18), generally speaking, has no solu-
tions, and it is necessary to modify the given inclusion in appropriate way. We 
choose such sequence 1)(0,∈hθ , that  

 0as0
1

→→
−

h
h

hθ .  (19) 
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Let us put 1=hθ  when H⊂V . Further, we take  

 
h

hGI h
h

)(
=

θ−
Λ   (20) 

and also replace (18) with the inclusion  

 fuuAu hhhh ∋∂++Λ )()( ϕ .  (21) 

Lemma 4. Inclusion (21) has a solution HVuh ∈ . 
Proof. Let us enter the map  

 11:= VHVHAB h ′+→+Λ  .  (22) 

We consider the following variation inequality: 

 HVvuvfuvuvuB hhhh ∈∀−≥−+− ),()()()),(( ϕϕ .  (23) 

Let us prove the existence of such HVuh ∈ , that is a solution of the given 
inequality. The given statement follows from [15, theorem 7], if to put 

1= VHV  , 2= VW , BA= , ϕϕ =  and under condition of realization 
Lemma 5. Operator B  satisfies to the following conditions:  

 i) ∞→+∞→
1

1

||||as
||||

)),((
VH

VH
u

u
uuB




;  (24) 

 ii) 1ontonepseudomono VHisB  ;  (25) 

 iii) 1onbounded VHisB  .  (26) 

Proof. і) As )(sG  is non-stretched on H , then Hv∈∀   

 ( )≥−≥−Λ HHhHhh vvsGv
h

vvhGv
h

vv ||||||)(||||||1),)((1=),( 2 θθ   

 2||||1
H

h v
h
θ−

≥ .  (27) 

From here it follows the coercive condition and condition )(κ  for hΛ  on 
H . Thus, due to (2), we can use lemma 3 for maps hA Λ=  on HV =  and 

AB =  on 1= VW , whence it follows (24), if we prove, that A  satisfies condition 
)(κ . Really, if it is not true, then 0\}{ 11 Vw nn ⊂∃ ≥  such bounded in W , that 

∞−→−
+]),([1||||

1 nnVn wwAw  as ∞→n , but in virtue of boundedness of A , we 

have 

 ∞−−≥−−
≥

+ >||)(||sup)),((1||||=]),([1||||
1111 Vn

n
nnVnnnVn wAwwAwwwAw . 

iіі) The boundedness of B  on 1VH   follows from the boundedness of hΛ  
on H  and A  on 1V . The boundedness of hΛ  on H  immediately follows from 
the definition of hΛ  and estimation (6). 



P.O. Kasyanov, V.S. Mel'nik, L. Toscano 

ISSN 1681–6048 System Research & Information Technologies, 2005, № 4 114 

іі). Let us prove the pseudomonotony of B  on 1VH  . For this purpose we 
use lemma 2 with hA Λ=  on HV =  and AB =  on 1= VW . From here, due to 
the pseudomonotony and to the property of bound-valuedness of A  on 1V , it is 
enough to prove pseudomonotony of hΛ  on H . Let  

 0.),(lim,in ≤−Λ→
∞→

yyyHyy nnh
n

n  

Then, from estimation (27) we have  
 0=00),(lim),(lim),(lim +≥−Λ+−Λ−Λ≥−Λ

∞→∞→∞→
yyyyyyyyyy nh

n
nhnh

n
nnh

n
. 

Hence 0=),(lim yyy nnh
n

−Λ∃
∞→

. Further, Hu∈∀ , 0>s∀  let +yw =:  

)( yus −+ . Then 

 1),(),(),(),( ≥∀−Λ−−Λ+−Λ−≥−Λ nyuwsyywyyyuyys hnhnnhnh  

and 
 ),(),(lim),(),(lim yuwuyyyuwsuyys hnh

n
hnh

n
−Λ−≥−Λ⇔−Λ−≥−Λ

∞→∞→
. 

Let +→ 0s  then ),(=),(),(lim uyyyuyuyy hhnh
n

−Λ−Λ−≥−Λ
∞→

 and 

 +−Λ≥−Λ
∞→∞→

),(lim),(lim yyyuyy hnh
n

hnh
n

  

 Huuyyuyy hnh
n

∈∀−Λ≥−Λ+
∞→

),(),(lim . 

Thus we have the required statement. 
The lemma is proved. 
To complete the proof of lemma 4 it is necessary to show, that for fixed 

1VHuh ∈  the variation inequality (23) is equivalent to inclusion (22). If 

1VHv ∈  is arbitrary, then, by definition of subdifferential map, the inequality 
(23) is equivalent to )()( hh uuBf ϕ∂∈− , that in turn, by definition of B , it is 
equivalent to (22).  

The lemma is proved. 
The boundary transition on h . From lemma 4 for every 0>h  the exis-

tence of such 1VHuh ∩∈  and )( hh ud ϕ∂∈ , that  

 fduAu hhhh =)( ++Λ .  (28) 

is follows. If we put in (23) 0=v , we obtain 

  )0(),()()),(( ϕϕ +≤+ hhhh ufuuuB .  (29) 

Let us prove boundedness of 0>}{ hhu  in V  as h  close to zero. For this pur-
pose we use advantage coercive conditions (16) and (24). Let us assume, that 

∞→+
21

||||||=|||||| VhVhVh uuu . 

Case 1. ∞→
1

|||| Vhu ,  cu Vh ≤
2

|||| ;  
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 0>,
||||

)(
inf

=
=:)(,

||||
)),((

inf
=

:=)(
22

||||11
||||

r
u

u
r

r
u

uuB
r

r
VVuVVu

B
ϕ

γγ ϕ . 

Remark, that +∞→)(rBγ  and +∞→)(rϕγ  as ∞+→r . Then 

11
1

1
||||)||(||)),((|||| VVBhhVh uuuuBu γ≥−  and  

 ≥
+

≥
+

≥+←
Vh

hhh

Vh

h

Vh
VV u

uuuB
u

uf
u

ff
||||

)()),((
||||

)0(),(
||||
)0(|||||||| ''

ϕϕϕ  

 ≥+≥
Vh

VhVh

Vh

VhVhB

u

uu

u

uu

||||

||||)||(||

||||

||||)||(||
2211 ϕγγ

 

 ∞→+∞→+
+

≥ Vh
Vh

VhVh

Vh

VhVhB
uas

u

uu

cu

uu
||||

||||

||||)||(||

||||

||||)||(||
22

1

11 ϕγγ
. 

We have an inconsistency with boundedness of the left part of the given ine-
quality. It is necessary to notice, that last item in a right-side of last inequality 
tends to zero. It follows from boundedness from below of ϕ  on the bounded sets 
(see [13]). 

Case 2. The case cu Vh ≤
1

|||| ,  ∞→
2

|||| Vhu  is investigated similarly. 

Case 3. Let us consider the situation, when ∞→
1

|||| Vhu , .||||
2

∞→Vhu  Then,  

   
21

22

21

11
'' ||||||||

||||)||(||

||||||||

||||)||(||

||||
)0(||||||||

VhVh

VhVh

VhVh

VhVhB

Vh
VV uu

uu

uu

uu

u
ff

+
+

+
≥+←

ϕγγϕ .  (30) 

It is obvious, that 0>
||||

||||
1

V

V

u

u
 and 0>

||||

||||
2

V

V

u

u
. And, if even one of bounda-

ries, for example, 0
||||

||||
1 →

V

V

u

u
, that 1

||||

||||
1=

||||

||||
12 →−

V

V

V

V

u

u

u

u
. We have an incon-

sistency in (30). Thus,  
 0asinboundedare →hVuh .  (31) 

Prove, that  
 0asinboundedare 2 →′ hVdh .  (32) 

First, from equality (28) we receive:  

 ∞→→+∞⊂∀∞ nhhud nnnhnh
n

as0:)(0,}{<),(sup .  (33) 

Due to ,Huh ∈  from equality (28), estimation (31) and boundednesses of an 
operator A  we have 

 +−+ )),((sup),(sup=),(sup nhnh
nnh

nnhnh
n

uuAufud  

 +∞+′≤Λ−+ ′ <||||sup||)(||sup||||sup||||),(sup Vnh
n

Vnh
n

Vnh
n

Vnhnhnh
n

uuAufuu . 
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Now, in virtue of (33), we prove (32). From )(
nhnh yd ϕ∂∈  and from defini-

tion of subdifferential map, 2Vv∈∀  

 ≤−+≤−+≤ )()(),(sup),(sup),(sup),(sup nhnhnh
nnhnh

nnhnh
nnh

n
yvydyvdydvd ϕϕ  

 ∞+−+≤ <)(inf)(),(sup nh
nnhnh

n
yvyd ϕϕ , 

as functional ϕ  is bounded from below on bounded sets. From here, under Ba-
nach-Steingauss theorem (32) is follows. 

From (31) and boundedness of an operator A  on 1V  it follows, that  

 0asinboundedare)( 1 →′ hVuA h .  (34) 

From equality (28), estimates (31), (32) and (34), under Banach-Alaoglu 
theorem, the existence of such subsequences 0>1 }{}{ hhnnh uu ⊂≥ , ⊂≥1}{ nnhd  

0>}{ hhd⊂ , 0>1 )}({)}({ hhnnh uAuA ⊂≥  0)<(0 →nh , which further we will des-

ignate simply as 0>}{ hhu , 0>}{ hhd , 0>)}({ hhuA  accordingly, and elements 
Vu∈ , 1V∈χ , 2Vd ∈  the next convergences  

 ddVuAVuu
w

h
w

h
w

h →→→ 'in)(in 1χ  

 VLuuLV
w

hh ′→′ inin 2   (35) 

are follows, in particular,  

 'in:=)(=: VwdduAv
w

hhh +→+ χ .  (36) 

Let us enter the following map: )(:)()(=)( VCVvvAvC v ′→∂+ ϕ . Now 
prove, that the given map satisfies property )(M . For this purpose it is enough to 
show λ -pseudomonotony of C  on V . If C  is λ -pseudomonotone on V  and 

Vy nn ⊂≥0}{ , )( nn yCd ∈  1≥∀n : 

 ),(),(limand'in,in 0000 ydydVddVyy nn
n

w
n

w
n ≤→→

∞→
, 

then 

 0=),(),(),(lim),(lim),(lim 000000 ydydydydyyd n
n

nn
n

nn
n

−≤−+≤−
∞→∞→∞→

. 

Hence, due to λ -pseudomonotony of C  it follows, that ⊂∃ ≥1}{ kkny  

1}{ ≥⊂ nny , 11 }{}{ ≥≥ ⊂ nnkkn dd : 

 _00 ]),([),(lim wyyCwydVw
knkn

k
−≥−∈∀

∞→
. 

From here  

 ≤−≤−≤−
∞→∞→

− ),(lim),(lim]),([ 00 wydwydwyyC nn
nknkn

k
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 Vwwyd ∈∀−≤ ),( 00 . 

Hence )( 00 yCd ∈ . Thus C  satisfies condition )(M  on V . 
In turn, lemma 2, pseudomonotony and bounded-valuedness of A  on 1V  

provides the last, if to prove λ -pseudomonotony of ϕ∂  on 2V . As it is known, 
the last statement follows from [20.ІІІ, lemma 2, remark 2]. 

We use the fact, that C  satisfies property )(M  on V . Let us take v  from 

);( VDV ′Λ∗ . From (28) and (36) it follows, that  

 ),(=),(),( * vfvvvu hhh +Λ .  (37) 
But 

 vhG
h

I
v

h
hGIv h

h
*

*
* )()(=

θ−
+

−
Λ   (38) 

and due to (20), vvh
** Λ→Λ  in V ′ ; and consequently, as h  tends to zero in (37) 

we receive: 

 );(V),(=),(),( * VDvvfvwvu ′Λ∈∀+Λ ∗  

and (in virtue of (7), (8)) ),,( VVDu ′Λ∈   

 fwu =+Λ  

and we prove the theorem, if we show that  

 )(uCw∈ .  (39) 

On the other hand, because of (28) and (36) for H);(V ⊂′Λ∈ VDv  , we have 

 ≤−−Λ−−Λ−−− )),((),(),(=),( vuvuvuvvufvuv hhhhhhhh  

 ),(),( vuvvuf hhh −Λ−−≤ , 

as 0≥Λ h  in );( HHΛ . From here  

 );(V),(),(),(),(suplim VDvvuvvufvwuv hh ′Λ∈∀−Λ−−−≤  . 

But, due to (9), the same inequality is fulfilled ),;( VVDv ′Λ∈∀ , and when 
uv =  we obtain  

 ),(),(suplim uwuv hh ≤ , 

and also (39), because of C  is the operator of type )(M . The theorem is proved. 

Example. Let Ω  in nR  be a bounded region with regular boundary Ω∂ , 
]0,[= TS  be finite time interval, )(0;= TQ ×Ω , )(0;= TT ×Ω∂Γ . As operator A 

we take ))((=))(( tuAtAu , where  

 ϕϕϕϕϕ 2
2

1=
=)( −

−

+













∂
∂

∂
∂

∂
∂

−∑ p

i

p

ii

n

i xxx
A   (40) 
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(see [1, chapter 2.9.5]); V  is closed subspace in Sobolev space )(1, ΩpW , 1>p  
such, that  
 )()( 1,1,

0 Ω⊂⊂Ω pp WVW   (41) 

and 
 )).(;(0,=)),(;(0,=),;(0,= 222221 ΩΩ LTLVLTLHVTLV p  

We consider convex lower semicontinuous coercive functional RR →:ψ  

and its subdifferential RR→→Φ : , that satisfies growth condition. 

If we put 21= VVV   (from here ))(;(0,);(0,= 22
* Ω+′ LTLVTLV q , where 

1=11
qp

+ ), we obtain the situation (6), if 2≥p . At 2<<1 p  the common case 

takes place, if to take );(0,= VTDΦ  (see [1]). 
As an operator Λ  we take the derivation operator in sense of space of sca-

lar distributions );(0, ** VTD , }|{=:=)',;( VHyHVyWVVD ′+∈′∈Λ   

 }at0;at)({=:)()( stststtsG ≤≥−ϕϕ . 

Due to [1, chapter 2.9.5] and to the theorem, the next problem: 

 +













∂
∂

∂
∂

∂
∂

−
∂

∂
−

∑
i

p

ii

n

i x
txy

x
txy

xt
txy ),(),(),(

2

1=
 

 Qtxftxytxytxy p ona.e.),()),((),(|),(| 2 ∋Φ++ − ,  (42) 

 Ωona.e.0=0),(xy ,  (43) 

 T
A

txgtxy
Γ

∂
∂ ona.e.),(=),(
ν

,  (44) 

has a solution Wy∈ , obtained by finite differences method. Remark, that in 
(42)–(44) )(,': 20 Ω∈∈ LyVf  are fixed elements. 
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