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METHOD OF APPROXIMATION OF EVOLUTIONARY
INCLUSIONS AND VARIATIONAL INEQUALITIES BY
STATIONARY

P.O. KASYANOV, V.S. MEL’NIK, L. TOSCANO

The method of finite-difference approximations, advanced by C. Bardos and
H. Brezis for the nonlinear evolutionary equations, is generalized on differential-
operational inclusions which are tightly connected to evolutionary variational ine-
qualities in Banach spaces.

INTRODUCTION

At studying of nonlinear evolutionary equations the some spread methods are
used: Faedo-Galerkin, singular perturbations, difference approximations, nonli-
near semigroups of operators and others [1, 2]. The dissemination of these ap-
proaches on evolutionary inclusions and variational inequalities encounters a se-
ries of basic difficulties. The method of nonlinear semigroups of operators in
Banach spaces was developed for evolutionary inclusions in works of
A.A. Tolstonogov [3], A.A. Tolstonogov and J.I. Umanskij [4], V. Barbu [2] and
others. A method of singular perturbations H. Brezis [5] and Yu. Dubinskiy [6] on
evolutionary inclusions have disseminated in A.N. Vakulenko’s and V.S. Mel’nik
works [7-9], a method of Galerkin’s approximations in P.O. Kasyanov’s works
[10, 11].

In the present work the attempt to disseminate a method of difference ap-
proximations [1] on evolutionary inclusions and variational inequalities is under-
taken for the first time.

PROBLEM FORMALIZATION

Let @ be separable locally convex linear topological space; ®' be the space
identified to topologically conjugate to ® space such, that ® c ®’; (f,p) is the

inner product (canonical pairing) of devices f e®’ and pe ®.
Let the three spaces V, H and V' are given, moreover

OcVccd, OPcHcCcD', OcV'cd’ @

with continuous and dense embedding;
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H is a Hilbert space (with inner product (h;,h,)y and corresponding norm

Ih k)
V be reflexive separable Banach space with norm || v ||y ;

V' is the conjugate to Vv space with dual norm || f || .

If o,y e®, that (p,w) = (p,w)y Iis inner product of devices ¢ eV and
weV'.

Let V =V, NV, and [ lly = llv; +1I-llv; - where (Vi,[I-lly.), i =12 is ref-
lexive separable Banach spaces, embedding ® cV; c®' and ® cV;/c @' is
dense and continuous. Spaces (Vi'1||'||vi')’ i=1,2 are topologically conjugate to
v; '”'”Vi) concerning the bilinear form (--). Then V' =V, +V,.

Let A:V; »>V/, ¢:V, >R be a functional, A is non-bounded operator,

which operates from V to V' with definitional domain D(A;V,V'). The follow-

ing problem on searching of solutions by a method of finite differences is consid-
ered (see [1, chapter 2.7]):
ueD(AV,V), (2)

AU+ A(u) +0p(u)> f, 3
where f eV’ fixed element; dp:V, 3V, is subdifferential from the functional
o (see [13]).

THE BASIC GUESSES

Let us assume, that a set @ is dense in space

VAVl +IvID- (4)
Remark 1. From (4) it follows, that
VNV 'cH. (%)

Really, if ve @, that ||v||2H <|Ivily lIvIly whence, due to (4) it follows (5).
Remark 2. If V < H, it is possible to not introduce @ and identifying H
and H', at once receive the following line-up of embeddings:
VcHcV. (6)

Definition 1. The family of maps {G(s)}.., refers to as a continuous semi-
group in a Banach space X, if Vs>0 G(s)eL(X;X), G@0)=1d,

G(s+1)=G(5)oG () Vs t>0, Gt)x—>Xx as t—>0+ VxeX .

Operator A . Let the family of maps {G(S)}sso be such that {G(s)}sso IS
continuous semigroup on V, H, V', that is there are three semigroups, defined in
spaces V,H , and V' correspondingly, which coincide on ®. Each of them we
shall designate as {G(S)}sq;
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{G(s)}s>o is non-expanding semigroup in H ,
that is | G(S) [l 4:n)<1 Vs=0. @)

Further let — A be the infinitesimal generator of a semigroup {G(s)}ssq
with a definitional domain D(A;V) (accordingly D(A;H) or D(A;V')) in v
(accordingly in A orin V). In virtue of [14, theorem 13.35] such generator ex-

ists, moreover, it is densely defined closed linear operator in space V' (according-
lyin # orin V).

Let {G*(S)}szo be the semigroup conjugated to G(s), which operates ac-
cordingly in V,H, and V'. Let — A" is the infinitesimal generator of a semi-
group {G"(s)}. With definitional domain D(A";V) in V, D(A";H) in H

and D(A™;V') in V'. The operator A” in H (accordingly in VV orin V') is con-
jugated in sense of the theory of unlimited operators to the operator A in H (ac-
cordingly in V orin V"). It takes place the following.

Lemma 1. The sets D(A;V)NV and D(A";V')V are densein V .
Proof. Really, YueV Ve&>0 ZFped: |u-¢|y<é& ¢,:=
-1
=[I —EA] peDAVY)NV, @, 2@ inV as n— w.
n

The lemma is proved.
Now we define A as non-bounded operator, which operates from V to V'’
with definitional domain D (A;V,V"). Let us put

D(A;V,V)={veV |the form w— (v, A"w) is continuous on
D(A;V)NV in topology, induced from space V}. (8)
Then there is unique element &,eV': (LA W=(E,w. If veD(AV)N
NV, that &, = Av. Thus, generally we can put &, = Av, whence
(v, A'w) = (Av,w) YweD(A;V)NV. (9)

If we enter on D(A;V,V') the norm | v||, +| AVv|,, we receive a Banach

space. Let us similarly define space D (A";V,V").
Remark 3. If V< H, then

D(A;V,V)=VND(A;V) and D(A™;V,V')=VND(A" V).
In case when V does not include in A/ we assume that
VND(A;V') densein D(A;V,V),
VND(A";V') dense in D(A";V,V'). (10)
Remark 4. ([1, chapter 2, remark 7.5., 7.6.]).
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(AV,V)>0 WveD(AV,V'), (A'v,v)=0 YveD(A;V,V'). (11)

Let us enter some new denotations. Let Y be some reflexive Banach space.

As C, (Y) we designate the system of all nonempty convex closed bounded sub-
sets from Y. For nonempty subset B< Y we consider the closed convex hull
of the given set co(B):=cly(co(B)). With multi-valued map A

it is comparable upper [A(Yy), @], = sup <d,w>, and lower [A(Yy),®] =
deA(y) -

= inf <d,w>, function of support, where y oe Y. Properties of the given
deA(y)
w
maps are considered in works [15-17]. Later on y,— Yy in Y will mean, that y,
weakly converges to y in space VY.

THE CLASSES OF MAPS

Let us consider the next classes of maps of pseudomonotone type:
Definition 2. Operator A:V —V' refers to pseudomonotone, if from

{YntsocV, ynﬁy0 in Vv, and [im (A(Yy) Yn — Yo)<O0 it follows, that

n—o
EI{Ynk et S{Yn o
Him (A, ). Yy, =02 (AQYo), Yo W) VWV
N

Definition 3. The next set:
op(V)={peV'|<p,u-v><p)-¢(v) VueV}

refers to subdifferential map form functional ¢:V — R inpoint veV .

Definition 4. Multi-valued map A:V :ZV* refers to:

1) A-pseudomonotone, if from {y,}.-0 <V, Vi ﬂyo in Vv and
1im(d,, Y, — Yo) <0, where d, ecoA(y,) Vn=>1 it follows, that it is possible

N—o0

to choose such {y, heo ©{Yndnsor {0n, Hso = {ndnzo that

vweV  lim (dy .Y, —W) 2[A(Yo), Yo —W]_;

Kk —>00

2) bounded, if A translates arbitrary bounded in V set in bounded in V';

3) coercive, if || V]! [A(V),V], — +o0 as ||V, = +;

4) satisfies condition (x) if the map V >v—|V|y'[A(V),v], eR is
bounded from below on bounded in V \ 0 sets, that is
(AW,

VD <V \{0}—boundedinV 3¢, eR: vl
Vilv

YveD.
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Remark, that the bounded multi-valued maps and monotone multi-valued
operators, including subdifferential maps, are satisfying condition (x).

Definition 5. Multivalued map A:V —>CV(\/*) satisfies property (M), if

from {y,}nso <V, d, € Aly,) Vnx1: ynﬂyO in Vv, dnﬂdO in V',
lim (d,, ¥,,) < (dg, Yo) it follows, that dy € A(y,) -

nN—o0

Definition 6. Operator L:D(L)cV — V" refers to maximally monotone, if
it is monotone and from (w-L(u),v—u)>0 YueD(L) it follows, that
veD(L) and L(v)=w.

Lemma 2. Let V, W Dbe Banach spaces, densely and continuously embed-
ded in locally convex linear topological space Y, A:V3V', B:WI33W' —
multi-valued A -pseudomonotone maps and one of them is bound-valued. Then

the multi-valued operator A:= A+ B:VNW 33V’ +W' is 1-pseudomonotone.

Proof. Let y, ﬁy in X:=VNW (thatis vy, ly inV and y, gy in W)
and the next inequality is holds:

m<dn,yn_y>x§0, (12)
n—o0
where
d, €COA(y,) = COA(Y,) +COB(Y,). (13)

Let us prove the last equality. It is obvious, that coA(y,)=coA(y,)+

+coB(y,) and, moreover, EA(yn)DEA(ynHEB(yn). Let us prove the in-
verse inclusion. Let x is a frontier point of A(y,). Then 3{X;}s1 € COA(Y,)=

=CcoA(Y,)+coB(y,): Xy E>x in X as m-— oo, because of Mazur theorem
(see [14]), for an arbitrary convex set its weak and the strong closure is coincide.
Hence, Vm=>=1 3v, € A(y,), Iw, €B(y,): vy, +W, =X, and, taking into
account bound-valuededness of one of the maps and Banach-Alaoglu theorem, we

obtain, within to a subsequence, v, E)v in Vv, wmﬁw in W for some
vecoA(y,), wecoB(y,). The statement (13) is proved. Consequently
d,=d, +d/, where d\ ecoA(y,), d ecoB(y,) . From here, within to a sub-
sequence, we obtain one of two inequalities:

1im <dp, ¥ =y >y <0, lim <df,y, —y>y<0. (14)

N—o0 nN—oo

Without loss of generality, let us consider, that (within to a subse-
quence) lim <d;,y,—-y>y <0. Then, due to A-pseudomonotony of A,

N—o0

3{Ym}m C{yn}nzl:
lim <dp, Ym —V>y 2[A(y),y-v] VveV.

m—oo
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Let us put in last equality v =y, then

lim <dp,Ym =Y >y 2[A(Y),y-Vy] =0.

m—oo

Hence, 3 lim <d,, Yy, —Y>y=0. Then, due to (12),

m < an’ Ym —
m—o nN—o0
—y >y <0. Taking into account (14), A-pseudomonotony of A and B, we have

“7m<dlf]k7ynk _V>V2[A(y)vy_v]_ vvevl

k—o0
m<dgkaynk _W>W2[B(y)1y_w]_ vweW.
K—o0

Then from last two relations it follows

- - 1 - "
Ilm <dnk1ynk _X>)(2 Ilm <dnkaynk _X>V +I|m <dnksynk _X>WZ

kK —o0 k—a0 k—o

2[A®Y).y =xI_+[B(Y),y—x]_=[A(y),y-x]_ VxeVW.
The lemma is proved.
Lemma 3. Let V, W be Banach spaces, densely and continuously embed-

ded in locally convex linear topological space Y, A:V3V’', B:W33W' are
multi-valued coercive maps, which satisfies condition (x). Then the multi-valued

operator A:= A+B:VNW 3V'+W' is coercive.
Proof. We obtain this statement arguing by contradiction. Let’s assume, that

. _ [AXy), %]
I st X0 i =l%n Iy + 1 X llw = +0 @8 n— 0, but sup =——=—"=<

et | X0 llx
< 400,
Casel. || X, |y —>+xw as n—-ow, ||X,|lwsc Vnx1;
A(v),v B(w),w
)/A(I’)ZZ |nf [ () ]+, 75("): |nf [ ( ) ]+, r>0.
My =7 IV Il Iy =7 Wl

Remark, that yA(r) >+, yg(r) >+ as r—»>+w. Then Vn2>1

A v Anls
10 1A ) X ds = 74 (1% ) 1%y and EAG: Xake oo ey

” Xn “X
X
5% ” n ”V

I %n lix

In this case, due to condition (x), Vn>1

B(x,), X X X
[ (n) n]+ ZJ/B(”Xn ”W)” n”W chll I’]”W -0 at n— o0,
Il Xn 11x (R P% (RO P%

where ¢; € R is the constant from condition (x). It is clear, that

—+40 as ||X,|l—>+e and | x,[w<=c.

[A(Xn)ixn]+ - [A(Xn)’xn]+ + [B(Xn)vxn]+
%0 llx l1%n llx %0 llx

—>+00 aS N—oo.
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We have an inconsistency with boundedness of the left part of the given ex-
pression.

Case 2. The case || X, [ly<c VY n>1and | X, |[[lw— % as n— o is investi-
gated similarly.

Case 3. Let us consider the situation, when || x,, |ly >« and || X, [\ = %
as n — . Then,

A(X.), X X
+OO>SUp[ ( n) n]+ 27/A(”Xn ”V) ” n ”V
a1 1 % llx 1 %0 Iy + 11 %n [l
X
+ 11Xy ) 1 o (15)

% I+ 1% by

. . X X .
It is obvious, that V¥ n>1 In v >0 and 1% >0. And, if even one of
I %n Ilx Il %5 Ilx

. X X X
limits, for example m—>0, that 1% llw =1- 1% llv 1. We have an

Il X [l (R IP% RN P%
inconsistency with (15).
The lemma is proved.

THE MAIN RESULT

Theorem. Leta) A:V; -V, be bounded pseudomonotone on V; operator, which
satisfies the following coercive condition:

(A(u).u)
lulh,

b) functional ¢:V, — R is convex, lower semicontinuous and the following
takes place:

—>+0 as [[Ully, > +eo; (16)

o(v)
vl
c) The operator A satisfies all listed above conditions, including conditions
(7) and (10).
Then for every f eV’ there exists such u, that satisfies (2) and (3).
Remark 5. If V < H , inclusion (2) implies, that ueV N D(A;V').

Proof. The approximate solutions. Natural approximation of inclusion (3) is
inclusion

—>40 as [[V]ly, > +o; (17)

| —G(h)
h

Though, if V does not include in H (18), generally speaking, has no solu-
tions, and it is necessary to modify the given inclusion in appropriate way. We
choose such sequence 6, €(0,1), that

1-6,

Uy + AUy ) +p(Uy)> £ (h>0). (18)

—>0 as h—-0. (19)
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Let us put 6, =1 when V < H. Further, we take

A :%G(h) (20)
and also replace (18) with the inclusion
Apup + A(up) +0p(up) o . (21)
Lemma 4. Inclusion (21) has a solution u, eV N H.
Proof. Let us enter the map
B=A,+A:HNV;, >H+V/. (22)
We consider the following variation inequality:
(B(up),v—up)+ o) —e(u,)=>(f,v-u,) VveVH. (23)

Let us prove the existence of such u, €V (1 H, that is a solution of the given
inequality. The given statement follows from [15, theorem 7], if to put
V=HNV;, W=V,, A= B, ¢ = ¢ and under condition of realization

Lemma 5. Operator B satisfies to the following conditions:

) BOY s Jully gy, - (24)
1ulln v

ii) B is pseudomonotone on HNV;; (25)
iii) B is bounded on HNOV;. (26)

Proof. i) As G(s) is non-stretched on H , then Vve H
1 1( 2 )
(Anv.) == (V= GV ) 2 IV I ~n GV IV )2

1-6,
h

From here it follows the coercive condition and condition (x) for Ay on

H . Thus, due to (2), we can use lemma 3 for maps A=Ay, on V=H and

B=A on W =V,, whence it follows (24), if we prove, that A satisfies condition

(x). Really, if it is not true, then 3{w,}»; =V, \0 such bounded in W, that

> IVIIE - (27)

Il wp, ||\711 [A(w,),w,], = —o as n— o, but in virtue of boundedness of A, we

have

-1 - -1
Wi I, DA ), Wy 1, =1 Wy [y (AQW, ), o) = —sup | AWy ) lly, > —oo.
n>1
iii) The boundedness of B on H (1 V; follows from the boundedness of A,
on H and A on V,. The boundedness of A, on H immediately follows from

the definition of A, and estimation (6).
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ii). Let us prove the pseudomonotony of B on H(\V;. For this purpose we
use lemma 2 with A=A, onV =H and B=A on W =V,. From here, due to
the pseudomonotony and to the property of bound-valuedness of A on V,, it is
enough to prove pseudomonotony of A, on H . Let

Yn =Y in H, W(AhynaYn_y)SO'

n—oo

Then, from estimation (27) we have
lim (ApYn, Yo = Y) 2 lim (Aq Yo =ApY,¥q = ¥) + lim (ApYy, ¥, —¥)20+0=0.

n—oo nN—oo nN—o0

Hence 3 |im (ApYn, Yo —Y)=0. Further, YueH, Vs>0 let w:=y+
n—oo

+s(u—y). Then

S(Ahynvy_u)z_(Ahynryn - Y)+(Ath yn - y)—S(AhW,U— y) vnx1
and

slim (ApYn, Yy —U)Z=s(Ayw,u—Yy) < lim (Apy,, Yy —U)=—(Apw,u-y).

Nn—o0 nN—oo
Let s— 0+ then lim (AnYn, Y —U)=>—(Apy,u—-y)=(A,y,y—u) and
n—oo
dim (ApYn, Yo =W 2= lim (ApYn, Yo —Y) +
n—oo n—oo
+1im (ApYn, y—-U)2(Apy,y—-u) VueH.
n—oo

Thus we have the required statement.

The lemma is proved.

To complete the proof of lemma 4 it is necessary to show, that for fixed
u, e HNV; the variation inequality (23) is equivalent to inclusion (22). If
ve HV; is arbitrary, then, by definition of subdifferential map, the inequality
(23) is equivalent to f —B(up) € 0¢(uy,), that in turn, by definition of B, it is
equivalent to (22).

The lemma is proved.

The boundary transition on h. From lemma 4 for every h>0 the exis-
tence of such u, e H "V, and dy, € dp(uy,), that

Ahuh + A(Uh)+dh =f. (28)
is follows. If we put in (23) v= 0, we obtain
(B(Un):Up) +(Up) < (f,up) +(0). (29)
Let us prove boundedness of {u,}n-o in V as h close to zero. For this pur-
pose we use advantage coercive conditions (16) and (24). Let us assume, that
Hun lly =lup lhy, + 1 v, = .

Case 1. [lup [y, >, [lup llv,<c;
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r>0

_ . (B )
e Tty 7 = fuh,

Remark, that yg(r)—>+w and y,(r)—>+w as r-—>+oo. Then
lup I, " (B(un).up) = 75 (1) llully, and

p(0) _ (f.up) +9(0) _ (B(Up).up)+oup)
llup llv llup llv lup llv
78 lun ) llun lly 7 Qlun ) lun i,

llup [l llup Il

S 781U livy ) 11U livy . Vo (lun liv, ) Tun v,
llun lly, +¢ [l [l

We have an inconsistency with boundedness of the left part of the given ine-
quality. It is necessary to notice, that last item in a right-side of last inequality
tends to zero. It follows from boundedness from below of ¢ on the bounded sets
(see [13]).

Case 2. The case ||uy, ||V1£ c, |luy ||V2 — oo is investigated similarly.

IRV (VA

as |[lup[ly >

Case 3. Let us consider the situation, when | v, ||‘{—> w©, ||y, ||V2 — oo, Then,

p(0) _ 78 {lunliv )llun lhy . Vo (lUn Ihv, ) llun v,

Il v+ 2 . (30)
lun iy llup [y + 11U v, lun Il +llup v,
lull flull
It is obvious, that \1 and V2 >0. And, if even one of bounda-
lully llully
[lull [lull lull
ries, for example, L 50, that Y2 -1~ "™ 1 We have an incon-
llully llully lully
sistency in (30). Thus,
U, are bounded in V as h—0. (31)
Prove, that
d, are bounded in V, a h—0. (32)

First, from equality (28) we receive:
sup(d,1n ,uhn)<oo vV{h,}c(0+x): h, >0 a n—oo. (33)
n

Due to u, € H, from equality (28), estimation (31) and boundednesses of an
operator A we have

sup (dy . Up ) =SUp(f Uy ) +SUp (~A(Uy ).Uy )+
n n n

+sup (=Ap Up Up ) <[ Il supflup [l +supll ACup )l supllup, [l <+
n n n n
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Now, in virtue of (33), we prove (32). From dhn € 6go(yhn) and from defini-

tion of subdifferential map, VveV,

sup(dp V) <sup(dp ,yn ) +sup(dy ,v—yp )<sup (dy . yn )+@(V)—@(yy )<
n n n n

<sup (dy ., Y )+ (V) —inf o(yp ) <+,
n n

as functional ¢ is bounded from below on bounded sets. From here, under Ba-
nach-Steingauss theorem (32) is follows.
From (31) and boundedness of an operator A on V; it follows, that

A(u,) are bounded in V,/ a h—0. (34)

From equality (28), estimates (31), (32) and (34), under Banach-Alaoglu
theorem, the existence of such subsequences {uhn b1 < {Unnso s {dhn |

c{dp}ns0- {A(uhn Vs1 € {AUR) o (0 <h, — 0), which further we will des-

ignate simply as {up}nso, {dptnso. {AUL)}hso accordingly, and elements
ueV, y eV, d eV, the next convergences

w ) w B w
uy—u in V. Alu,)—>y in V" dy—d

in Vi Lyu,-sLu in V' (35)

are follows, in particular,
vh:=A(uh)+dhﬂ>;(+d=:W in V', (36)

Let us enter the following map: C(v) = A(V) +dp(v):V —>C,(V'). Now
prove, that the given map satisfies property (M) . For this purpose it is enough to
show A -pseudomonotony of C on V. If C is A-pseudomonotone on V and
{yn}nZO cV, dn eC(Yn) vn>1:

w w N
Yn—>Yo In V, d,—>dy, in V' and I|im(d,,y,)<(dg,Yo),

n—o0

then
lim (dn, Yo = Yo)< lim (d,,y¥,) + lim (dn,—Yg) <(dg,Yo) —(dg,Yo) =0.
n—oo n—o0 N—00

Hence, due to A-pseudomonotony of C it follows, that H{ynk he1 ©
{Yntns1, {d Nk o1 c{dn s

YWeVlim (dy Yo ~W)Z[C(Yo).yo ~ W]
—>0
From here

[C(Yo). Yo ~wl- < lim (doy . Yo, —W) < lim (dy, Yy —W) <
—>®0

n—oo
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<(dg, Yo —W) VweV.

Hence dy e C(yy). Thus C satisfies condition (M) on V.
In turn, lemma 2, pseudomonotony and bounded-valuedness of A on V;

provides the last, if to prove A-pseudomonotony of d¢ on V,. As it is known,

the last statement follows from [20.1I1, lemma 2, remark 2].
We use the fact, that C satisfies property (M) on V. Let us take v from

V N D(A"V'). From (28) and (36) it follows, that

(Up, ARV) + (Vp, V) = (V). 37)
But
Av=1 ‘i(h) vl _h‘gh G(h)"v 38)

and due to (20), A’},v —A'vinV’;and consequently, as h tends to zero in (37)
we receive:

(U, AV)+(wv)=(f,v) VYveVND(A*;V)
and (in virtue of (7), (8)) ue D(A,V,V')
Au+w=f
and we prove the theorem, if we show that
weC(u). (39)
On the other hand, because of (28) and (36) for ve V(YD (A; V')cH, we have
(Vh,up =v) = (F,up =v) = (ApVv,up = V) = (A (Up —V),Uup —V) <
<(f,up —v)—(Apv,up —v),
as A, 20 in A(H;H). From here
limsup (vp,,up,) < (w,v) = (f,u—v)—(Av,u-v) VYveVND(A;V').

But, due to (9), the same inequality is fulfilled Vve D (A;V,V"), and when
vV =U we obtain

limsup (v;,,u,)<(w,u),
and also (39), because of C is the operator of type (M) . The theorem is proved.

Example. Let Q in R" be a bounded region with regular boundary 6Q,

S =[0,T] be finite time interval, Q =Qx (0;T), I't =0Qx(0;T) . As operator A
we take (Av)(H) = Au(b), where

o ||0p

A = _ R i

(gp) Z 8Xi { 8Xi

0X;

p-2
0 _
—(‘)}I(/)Ip ‘o (40)
i=1
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(see [1, chapter 2.9.5]); V is closed subspace in Sobolev space Wl'p(Q) , p>1
such, that

W, P (Q)cV cWhP(Q) (41)
and
V, =L, (0,TV), H=L,(0,T;L,(Q), V,=L,(0,T;Ly ().

We consider convex lower semicontinuous coercive functional ¥ :R - R

and its subdifferential ®:R = R, that satisfies growth condition.

If we put V =V, NV, (from here V' =L, O,T;V)+ L,(0,T;L,(Q2)), where
1

—+l =1), we obtain the situation (6), if p>2. At 1< p <2 the common case
P q

takes place, if to take ® = D(0,T;V) (see [1]).
As an operator A we take the derivation operator in sense of space of sca-
lar distributions D*(0,T;V"), D(A;V,V'):=W ={yeVNH|y eH +V?}

G(s)p(t):={p(t—s) at t>s; 0 at t<s}.
Due to [1, chapter 2.9.5] and to the theorem, the next problem:
oy(t) & 2 [layn|" oy (x.t) .

ot o 0% | OXi | OXi
+] y(x,t)|'°’2 y(x,1) +D(y(x,1)) > f(x,1) ae. on Q, (42)
y(x,00=0 ae. on Q, (43)
oy(x.1) =g(x,t) ae. on It, (44)
Va

has a solution yeW , obtained by finite differences method. Remark, that in
(42)—(44): f eV', yo €L, (Q) are fixed elements.
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