ОПТИМИЗАЦИЯ ПЕРИОДИЧНОСТИ ЧАСТИЧНОГО КАЛЕНДАРНОГО ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ СИСТЕМЫ ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНОЙ СТРУКТУРЫ

А.И. ПЕСЧАНСКИЙ, Р.А. ПРИХОДЬКО

Построена математическая модель и найдены приближенные значения стационарных характеристик надежности последовательно-параллельной системы с частичным календарным техническим обслуживанием ее последовательной части. Определены оптимальные сроки проведения технического обслуживания.

ВВЕДЕНИЕ

Одна из серьезных проблем надежности функционирования технических систем — организация технического обслуживания (ТО). Модели и стратегии ТО одно- и двухкомпонентных систем достаточно изучены [1-4]. Многокомпонентные системы исследованы меньше из-за своей размерности и сложной структуры. Классы моделей и методов исследования таких систем описаны в работах [3-6].

В данной статье рассматривается многокомпонентная система, имеющая следующую функциональную структуру: часть элементов соединена последовательно, остальные — параллельно. Распределения времен безотказной работы элементов и их восстановления предполагаются общего вида. В некоторый момент времени после начала работы проводится предупредительное ТО (полное обновление) элементов только последовательной части системы. Находятся стационарные характеристики функционирования системы: стационарный коэффициент готовности, средняя прибыль за единицу времени и средние затраты за единицу времени исправного функционирования системы. Определяются моменты проведения ТО для достижения оптимальных значений указанных критериев качества функционирования системы.

Для решения задачи привлекается аппарат теории полумарковских процессов с дискретно-непрерывным фазовым пространством состояний. Приближенные значения стационарных характеристик системы находятся с помощью метода, основанного на алгоритме фазового укрупнения [7, 8].

ПОСТАНОВКА ЗАДАЧИ

Система состоит из N+M технологических ячеек (ТЯ), из которых N ТЯ соединены последовательно, а M — параллельно. Время безотказной работы i-й ТЯ из последовательной цепочки — случайная величина (СВ) α_i^p

с функцией распределения (ФР) $F_i^{\ p}(t) = P(\alpha_i^{\ p} \leq t)$, $i=\overline{1,N}$, время безотказной работы j-й ТЯ из параллельной части системы — СВ α_j с ФР $F_j(t) = P(\alpha_j \leq t)$, $j=\overline{1,M}$. Индикация отказа ТЯ происходит мгновенно и восстановление (аварийное) i-й ТЯ из последовательной части системы длится случайное время $\beta_i^{\ p}$ с ФР $G_i^{\ p}(t) = P(\beta_i^{\ p} \leq t)$, $i=\overline{1,N}$, а восстановление j-й ТЯ из параллельной части — случайное время β_j с ФР $G_i^{\ p}(t) = P(\beta_i \leq t)$, $i=\overline{1,M}$.

Отказ системы наступает либо в результате отказа любой ТЯ из последовательной цепочки, либо в результате отказа всех ТЯ, соединенных параллельно. При отказе системы работоспособные ТЯ отключаются. После возобновления работы отключенные ТЯ включаются в работу с теми же характеристиками безотказности, с которыми их застал отказ.

В момент начала работы системы (нулевой момент времени) планируется проведение предупредительного ТО последовательной части системы через время, получаемое как реализация СВ γ с ФР $\Phi(t) = P(\gamma \le t)$. При этом ТО проводится только в том случае, если система находится в работоспособном состоянии. В противном случае ТО откладывается на время γ . Длительность проведения ТО — СВ ζ с ФР $\Psi(t) = P(\zeta \le t)$. В момент окончания ТО последующее ТО перепланируется. Предполагается, что после проведения любой из восстановительных работ ТЯ полностью обновляются. СВ α_i^p , β_i^p , $i=\overline{1,N}$, α_i , β_i , $i=\overline{1,M}$, γ , ζ предполагаются независимыми в совокупности, имеющими соответствующие плотности распределения $f_i(t)$, $f_i^p(t)$, $g_i^p(t)$, $g_i(t)$, $\varphi(t)$, $\psi(t)$, конечные математические ожидания $M\alpha_i^p$, $M\beta_i^p$, $M\alpha_i$, $M\beta_i$, $M\gamma$, $M\zeta$ и дисперсии.

Требуется определить следующие стационарные характеристики системы при условии быстрого восстановления ее элементов: среднюю наработку на отказ T_+ , среднее время восстановления T_- , коэффициент готовности Kг, среднюю прибыль S за единицу календарного времени, средние затраты C за единицу времени исправного функционирования системы; оптимальные моменты времени проведения T0 последовательной цепочки T8 для достижения наилучших значений показателей функционирования системы Kг, S, C.

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ СИСТЕМЫ

Построим полумарковскую модель рассматриваемой системы. Введем следующую кодировку физических состояний ТЯ: 1 — ТЯ находится в работоспособном состоянии, 0 — в отказовом. Кодами физических состояний системы будут совокупности двух двоичных векторов \overline{d} и \overline{b} . Компоненты N-мерного вектора \overline{d} описывают состояния ТЯ из последовательной части, а компоненты M-мерного вектора \overline{b} — состояния ТЯ из параллельной части системы.

Фазовое пространство полумарковских состояний рассматриваемой системы S имеет вид

$$E = \left\{i \overline{d} \, \overline{x}^{(i)} \overline{b} \, \overline{y} z, \ i = \overline{1,N}; \ \overline{d} \, \overline{x} \, j \overline{b} \, \overline{y}^{(j)} z, \ j = \overline{1,M}; \ 0 \overline{d} \, \overline{x} \overline{b} \, \overline{y}, \ k \, \overline{y}, k = 0,1 \right\},$$
 где $i(j)$ — номер ТЯ, изменившей свое состояние последней; $\overline{x} = (x_1,...,x_N)$, x_k — время, оставшееся до ближайшего изменения состояния k -й последовательной ТЯ, $k = \overline{1,N}$; $\overline{y} = (y_1,...,y_M)$, y_k — время, оставшееся до ближайшего изменения состояния k -й параллельной ТЯ, $k = \overline{1,M}$; $\overline{x}^{(i)}$, $\overline{y}^{(j)}$ — векторы, у которых соответственно i -я и j -я компоненты равны нулю; z — время до ближайшего планового момента проведения ТО. Кодом $0\overline{y}$ обозначено начало ТО, $1\overline{y}$ — начало работы системы после ТО, $0\overline{d} \, \overline{x} \, \overline{b} \, \overline{y}$ — наступление планового момента ТО, которое не проводится из-за нахождения системы в отказе.

Для нахождения приближенных значений стационарных характеристик используем метод, основанный на алгоритме фазового укрупнения [7, 8].

Предположим, что времена аварийного восстановления ТЯ и длительность ТО зависят от некоторого малого параметра ε так, что для $\beta_i^{\ p}=$ = $\beta_i^{\ p,\varepsilon}$, $\beta_j=\beta_j^{\ e}$, $\zeta=\zeta^{\ e}$ справедливы предельные равенства $\lim_{\varepsilon\to 0} M\beta_i^{\ p,\varepsilon}=\lim_{\varepsilon\to 0} M\beta_j^{\ e}=\lim_{\varepsilon\to 0} M\zeta^{\ e}=0$.

В дальнейшем для упрощения записи формул параметр ε будем опускать. В качестве опорной системы S_0 рассмотрим систему, в которой ТО и аварийное восстановление ТЯ проводятся мгновенно. Опорная система имеет пространство состояний

$$\begin{split} E_0 = & \left\{ i \overline{1}^{(i)} \, \overline{x}^{(i)} \, \overline{1} \, \overline{y} z, \quad i \overline{1} \, \overline{x}^{(i)} \, \overline{1} \, \overline{y} z, \quad i = \overline{1, N} \, ; \right. \\ \overline{1} \overline{x} \, j \overline{1}^{(j)} \, \overline{y}^{(j)} z, \quad \overline{1} \overline{x} \, j \overline{1} \, \overline{y}^{(j)} z, \quad j = \overline{1, M}, \, 0 \overline{y}, \, 1 \overline{y} \right\}, \end{split}$$

где $\overline{1}$ — вектор, все компоненты которого равны 1; $\overline{1}^{(i)}$ ($\overline{1}^{(j)}$) — вектор, у которого i-я (j-я) компонента равна 0, остальные — 1.

Времена пребывания опорной системы в состояниях (см. рисунок) определяются формулами

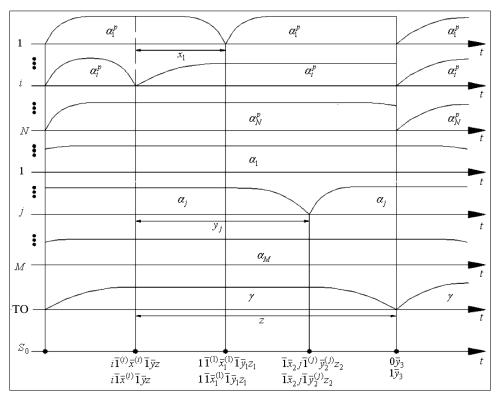
$$\theta_{1\overline{y}} = \bigwedge_{i=1}^{N} \alpha_{i}^{p} \wedge \gamma \wedge y_{\min}, \quad \theta_{i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z} = \alpha_{i}^{p} \wedge x_{\min}^{i} \wedge y_{\min} \wedge z, \quad i = \overline{1, N};$$

$$\theta_{\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z} = x_{\min} \wedge \alpha_j \wedge y_{\min}^j \wedge z, \quad j = \overline{1,M}$$

где л — знак минимума;

$$x_{\min} = \bigwedge_{i=1}^{N} x_i; \quad x_{\min}^i = \bigwedge_{\substack{l=1 \ l \neq i}}^{N} x_l; \quad y_{\min} = \bigwedge_{j=1}^{M} y_i; \quad y_{\min}^j = \bigwedge_{\substack{l=1 \ l \neq j}}^{M} y_l.$$

Состояния $0\overline{y}$, $i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z$, $\overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z$ являются мгновенными.



Временная диаграмма функционирования опорной системы

Определим вероятности переходов вложенной цепи Маркова (ВЦМ) $\{\xi_n^0,\ n\geq 0\}$ полумарковского процесса (ПМП), описывающего функционирование опорной системы.

- 1. Из состояний $0\overline{y}$, $i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z$, $\overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z$ система с вероятностью 1 переходит соответственно в состояния $1\overline{y}$, $i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z$, $\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z$.
- 2. Из состояния $1\overline{y}$ система переходит в одно из состояний $0(\overline{y}-\overline{t})$, $i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}(\overline{y}-\overline{t})z$, $\overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z$ в зависимости от значения $\bigwedge_{i=1}^N \alpha_i^p \wedge \gamma \wedge \gamma_{\min}$:

а) если
$$\gamma < \bigwedge_{i=1}^{N} \alpha_i^{\ p} \wedge y_{\min}$$
 , тогда $p_{1\overline{y}}^{\ 0(\overline{y}-\overline{t})} = \varphi(t) \prod_{i=1}^{N} \overline{F_i}^{\ p}(t)$, $t < y_{\min}$;

б) если
$$\alpha_i^{\ p} < \bigwedge_{\substack{l=1 \ l \neq i}}^N \alpha_l^{\ p} \wedge y_{\min} \wedge \gamma$$
 , тогда $p_{1\overline{y}}^{i\,\overline{1}(i)\,\overline{x}^{(i)}\,\overline{1}(\overline{y}-\overline{t})\,z} = f_i^{\ p}(t) \prod_{\substack{l=1 \ l \neq i}}^N f_l^{\ p} \times$

$$\times \left(t+x_l\right)\varphi(t+z), \ x_l>0, \ z>0 \,, \ t< y_{\min}\,, i=\overline{1,N} \,;$$

в) если
$$y_j < \bigwedge_{i=1}^N \alpha_i^{\ p} \wedge y_{\min}^j \wedge \gamma$$
, тогда $p_{1\overline{y}}^{\overline{1}\overline{x}j\overline{1}(j)\overline{y}(j)z} = \prod_{i=1}^N f_i^{\ p}(x_i+y_j) \times$

$$\times \varphi(y_j + z), \ y_l' = y_l - y_j, \ l = \overline{1, M}, \ x_i, z > 0, \ j = \overline{1, M}.$$

3. Из состояния
$$i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z$$
, $i=\overline{1,N}$ система переходит в состояния $i\overline{1}^{(i)}(\overline{x}-\overline{t})^{(i)}\overline{1}(\overline{y}-\overline{t})(z-t)$, $j\overline{1}^{(j)}\overline{x}^{(j)}\overline{1}\overline{y}'z'$, $j\neq i$, $\overline{1}\overline{x}'j\overline{1}^{(j)}\overline{y}^{(j)}z'$, $0\overline{y}'$:

а) если
$$\alpha_i^{\ p} < x_{\min}^i \wedge y_{\min} \wedge z$$
, тогда $p_{i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z}^{i\overline{1}^{(i)}(\overline{x}-\overline{t})^{(i)}\overline{1}(\overline{y}-\overline{t})(z-t)} = f_i^{\ p}(t)$, $t < x_{\min}^i \wedge y_{\min} \wedge z$;

б) если
$$x_j = x_{\min}^i < \alpha_i^{\ p} \wedge y_{\min} \wedge z$$
, тогда $p_{i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}^{(j)}\overline{1}\overline{y}^{(j)}} = f_i^{\ p}(t+x_j)$, $x'_i = t$, $x'_l = x_l - x_j$, $l = \overline{1,N}$, $l \neq i,j$, $y'_l = y_l - x_j$, $l = \overline{1,M}$, $t > 0$;

в) если
$$y_j = y_{\min} < \alpha_i^p \wedge x_{\min}^i \wedge z$$
, тогда $p_{i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}^{(j)}(z-y_j)}^{\overline{1}\overline{x}^{(j)}\overline{1}\overline{y}^{(j)}(z-y_j)} = f_i^p (t+y_j)$, $x'_i = t$, $x'_l = x_l - y_j$, $l = \overline{1,N}$, $l \neq i$, $y'_l = y_l - y_j$, $l = \overline{1,M}$, $l \neq j$, $t > 0$;

г) если
$$z < \alpha_i^{\ p} \wedge x_{\min}^i \wedge y_{\min}$$
, тогда $P_{i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z}^{0\overline{y'}} = \overline{F}_i^{\ p}(z)$, $y'_l = y_l - z$,

4. Из состояния $\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z$, $j=\overline{1,M}$ система может перейти в состояния $\overline{1}\overline{x}'j\overline{1}^{(j)}\overline{y}^{(j)}z'$, $i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}'z'$, $\overline{1}\overline{x}i\overline{1}^{(i)}\overline{y}^{(i)}z'$, $i\neq j$, $0\overline{y}'$:

а) если
$$\alpha_j < x_{\min} \wedge y_{\min}^j \wedge z$$
, тогда $p_{\overline{1}\overline{x'}\overline{j}\overline{1}\overline{y'}(j)_z}^{\overline{1}\overline{x'}\overline{j}\overline{1}(j)}\overline{y'}(z-t) = f_j(t)$, $t < x_{\min} \wedge y_{\min}^j \wedge z$, $x'_l = x_l - t$, $l = \overline{1,N}$, $y'_l = y_l - t$, $l = \overline{1,M}$, $l \neq j$;

б) если
$$x_i = x_{\min} < \alpha_j \wedge y_{\min}^j \wedge z$$
, тогда $p_{\overline{1}\overline{x}\overline{j}}^{\overline{i}\overline{1}\overline{y}'\overline{z}'} = f_j(t+x_i)$, $x_l' = x_l - x_i$, $l = \overline{1,N}$, $l \neq i$, $y_l' = y_l - x_i$, $l = \overline{1,M}$, $l \neq j$, $z' = z - x_i$, $t > 0$;

в) если
$$y_i = y_{\min}^j < \alpha_j \wedge x_{\min} \wedge z$$
, тогда $p_{\overline{1}\overline{x}\overline{j}\overline{1}\overline{y}(j)_z}^{\overline{1}\overline{x}\overline{j}\overline{1}(i)\overline{y}^{(i)}z'} = f_j(t+y_i)$, $x_l' = x_l - y_i$, $l = \overline{1,N}$, $y_i' = t$, $y_l' = y_l - y_i$, $l = \overline{1,M}$, $l \neq i,j$, $t > 0$;

г) если
$$z<\alpha_j\wedge x_{\min}\wedge y_{\min}^j$$
, тогда $p\frac{0\overline{y}'}{1\overline{x}j\overline{1}\overline{y}^{(j)}z}=f_j(t+z)$, $y_j=t$, $y_l'=y_l-z$, $l=\overline{1,M}$, $l\neq j$, $t>0$.

НАХОЖДЕНИЕ СТАЦИОНАРНЫХ ХАРАКТЕРИСТИК СИСТЕМЫ

Фазовое пространство системы E разобьем на два непересекающихся подмножества E_+ (работоспособных состояний) и E_- (отказовых состояний). Найдем приближенные значения следующих стационарных характеристик системы: T_+ , T_- , Kг, S, C. Значения перечисленных характеристик найдем по формулам [8–10].

$$T_{+} \approx \frac{\int_{E_{+}} m(x)\rho(dx)}{\int_{E_{+}} \rho(dx)P(x,E_{-})}, T_{-} \approx \frac{\int_{E_{-}} m(x)\rho(dx)}{\int_{E_{+}} \rho(dx)P(x,E_{-})}, K_{\Gamma} = \frac{T_{+}}{T_{+} + T_{-}},$$
(1)

$$S \approx \frac{\int m(x) f_S(x) \rho(dx)}{\int m(x) \rho(dx)}, C \approx \frac{\int m(x) f_C(x) \rho(dx)}{\int m(x) \rho(dx)},$$
(2)

где $\rho(\bullet)$ — стационарное распределение ВЦМ $\{\xi_n^0,\,n\ge 0\}$ опорной системы; m(x) — средние времена пребывания в состояниях исходной системы; $P(x,E_-)$ — вероятности переходов ВЦМ $\{\xi_n,\,n\ge 0\}$ исходной системы из работоспособных состояний в отказовые; $f_S(x)$ ($f_C(x)$) — функции, определяющие доход (затраты) в каждом состоянии.

Начнем с нахождения стационарного распределения ВЦМ $\{\xi_n^0, n \ge 0\}$. Система интегральных уравнений для стационарных плотностей $\rho(\bullet)$ имеет вид

$$\begin{split} \rho(i\overline{1}^{(i)}\,\overline{x}^{(i)}\,\overline{1}\,\overline{y}z) &= \sum_{j=1}^{N} \int\limits_{0}^{\infty} f_{j}^{p}(t+x_{j}) \rho\Big(j\overline{1}(\overline{x}^{(i)}+\overline{t})^{(j)}\,\overline{1}(\overline{y}+\overline{t})(z+t)\Big)dt + \\ &+ \sum_{j=1}^{M} \int\limits_{0}^{\infty} f_{j}(t+y_{j}) \rho\Big(\overline{1}(\overline{x}^{(i)}+\overline{t})j\overline{1}(\overline{y}+\overline{t})^{(j)}(z+t)\Big)dt + \\ &+ \int\limits_{0}^{\infty} f_{i}^{p}(t) \prod\limits_{l=1}^{N} f_{l}^{p}(t+x_{l}) \varphi(z+t) \rho(1(\overline{y}+\overline{t}))dt, \ i=\overline{1,N}, \\ \rho(\overline{1}\overline{x}j\overline{1}^{(j)}\,\overline{x}^{(j)}z) &= \sum\limits_{l=1}^{M} \int\limits_{y_{j}=0}^{\infty} f_{l}(t+y_{l}) \rho\Big(\overline{1}(\overline{x}+\overline{t})l\overline{1}(\overline{y}^{(j)}+\overline{t})^{(l)}(z+t)\Big)dt + \\ &+ \sum\limits_{i=1}^{N} \int\limits_{0}^{\infty} f_{i}^{p}(x_{i}+t) \rho\Big(i\overline{1}(\overline{x}+\overline{t})^{(i)}\,\overline{1}(\overline{y}^{(j)}+\overline{t})(z+t)\Big)dt + \\ &+ \int\limits_{0}^{\infty} \varphi(t+z) \prod\limits_{i=1}^{N} f_{i}^{p}(t+x_{i}) \rho(1(\overline{y}^{(j)}+\overline{t}))dt, \ j=\overline{1,M}, \\ \rho(0\overline{y}) &= \int\limits_{0}^{\infty} \varphi(t) \prod\limits_{i=1}^{N} \overline{F_{i}}^{p}(t) \rho(1(\overline{y}+\overline{t}))dt + \\ &+ \sum\limits_{i=1}^{N} \int\limits_{R_{i}^{N,i}} d\overline{x}^{(i)} \int\limits_{0}^{\infty} \overline{F_{i}}(t) \rho\Big(i\overline{1}(\overline{x}+\overline{t})^{(i)}\,\overline{1}(\overline{y}+\overline{t})t\Big)dt + \\ &+ \sum\limits_{j=1}^{M} \int\limits_{0}^{\infty} f_{j}(t+y_{j})dt \int\limits_{R_{i}^{N}} \rho\Big(\overline{1}(\overline{x}+\overline{t})j\overline{1}(\overline{y}+\overline{t})^{(j)}t\Big)d\overline{x}, \\ \rho(0\overline{y}) &= \rho(1\overline{y}), \ \rho\Big(i\overline{1}^{(i)}\,\overline{x}^{(i)}\,\overline{1}\,\overline{y}z\Big) = \rho\Big(i\overline{1}\,\overline{x}^{(i)}\,\overline{1}\,\overline{y}z\Big), \end{split}$$

$$\rho\left(\overline{1}\,\overline{x}j\,\overline{1}^{(j)}\,\overline{y}^{(j)}z\right) = \rho\left(\overline{1}\,\overline{x}j\,\overline{1}\,\overline{y}^{(j)}z\right),$$

$$2\left[\int_{R_{+}^{M}} \rho(0\,\overline{y})d\overline{y} + \sum_{i=1}^{N}\int_{R_{+}^{N,i}} d\overline{x}^{(i)}\int_{R_{+}^{M}} d\overline{y}\int_{0}^{\infty} \rho(i\,\overline{1}\,\overline{x}^{(i)}\,\overline{1}\,\overline{y}z)dz + \int_{j=1}^{M}\int_{R_{+}^{N}} d\overline{x}\int_{0}^{\infty} d\overline{y}^{(j)}\int_{0}^{\infty} \rho(\overline{1}\,\overline{x}j\,\overline{1}\,\overline{x}^{(i)}z)dz\right] = 1,$$

$$(3)$$

где R_+^N (R_+^M) — N(M) -мерные ортанты векторов с неотрицательными компонентами; $R_+^{N,i} = \{\overline{x}^{(i)}, \ x_k \geq 0, \ k = \overline{1,N}\}, \ R_+^{M,j} = \{\overline{y}^{(j)} \geq 0 \ , \ l = \overline{1,M}\}$.

Покажем, что решения системы (3) определяются формулами

$$\begin{cases}
\rho(i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z) = \rho(i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z) = \\
= \rho_0 \prod_{j=1}^{M} \overline{F}_j(y_j) \int_0^{\infty} h_i^p(t) \prod_{\substack{l=1\\l \neq i}}^{N} v_l^p(t, x_l) \varphi(z+t) dt, \quad i = \overline{1, N}, \\
\rho(\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z) = \rho(\overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z) = \\
= \rho_0 \prod_{\substack{l=1\\l \neq j}}^{M} \overline{F}_l(y_l) \int_0^{\infty} \prod_{i=1}^{N} v_i^p(t, x_i) \varphi(z+t) dt, \quad i = \overline{1, M}, \\
\rho(0\overline{y}) = \rho(1\overline{y}) = \rho_0 \prod_{j=1}^{M} \overline{F}_j(y_j), \\
\rho_0 = \frac{1}{2} \left[\prod_{l=1}^{M} M\alpha_l \left(1 + \sum_{i=1}^{N} \int_0^{\infty} h_i^p(t) \overline{\Phi}(t) dt + M\gamma \sum_{j=1}^{M} \frac{1}{M\alpha_j} \right) \right]^{-1},
\end{cases}$$

где $\overline{F}_j(t) = 1 - F_j(t)$; $\overline{\Phi}(t) = 1 - \Phi(t)$; $h_i^p(t)$ — плотность функции восстановления $H_i^p(t) = \sum_{n=1}^\infty F_i^{p*(n)}(t)$ рекуррентного потока, порожденного СВ α_i^p ; $v_i^p(t,x_i)$ — плотность функции распределения прямого остаточного времени восстановления.

В дальнейших преобразованиях будем использовать следующие тождества:

$$\begin{split} \prod_{i=1}^{N} f_{i}^{p} (x_{i} + t) \prod_{j=1}^{M} \overline{F}_{j} (t + y_{j}) + \\ + \sum_{i=1}^{N} \int_{0}^{t} h_{i}^{p} (\tau) f_{i}^{p} (t - \tau + x_{i}) \prod_{\substack{l=1 \ l \neq i}}^{N} v_{l}^{p} (\tau, x_{l} + t - \tau) \prod_{j=1}^{M} \overline{F}_{j} (t - \tau + y_{j}) d\tau + \end{split}$$

$$+\sum_{j=1}^{M} \int_{0}^{t} f_{j} (t-\tau+y_{j}) \prod_{i=1}^{N} v_{i}^{p}(\tau,x_{i}+t-\tau) \prod_{l=1}^{M} \overline{F_{l}}(t-\tau+y_{l}) d\tau =$$

$$=\prod_{i=1}^{N} v_{i}^{p}(t,x_{i}) \prod_{j=1}^{M} \overline{F_{j}}(y_{j}), \quad y_{j},x_{i},t \geq 0,$$

$$\prod_{i=1}^{N} \overline{F_{i}}^{p}(t) \prod_{j=1}^{M} \overline{F_{j}}(t+y_{j}) +$$

$$+\sum_{i=1}^{N} \int_{0}^{t} h_{i}^{p}(t-\tau) \overline{F_{l}}^{p}(\tau) \prod_{l=1}^{N} \overline{V_{l}}^{p}(t-\tau,\tau) \prod_{j=1}^{M} \overline{F_{j}}(\tau+y_{j}) d\tau +$$

$$+\sum_{j=1}^{M} \int_{0}^{t} f_{j} (\tau+y_{j}) \prod_{i=1}^{N} \overline{V_{i}}^{p}(t-\tau,\tau) \prod_{l=1}^{M} \overline{F_{l}}(\tau+y_{l}) d\tau = \prod_{j=1}^{M} \overline{F_{j}}(y_{j}), \quad y_{j},t \geq 0, (6)$$

$$\prod_{i=1}^{N} \overline{F_{i}}^{p}(t) \prod_{j=1}^{M} \sum_{i=1}^{\infty} \overline{F_{j}}(s) ds + \sum_{i=1}^{N} \int_{0}^{t} h_{i}^{p}(t-\tau,\tau) d\tau \prod_{l=1}^{M} \sum_{i\neq j} \overline{F_{l}}(s) ds = \prod_{j=1}^{M} M\alpha_{j}, \quad t \geq 0,$$

$$\prod_{i=1}^{N} f_{i}^{p}(t) \prod_{l=1}^{N} \overline{F_{l}}^{p}(t) \prod_{l=1}^{N} \overline{F_{l}}^{p}(s) ds +$$

$$+\sum_{i=1}^{N} \sum_{l=1}^{N} \int_{0}^{t} h_{i}^{p}(t-\tau) \overline{F_{i}}^{p}(\tau) v_{i}^{p}(t-\tau,\tau) d\tau \prod_{l=1}^{M} \sum_{j=1}^{\infty} \overline{F_{j}}(s) ds +$$

$$+\sum_{i=1}^{N} \sum_{l=1}^{N} \int_{0}^{t} h_{i}^{p}(t-\tau) \overline{F_{i}}^{p}(\tau) v_{i}^{p}(t-\tau,\tau) d\tau \prod_{l=1}^{M} \sum_{j=1}^{\infty} \overline{F_{j}}(s) ds +$$

$$+\sum_{i=1}^{N} \sum_{l=1}^{N} \int_{0}^{t} h_{i}^{p}(t-\tau) f_{i}^{p}(\tau) \prod_{l=1}^{N} \overline{V_{i}}^{p}(t-\tau,\tau) d\tau \prod_{l=1}^{M} \sum_{\tau} \overline{F_{j}}(s) ds +$$

$$+\sum_{i=1}^{N} \sum_{j=1}^{M} \int_{0}^{t} h_{i}^{p}(t-\tau) f_{i}^{p}(\tau) \prod_{l=1}^{N} \overline{V_{i}}^{p}(t-\tau,\tau) d\tau \prod_{l=1}^{M} \sum_{\tau} \overline{F_{j}}(s) ds +$$

$$+\sum_{i=1}^{N} \sum_{j=1}^{M} \int_{0}^{t} v_{i}^{p}(t-\tau,\tau) \overline{F_{j}}(\tau) \prod_{l=1}^{N} \overline{V_{i}}^{p}(t-\tau,\tau) d\tau \prod_{l=1}^{M} \sum_{\tau} \overline{F_{j}}(s) ds +$$

$$+\sum_{i=1}^{N} \sum_{j=1}^{M} \int_{0}^{t} v_{i}^{p}(t-\tau,\tau) \overline{F_{j}}(\tau) \prod_{l=1}^{N} \overline{V_{i}}^{p}(t-\tau,\tau) d\tau \prod_{l=1}^{M} \overline{F_{j}}(s) ds =$$

$$=\sum_{i=1}^{N} h_{i}^{p}(t) \prod_{j=1}^{M} M\alpha_{j}, \quad t \geq 0,$$

$$(8)$$

где $\overline{V_i}^p(t,z) = \int\limits_z^\infty v_i^p(t,s) ds$ — нестационарный коэффициент оперативной готовности [1] i-й ТЯ, т.е. вероятность того, что ячейка, работающая к моменту t, не откажет на промежутке (t,t+z].

Тождество (5) следует из формулы интегрирования по частям определенного интеграла с учетом того, что $\frac{d}{d\tau}v_i^p(\tau,x_i+t-\tau)=h_i^p(\tau)\times f_i^p(t-\tau+x_i)$, $v_i^p(0,x_i+t)=f_i^p(x_i+t)$. Действительно,

$$\sum_{i=1}^{N} \int_{0}^{t} h_{i}^{p}(\tau) f_{i}^{p}(t-\tau+x_{i}) \prod_{\substack{l=1\\l\neq i}}^{N} v_{l}^{p}(\tau,x_{l}+t-\tau) \prod_{j=1}^{M} \overline{F}_{j}(t-\tau+y_{j}) d\tau + \\ + \sum_{j=1}^{M} \int_{0}^{t} f_{j}(t-\tau+y_{j}) \prod_{i=1}^{N} v_{i}^{p}(\tau,t-\tau+x_{i}) \prod_{\substack{l=1\\l\neq j}}^{M} \overline{F}_{l}(t-\tau+y_{l}) d\tau = \\ = \int_{0}^{t} \frac{d}{d\tau} \left(\prod_{i=1}^{N} v_{i}^{p}(\tau,t-\tau+x_{i}) \prod_{j=1}^{M} \overline{F}_{j}(t-\tau+y_{j}) \right) d\tau = \\ = \prod_{i=1}^{N} v_{i}^{p}(t,x_{i}) \prod_{i=1}^{M} \overline{F}_{j}(y_{j}) - \prod_{i=1}^{N} f_{i}^{p}(x_{i}+t) \prod_{i=1}^{M} \overline{F}_{j}(t+y_{j}).$$

Если проинтегрировать обе части равенства (5) по ортанту R_+^N , то получим тождество (6). Интегрирование обеих частей тождества (6) по ортанту R_+^M приводит к тождеству (7).

Если в тождестве (5) последовательно положить $x_i = 0$, $i = \overline{1,N}$, про-интегрировать обе части полученных тождеств соответственно по ортанту $R_+^{N,i}$ и R_+^M и почленно сложить полученные равенства, то получим тождество (8).

Непосредственная подстановка с учетом тождества (5) показывает, что формулы (4) определяют решение первых N уравнений системы (3).

$$\begin{split} \rho_0 \sum_{\substack{j=1\\ x_i=0}}^N \int_0^\infty f_j^{\ p}(t+x_j) \prod_{k=1}^M \overline{F}_k(t+y_k) dt \int_0^\infty h_i^{\ p}(s) \prod_{\substack{l=1\\ l \neq j}}^N v_l^{\ p}(s,t+x_l) \varphi(s+z+t) ds + \\ &+ \rho_0 \sum_{j=1}^M \int_0^\infty f_j(t+y_j) \prod_{\substack{k=1\\ k \neq j}}^M \overline{F}_k(t+y_k) dt \int_0^\infty \prod_{\substack{l=1\\ x_i=0}}^N v_l^{\ p}(s,x_l+t) \varphi(s+z+t) ds + \\ &+ \rho_0 \int_0^\infty f_i^{\ p}(t) \prod_{\substack{l=1\\ l \neq i}}^N f_l^{\ p}(t+x_l) \varphi(z+t) \prod_{j=1}^M \overline{F}_j(t+y_j) dt = \\ &= \rho_0 \int_0^\infty \varphi(z+\tau) \left[\sum_{\substack{j=1\\ x_i=0}}^N \int_0^\tau h_j^{\ p}(\tau-t) \prod_{\substack{l=1\\ l \neq j}}^N v_l^{\ p}(\tau-t,t+x_l) f_j^{\ p}(t+x_j) \prod_{k=1}^M \overline{F}_k(t+y_k) dt + \\ &= \rho_0 \int_0^\infty \varphi(z+\tau) \left[\sum_{\substack{j=1\\ x_i=0}}^N \int_0^\tau h_j^{\ p}(\tau-t) \prod_{\substack{l=1\\ l \neq j}}^N v_l^{\ p}(\tau-t,t+x_l) f_j^{\ p}(t+x_j) \prod_{k=1}^M \overline{F}_k(t+y_k) dt + \\ &= \rho_0 \int_0^\infty \varphi(z+\tau) \left[\sum_{\substack{l=1\\ x_i=0}}^N \int_0^\tau h_j^{\ p}(\tau-t) \prod_{\substack{l=1\\ l \neq j}}^N v_l^{\ p}(\tau-t,t+x_l) f_j^{\ p}(t+x_j) \prod_{k=1}^M \overline{F}_k(t+y_k) dt + \\ &= \rho_0 \int_0^\infty \varphi(z+\tau) \left[\sum_{\substack{l=1\\ x_i=0}}^N \int_0^\tau h_j^{\ p}(\tau-t) \prod_{\substack{l=1\\ l \neq j}}^N v_l^{\ p}(\tau-t,t+x_l) f_j^{\ p}(\tau-t,t+x_l) f_j^{\ p}(\tau-t,t+x_l) \prod_{k=1}^M \overline{F}_k(\tau-t+t+x_l) f_k^{\ p}(\tau-t,t+x_l) f_j^{\ p}(\tau-t,t+x_l$$

$$\begin{split} + \sum_{j=1}^{M} \int_{0}^{\tau} \prod_{\substack{l=1\\x_i=0}}^{N} v_l^p (\tau - t, x_l + t) f_j(t + y_j) \prod_{\substack{k=1\\k\neq j}}^{M} \overline{F}_k(t + y_k) dt + \\ + \prod_{\substack{l=1\\x_i=0}}^{N} f_l^p (t + x_l) \prod_{k=1}^{M} \overline{F}_j(\tau + y_k) \bigg] d\tau = \\ = \rho_0 \prod_{k=1}^{M} \overline{F}_k(y_k) \int_{0}^{\infty} h_i^p(\tau) \prod_{\substack{l=1\\l\neq i}}^{N} v_l^p(\tau, x_l) \varphi(z + \tau) d\tau = \rho(i\overline{1}^{(i)} \overline{x}^{(i)} \overline{1} \overline{y}z). \end{split}$$

Аналогично можно убедиться, что формулы (4) определяют решения остальных уравнений системы (3). Значения постоянной ρ_0 находятся из условия нормировки.

Найдем приближенные значения стационарных характеристик рассматриваемой системы по формулам (1) и (2). В подмножество работоспособных состояний E_+ попадают эргодические состояния опорной системы $1\overline{y}$, $i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z$, $i=\overline{1,N}$; $\overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z$, $\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z$, $j=\overline{1,M}$, а в подмножество отказовых состояний E_- — эргодические состояния $0\overline{y}$, $i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z$, $i=\overline{1,N}$. Средние времена пребывания реальной системы в эргодических состояниях опорной системы определяются формулами

$$m(1\overline{y}) = \int_{0}^{y_{\min}} \overline{\Phi}(t) \prod_{i=1}^{N} \overline{F_i}^p(t) dt , \quad m(i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z) = \int_{0}^{x_{\min}^{i} \wedge y_{\min}^{i} \wedge z} \overline{F_i}^p(t) dt ,$$

$$m(\overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z) = \int_{0}^{x_{\min} \wedge y_{\min}^{j} \wedge z} \overline{G_j}(s) ds , \quad m(\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z) = \int_{0}^{x_{\min} \wedge y_{\min}^{j} \wedge z} \overline{F_j}(t) dt ,$$

$$m(0\overline{y}) = \int_{0}^{y_{\min}} \overline{\Psi}(t) dt , \quad m(i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z) = \int_{0}^{z} \overline{G_i}^p(s) ds .$$

Вычислим функционал в числителе первой дроби формул (1), используя тождество (7).

$$\int_{E_{+}} m(x)\rho(dx) = \int_{R_{+}^{M}} \rho(\overline{1}\overline{y}) m(\overline{1}\overline{y}) d\overline{y} +$$

$$+ \sum_{i=1}^{N} \int_{0}^{\infty} dz \int_{R_{+}^{N,i}} d\overline{x}^{(i)} \int_{R_{+}^{M}} \rho(i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z) m(i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z) d\overline{y} +$$

$$+ \sum_{j=1}^{M} \int_{0}^{\infty} dz \int_{R_{+}^{N}} d\overline{x} \int_{R_{+}^{M,j}} \rho(\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z) m(\overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z) d\overline{y}^{(j)} +$$

$$\begin{split} &+\sum_{j=1}^{M}\int\limits_{0}^{\infty}dz\int\limits_{R_{+}^{N}}\rho\overline{(1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z)m(\overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z)d\overline{y}^{(j)}=\\ &=\rho_{0}\left[\int\limits_{0}^{\infty}\overline{\Phi}(t)\prod_{i=1}^{N}\overline{F}_{i}^{p}(t)dt\prod_{j=1}^{M}\int\limits_{t}^{\infty}\overline{F}_{j}(y_{j})dy_{j}+\\ &+\sum_{i=1}^{N}\int\limits_{0}^{\infty}\overline{F}_{i}^{p}(s)ds\prod_{j=1}^{M}\int\limits_{s}^{\infty}\overline{F}_{j}(y_{j})dy_{j}\int\limits_{0}^{\infty}h_{i}^{p}(t)\prod_{l=1}^{N}\overline{V}_{l}^{p}(t,s)\overline{\Phi}(s+t)dt+\\ &+\sum_{j=1}^{M}\int\limits_{0}^{\infty}(\overline{F}_{j}(s)+\overline{G}_{j}(s))ds\prod_{l=1}^{M}\int\limits_{s}^{\infty}\overline{F}_{l}(y_{l})d\overline{y}_{l}\int\limits_{0}^{\infty}\prod_{i=1}^{N}\overline{V}_{i}^{p}(t,s)\overline{\Phi}(s+t)dt+\\ &=\rho_{0}\left[\int\limits_{0}^{\infty}\overline{\Phi}(\tau)\left(\prod_{i=1}^{N}\overline{F}_{i}^{p}(\tau)d\tau\prod_{j=1}^{M}\int\limits_{s}^{\infty}\overline{F}_{j}(y_{j})dy_{j}+\\ &+\sum_{i=1}^{N}\int\limits_{0}^{\tau}h_{i}^{p}(\tau-s)\prod_{l=1}^{N}\overline{V}_{l}^{p}(\tau-s,s)\overline{F}_{i}^{p}(s)ds\prod_{l=1}^{M}\int\limits_{s}^{\infty}\overline{F}_{j}(y_{j})dy_{j}+\\ &+\sum_{j=1}^{M}\int\limits_{0}^{\tau}\prod_{i=1}^{N}\overline{V}_{i}^{p}(\tau-s,s)\overline{F}_{j}(s)ds\prod_{l=1}^{M}\int\limits_{s}^{\infty}\overline{F}_{l}(y_{l})dy_{l}\right)+\\ &+\sum_{j=1}^{M}\int\limits_{0}^{\infty}\overline{G}_{j}(s)ds\prod_{l=1}^{M}\int\limits_{s}^{\infty}\overline{F}_{l}(y_{l})dy_{l}\int\limits_{0}^{\infty}\prod_{i=1}^{N}\overline{V}_{i}^{p}(t,s)\overline{\Phi}(s+t)dt\right]=\\ &=\rho_{0}\left(M\gamma\prod_{j=1}^{M}M\alpha_{j}+\sum_{j=1}^{M}\int\limits_{0}^{\infty}\overline{G}_{j}(s)ds\prod_{l=1}^{M}\int\limits_{s=j}^{\infty}\overline{F}_{l}(y_{l})dy_{l}\int\limits_{0}^{\infty}\prod_{i=1}^{N}\overline{V}_{i}^{p}(t,s)\overline{\Phi}(s+t)dt\right). \end{split}$$

Если учесть, что семейство функций $\frac{G_j^{\,\varepsilon}(s)}{M\beta_j^{\,\varepsilon}}$ является δ -образным [11],

то при $\varepsilon \to 0$

$$\int_{0}^{\infty} \overline{G}_{j}^{\varepsilon}(s) ds \prod_{\substack{l=1\\l\neq j}}^{M} \int_{s}^{\infty} \overline{F}_{l}(y_{l}) dy_{l} \int_{0}^{\infty} \prod_{i=1}^{N} \overline{V}_{i}^{p}(t, s) \overline{\Phi}(s+t) dt \sim M \gamma M \beta_{j}^{\varepsilon} \prod_{\substack{l=1\\l\neq j}}^{M} M \alpha_{l}.$$

Поэтому
$$\int\limits_{E_{+}} m(z) \rho(dz) \approx \rho_{0} M \gamma \prod_{l=1}^{M} M \alpha_{l} \left(1 + \sum_{j=1}^{M} \frac{M \beta_{j}}{M \alpha_{j}} \right).$$

Вычислим функционал в знаменателях дробей формул (1). Для этого понадобятся вероятности перехода реальной системы в отказовые состояния из эргодических состояний опорной системы, входящих в подмножество работоспособных состояний. Предположим, что число ТЯ, соединенных параллельно, больше двух. Тогда из любого эргодического работоспособного состояния система попадает в отказовое за один шаг либо после отказа любой ТЯ из последовательной цепочки, либо в результате ТО системы. К выписанным ранее вероятностям перехода добавим

$$\begin{split} &P(\overline{1}\overline{x}j\overline{1}^{(j)}\,\overline{y}^{(j)}z,E_{-}) = \overline{G}_{j}(x_{i})\,,\;x_{i} < x_{\min}^{i} \wedge y_{\min}^{j} \wedge \beta_{j} \wedge z\,,\\ &P(\overline{1}\overline{x}j\overline{1}^{(j)}\,\overline{y}^{(j)}z,E_{-}) = \overline{G}_{j}(z)\,,\;z < x_{\min} \wedge y_{\min}^{j} \wedge \beta_{j},\quad j = \overline{1,M}\;. \end{split}$$

В следующих преобразованиях используются обозначения $x_{\min}^{i,j} = \sum_{\substack{l=1\\l\neq i,j}}^{N} x_l$, $R_+^{N,i,j} = \{\overline{x}^{(i,j)}, x_k \ge 0, k = \overline{1,N}, x_i = x_j = 0\}$ и тождества (7), (8).

$$\begin{split} \frac{1}{\rho_0} \int\limits_{E_+} \rho(dx) P(x, E_-) &= \\ &= \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_j(y_j) d\overline{y} \int\limits_{0}^{y_{\min}} \left(\varphi(t) \prod\limits_{i=1}^N \overline{F}_i^{\ p}(t) dt + \sum\limits_{i=1}^N f_i^{\ p}(t) \prod\limits_{l=1}^N \overline{F}_l^{\ p}(t) \overline{\Phi}(t) \right) dt + \\ &+ \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_j(y_j) d\overline{y} \int\limits_{0}^\infty h_i^{\ p}(t) \prod\limits_{l=1}^N v_l^{\ p}(t, x_l) \varphi(z+t) dt \int\limits_{0}^{x_{\min}^i \wedge y_{\min} \wedge z} \int\limits_{0}^{x_{\min}^i \wedge y_{\min} \wedge z} f_i^{\ p}(s) ds + \\ &+ \sum\limits_{i=1}^N \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_j(y_j) d\overline{y} \int\limits_{0}^\infty h_i^{\ p}(t) \prod\limits_{l=1}^N v_l^{\ p}(t, x_l) dt \int\limits_{0}^{x_{\min}^i \wedge y_{\min} \wedge y_{\min} \cap z} \varphi(z+t) \overline{F}_i^{\ p}(z) dz + \\ &+ \sum\limits_{i=1}^N \sum\limits_{j=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i,j}} d\overline{x}^{(i,j)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_j(y_j) d\overline{y} \int\limits_{0}^\infty h_i^{\ p}(t) \prod\limits_{l=1}^N v_l^{\ p}(t, x_l) \varphi(z+t) dt \times \\ &\times \int\limits_{0}^{x_{\min}^i \wedge y_{\min} \wedge z} \overline{F}_i^{\ p}(x_j) v_j^{\ p}(t, x_j) dx_j + \\ &+ \sum\limits_{j=1}^M \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_l(y_l) d\overline{y}^{(j)} \int\limits_{0}^\infty \prod\limits_{l=1}^N v_l^{\ p}(t, x_l) \varphi(z+t) dt \times \\ &+ \sum\limits_{j=1}^M \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_l(y_l) d\overline{y}^{(j)} \int\limits_{0}^\infty \prod\limits_{l=1}^N v_l^{\ p}(t, x_l) \varphi(z+t) dt \times \\ &+ \sum\limits_{j=1}^M \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_l(y_l) d\overline{y}^{(j)} \int\limits_{0}^\infty \prod\limits_{l=1}^N v_l^{\ p}(t, x_l) \varphi(z+t) dt \times \\ &+ \sum\limits_{j=1}^M \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_l(y_l) d\overline{y}^{(j)} \int\limits_{0}^\infty \prod\limits_{l=1}^N v_l^{\ p}(t, x_l) \varphi(z+t) dt \times \\ &+ \sum\limits_{j=1}^M \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \prod\limits_{j=1}^M \overline{F}_l(y_l) d\overline{y}^{(i)} \int\limits_{0}^\infty \prod\limits_{l=1}^M v_l^{\ p}(t, x_l) \varphi(z+t) dt \times \\ &+ \sum\limits_{j=1}^M \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^{N,i}} \prod\limits_{j=1}^M \overline{F}_l(y_l) d\overline{y}^{(i)} d\overline{y}^{(i)} \int\limits_{0}^\infty \prod\limits_{j=1}^N v_j^{\ p}(t, x_l) \varphi(z+t) dt \times \\ &+ \sum\limits_{j=1}^M \sum\limits_{i=1}^N \int\limits_{0}^\infty dz \int\limits_{0}$$

$$\times \int_{0}^{x_{\min} \wedge N_{j\min}^{p} \wedge z} \nabla_{i}^{p}(t, x_{i}) (\overline{F}_{j}(x_{i}) + \overline{G}_{j}(x_{i})) dx_{i} +$$

$$+ \sum_{j=1}^{M} \int_{R_{+}}^{M} d\overline{x} \int_{I \neq j}^{M} \prod_{l \neq j}^{H} \overline{F}_{l}(y_{l}) d\overline{y}^{(j)} \int_{0}^{\infty} \prod_{i=1}^{N} v_{i}^{p}(t, x_{i}) dt \int_{0}^{x_{\min} \wedge y_{\min}^{p} - y_{$$

$$\sim \prod_{j=1}^{M} M \alpha_{j} \left(1 + \sum_{i=1}^{N} \int_{0}^{\infty} h_{i}^{p}(\tau) \overline{\Phi}(\tau) d\tau \right) + \sum_{j=1}^{M} M \beta_{j} \prod_{\substack{l=1 \ l \neq j}}^{M} M \alpha_{l} \left(1 + \sum_{i=1}^{N} \int_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt \right) =$$

$$= \prod_{j=1}^{M} M \alpha_{j} \left(1 + \sum_{i=1}^{N} \int_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt \right) \left(1 + \sum_{j=1}^{M} \frac{M \beta_{j}}{M \alpha_{j}} \right).$$

Следовательно, приближенное значение средней наработки системы на отказ находится по формуле

$$T_{+} \approx \frac{M\gamma}{1 + \sum_{i=1}^{N} \int_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt}.$$

Если в системе только две ТЯ соединены параллельно (M=2), то отказ системы может произойти в результате последовательного отказа этих ТЯ. В этом случае при вычислении значения функционала $\int_{E_+} \rho(dx) P(x, E_-)$ нужно добавить слагаемое

$$\int\limits_{0}^{\infty} \left(\overline{G}_{1}(s) \, \overline{F}_{2}(s) + \overline{F}_{1}(s) \, \overline{G}_{2}(s) \right) ds \int\limits_{0}^{\infty} \prod_{i=1}^{N} \overline{V}_{i}^{p}(t,s) \, \overline{\Phi}(s+t) dt \sim M \gamma \left(M \beta_{1} + M \beta_{2} \right).$$

$$3 \text{десь } T_+ \approx \frac{M \gamma \left(1 + \sum_{j=1}^2 \frac{M \beta_j}{M \alpha_j}\right)}{\left(1 + \sum_{i=1}^N \int\limits_0^\infty h_i^{\,p}(t) \, \overline{\Phi}(t) dt\right) \left(1 + \sum_{j=1}^2 \frac{M \beta_j}{M \alpha_j}\right) + \frac{M \gamma}{M \alpha_1 M \alpha_2} \left(M \beta_1 + M \beta_2\right)}.$$

При нахождении среднего стационарного времени восстановления системы следует учесть средние времена пребывания реальной системы T_- в эргодических отказовых состояниях $0\overline{y}$, $i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z$, которые определяются формулами

$$\begin{split} m(0\overline{y}) &= M\zeta \;,\; m(i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z) = \int\limits_0^z \overline{G_i}^p(s)ds,\; i = \overline{1,N} \;,\\ &\int\limits_{E_-} m(x) \, \rho(dx) = \int\limits_{R_+^M} m(0\overline{y}) \, \rho(0\overline{y})d\overline{y} \,+\\ &+ \sum_{i=1}^N \int\limits_0^\infty dz \int\limits_{R_+^{N,i}} d\overline{x}^{(i)} \int\limits_{R_+^M} \rho(i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z) \, m(i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z)d\overline{y} = \\ &= \rho_0 M\zeta \prod_{j=1}^M \int\limits_0^\infty \overline{F_j}(x_j) \, dx_j \,+ \end{split}$$

$$\begin{split} &+\rho_0\sum_{i=1}^{N}\int\limits_{0}^{\infty}dz\int\limits_{R_{+}^{N,i}}d\overline{x}^{(i)}\int\limits_{R_{+}^{M}}\prod\limits_{j=1}^{M}\overline{F}_{j}(y_{j})d\overline{y}\int\limits_{0}^{\infty}h_{i}^{p}(t)\prod\limits_{l=1}^{N}v_{l}^{p}(t,x_{l})\,\varphi(z+t)dt\int\limits_{0}^{z}\overline{G}_{i}^{p}(s)ds=\\ &=\rho_0M\zeta\prod\limits_{j=1}^{M}M\alpha_{j}+\rho_0\sum\limits_{i=1}^{N}\int\limits_{0}^{\infty}\overline{G}_{i}^{p}(s)ds\int\limits_{0}^{\infty}h_{i}^{p}(t)\overline{\Phi}(t+s)dt\prod\limits_{j=1}^{M}\int\limits_{s}^{\infty}\overline{F}_{j}(y_{j})dy_{j}\sim\\ &\sim\rho_0\prod\limits_{j=1}^{M}M\alpha_{j}\Biggl(M\zeta+\sum\limits_{i=1}^{N}M\beta_{i}^{p}\int\limits_{0}^{\infty}h_{i}^{p}(t)\overline{\Phi}(t)dt\Biggr). \end{split}$$

Следовательно,

$$\begin{split} T_{-} \approx & \frac{M\zeta + \sum_{i=1}^{N} M\beta_{i}^{p} \int\limits_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt}{\left(1 + \sum_{i=1}^{N} \int\limits_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt \right) \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right)}, \quad M \geq 3, \\ M\zeta + \sum_{i=1}^{N} M\beta_{i}^{p} \int\limits_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt \\ T_{-} \approx & \frac{1 + \sum_{i=1}^{N} \int\limits_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt}{\left(1 + \sum_{i=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right) + \frac{M\gamma}{M\alpha_{1}M\alpha_{2}} \left(M\beta_{1} + M\beta_{2}\right)}, \quad M = 2. \end{split}$$

Приближенное значение стационарного коэффициента готовности находится по формуле

$$K_{\Gamma} = \frac{T_{+}}{T_{+} + T_{-}} \approx \frac{M\gamma \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right)}{M\gamma \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right) + M\zeta + \sum_{i=1}^{N} M\beta_{i}^{p} \int_{0}^{\infty} h_{i}^{p}(t)\overline{\Phi}(t)dt}.$$
 (9)

Определим экономические показатели функционирования системы на бесконечном интервале времени по формулам (2). Введем следующие обозначения: c_0 — прибыль за единицу времени исправного функционирования системы; c_i^p $(i=\overline{1,N}),\ c_j$ $(j=\overline{1,M})$ — затраты за единицу времени проведения аварийного восстановления i-й последовательной и j-й параллельной ТЯ; c_{TO} — затраты за единицу времени проведения ТО системы. Тогда функции дохода $f_S(e)$ и затрат $f_C(e)$ имеют вид

$$f_{S}(e) = \begin{cases} c_{0}, e \in \left\{ 1\overline{y}, i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z, \overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z, i = \overline{1, N}, j = \overline{1, M} \right\}, \\ c_{0} - c_{j}, e \in \left\{ \overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z, j = \overline{1, M} \right\}, \\ - c_{i}^{p}, e \in \left\{ i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z, i = \overline{1, N} \right\}, \\ - c_{\text{TO}}, e \in \left\{ 0\overline{y} \right\}. \end{cases}$$

$$f_{C}(e) = \begin{cases} 0, e \in \left\{ 1\overline{y}, i\overline{1}\overline{x}^{(i)}\overline{1}\overline{y}z, \overline{1}\overline{x}j\overline{1}\overline{y}^{(j)}z, \ i = \overline{1, N}, \ j = \overline{1, M} \right\}, \\ c_{j}, \ e \in \left\{ \overline{1}\overline{x}j\overline{1}^{(j)}\overline{y}^{(j)}z, \ j = \overline{1, M} \right\}, \\ c_{i}^{p}, \ e \in \left\{ i\overline{1}^{(i)}\overline{x}^{(i)}\overline{1}\overline{y}z, \ i = \overline{1, N} \right\}, \\ c_{\text{TO}}, \ e \in \left\{ 0\overline{y} \right\}. \end{cases}$$

Приближенные значения средней прибыли S за единицу календарного времени и средних затрат C за единицу времени исправного функционирования системы определяются формулами

$$S \approx \frac{M\gamma \left(c_{0} + \sum_{j=1}^{M} (c_{0} - c_{j}) \frac{M\beta_{j}}{M\alpha_{j}}\right) - c_{TO}M\zeta - \sum_{i=1}^{N} c_{i}^{p} M\beta_{i}^{p} \int_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt}{M\gamma \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right) + M\zeta + \sum_{i=1}^{N} M\beta_{i}^{p} \int_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt},$$

$$C \approx \frac{M\gamma \sum_{j=1}^{M} c_{j} \frac{M\beta_{j}}{M\alpha_{j}} + c_{TO}M\zeta + \sum_{i=1}^{N} c_{i}^{p} M\beta_{i}^{p} \int_{0}^{\infty} h_{i}^{p}(t) \overline{\Phi}(t) dt}{M\gamma \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right)}.$$

$$(10)$$

ОПТИМИЗАЦИЯ СРОКОВ ПРОВЕДЕНИЯ ТО СИСТЕМЫ

Определим оптимальные моменты проведения ТО последовательной цепочки ТЯ системы для достижения экстремальных значений характеристик Kг, S, C. В работе [3] доказано, что локальные экстремумы дробно-линейного функционала достигаются на вырожденных функциях распределения. Если $\overline{\Phi}(t) = \begin{cases} 1, t \in [0, \tau] \\ 0, t \in (\tau, +\infty) \end{cases}$, то показатели качества функционирования системы Kг, S, C зависят от параметра τ .

$$\begin{split} \tau \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right) \\ K\Gamma(\tau) &\approx \frac{\tau \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right) + M\zeta + \sum_{i=1}^{N} M\beta_{i}^{p} H_{i}^{p}(\tau)}{\tau \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right) - c_{\text{TO}} M\zeta - \sum_{i=1}^{N} c_{i}^{p} M\beta_{i}^{p} H_{i}^{p}(\tau)}{\tau \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right) + M\zeta + \sum_{i=1}^{N} M\beta_{i}^{p} H_{i}^{p}(\tau)}, \end{split}$$

$$C(\tau) \approx \frac{\tau \sum_{j=1}^{M} c_{j} \frac{M\beta_{j}}{M\alpha_{j}} + c_{\text{TO}} M\zeta + \sum_{i=1}^{N} c_{i}^{p} M\beta_{i}^{p} H_{i}^{p}(\tau)}{\tau \left(1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}\right)}.$$

Оптимальные моменты времени τ_K , τ_S , τ_C проведения ТО последовательной части системы, при которых критерии качества KГ, S, C достигают экстремальных значений, находятся из уравнений

$$\sum_{i=1}^{N} M\beta_{i}^{p} \left(\tau h_{i}^{p} (\tau) - H_{i}^{p} (\tau)\right) = M\zeta, \qquad (12)$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} M\beta_{i}^{p} M\beta_{j}^{p} h_{i}^{p} (\tau) H_{j}^{p} (\tau) (c_{i}^{p} - c_{j}^{p}) + M\zeta \sum_{i=1}^{N} M\beta_{i}^{p} h_{i}^{p} (\tau) (c_{i}^{p} - c_{TO}) +$$

$$+ \sum_{i=1}^{N} M\beta_{i}^{p} \left(\tau h_{i}^{p} (\tau) - H_{i}^{p} (\tau)\right) \left[c_{i}^{p} + c_{0} + \sum_{j=1}^{M} \left(c_{0} - c_{j} + c_{i}^{p}\right) \frac{M\beta_{j}}{M\alpha_{j}}\right] =$$

$$= M\zeta \left[c_{0} + c_{TO} + \sum_{j=1}^{M} \left(c_{0} - c_{j} + c_{TO}\right) \frac{M\beta_{j}}{M\alpha_{j}}\right], \qquad (13)$$

$$\sum_{i=1}^{N} c_{i}^{p} M\beta_{i}^{p} \left(\tau h_{i}^{p} (\tau) - H_{i}^{p} (\tau)\right) = c_{TO} M\zeta. \qquad (14)$$

В случае существования единственных корней этих уравнений оптимальные показатели качества функционирования системы определяются формулами

$$K_{\Gamma_{\text{max}}} \approx \frac{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}}{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}} + \sum_{i=1}^{N} M\beta_{i}^{p} h_{i}^{p} (\tau_{K})},$$

$$S_{\text{max}} \approx \frac{c_{0} + \sum_{j=1}^{M} (c_{0} - c_{j}) \frac{M\beta_{j}}{M\alpha_{j}} - \sum_{i=1}^{N} c_{i}^{p} M\beta_{i}^{p} h_{i}^{p} (\tau_{S})}{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}} + \sum_{i=1}^{N} M\beta_{i}^{p} h_{i}^{p} (\tau_{S})},$$

$$C_{\text{min}} \approx \frac{\sum_{j=1}^{M} c_{j} \frac{M\beta_{j}}{M\alpha_{j}} + \sum_{i=1}^{N} c_{i}^{p} M\beta_{i}^{p} h_{i}^{p} (\tau_{C})}{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}}.$$

Если уравнения (12)–(14) имеют несколько корней, оптимальные значения τ находятся прямой подстановкой каждого их них в формулу для случая единственного корня с последующим отбором лучшего из них, причем необходимо учесть значение показателя при $\tau = \infty$.

$$K_{\Gamma}(\infty) \approx \frac{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}}{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}} + \sum_{i=1}^{N} \frac{M\beta_{i}^{p}}{M\alpha_{i}^{p}}},$$

$$S(\infty) \approx \frac{c_{0} + \sum_{j=1}^{M} (c_{0} - c_{j}) \frac{M\beta_{j}}{M\alpha_{j}} + \sum_{i=1}^{N} c_{i}^{p} \frac{M\beta_{i}^{p}}{M\alpha_{i}^{p}}}{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}} + \sum_{i=1}^{N} \frac{M\beta_{i}^{p}}{M\alpha_{i}^{p}}},$$

$$C(\infty) \approx \frac{\sum_{j=1}^{M} c_{j} \frac{M\beta_{j}}{M\alpha_{j}} + \sum_{i=1}^{N} c_{i}^{p} \frac{M\beta_{i}^{p}}{M\alpha_{i}^{p}}}{1 + \sum_{j=1}^{M} \frac{M\beta_{j}}{M\alpha_{j}}}.$$

Отметим, что в случае отсутствия в системе параллельно соединенных ТЯ (M=0) полученные формулы совпадают с соответствующими результатами работы [3], когда ТО проводится при достижении наработки системы уровня τ .

В заключение приведем пример применения полученных результатов (табл. 1, 2). Системы состоят из пяти последовательно и трех параллельно соединенных ТЯ. Наработки на отказ ТЯ и времена их восстановления имеют распределение Эрланга.

$$\begin{split} f_i^{\ p}(t) &= \frac{\lambda_i^{k_i} t^{k_i - 1} e^{-\lambda_i t}}{(k_i - 1)!}, \quad g_i^{\ p}(t) = \frac{\mu_i^{m_i} t^{m_i - 1} e^{-m_i t}}{(m_i - 1)!}, \quad i = \overline{1,5}; \\ f_i(t) &= \frac{\lambda_i^{k_i} t^{k_i - 1} e^{-\lambda_i t}}{(k_i - 1)!}, \quad g_i(t) = \frac{\mu_i^{m_i} t^{m_i - 1} e^{-m_i t}}{(m_i - 1)!}, \quad i = \overline{6,8}; \\ \psi(t) &= \frac{\mu_{\text{TO}}^{m_{\text{TO}}} t^{m_{\text{TO}} - 1} e^{-m_{\text{TO}} t}}{(m_{\text{TO}} - 1)!}, \quad t \ge 0. \end{split}$$

Таким образом, построена математическая модель функционирования системы последовательно-параллельной структуры с учетом проведения календарного частичного ТО ее последовательной части, найдены основные стационарные характеристики надежности системы и оптимальные сроки ТО.

Полученные результаты могут быть использованы в области машино- и приборостроения при эксплуатации автоматизированных производственных систем.

Таблица 1. Исходные данные системы

No	1	2	3	4	5	6	7	8	TO
k_i	4	3	4	2	3	4	2	3	-
λ_i, u^{-1}	0,09	0,05	0,06	0,03	0,06	0,03	0,04	0,05	-
$M\alpha_i, u$	44,44	60,00	66,67	66,67	50,00	133,33	50,00	60,00	-
m_i	3	4	2	3	4	2	4	2	4
μ_i, u^{-1}	1,5	1,3	1,2	1,6	1,4	1,5	1,3	1,6	5,0
$M\beta_i$, α	2,00	3,08	1,67	1,88	2,86	1,33	3,08	1,25	0,80
c_i , y.e./ γ	3,2	3,0	3,2	3,1	3,1	3,2	3,4	3,1	1,1
c_0 , y.e./ q					10	•			

Таблица 2. Результаты расчетов

$ au_K$	$K_{\Gamma}(\tau_K)$	$K_{\Gamma}(\infty)$	$ au_S$	$S(\tau_S)$	$S(\infty)$	$ au_C$	$C(\tau_C)$	$C(\infty)$
15,16	0,92	0,84	11,34	9,92	7,68	7,96	0,39	0,87

В дальнейшем предполагается разработка моделей функционирования автоматизированных производственных систем с различными стратегиями проведения планового ТО и нахождение оптимальных моментов времени ее проведения.

ЛИТЕРАТУРА

- 1. *Барлоу Р.*, *Прошан Ф*. Математическая теория надежности. М.: Сов. радио, 1969. 488 с.
- 2. Байхельт Ф., Франкен П. Надежность и техническое обслуживание. Математический подход. М.: Радио и связь, 1988. 392 с.
- 3. *Барзилович Е.Ю.*, *Каштанов В.А.* Некоторые математические вопросы теории обслуживания сложных систем. М.: Сов. радио, 1971. 272 с.
- 4. *Каштанов В.А., Медведев А.И.* Теория надежности систем (теория и практика). М.: Европейский центр по качеству, 2002. 470 с.
- 5. *Cho D.I.*, *Parlar M.* A survey of maintenance models for multi-unit systems // Eur. J. operational research. 1991. **51**. P. 1–23.
- 6. *Dekker R.*, *Wildeman R.A.* A review of multi-component maintanence models with economic dependence // Math. methods of operational research. 1997. **45**. P. 411–435.
- 7. *Королюк В.С., Турбин А.Ф.* Процессы марковского восстановления в задачах надежности систем. Киев: Наук. думка, 1982. 236 с.
- 8. *Полумарковские* модели восстанавливаемых систем и систем массового обслуживания / А.Н. Корлат, А.Н. Кузнецов, М.И. Новиков, А.Ф. Турбин. Кишинев: Штиинца, 1991. 209 с.
- 9. Шуренков В.М. Эргодические процессы Маркова. М.: Наука, 1989. 336 с.
- 10. *Зорич В.А.* Математический анализ: Учебник. Ч. II. М.: Наука, 1984. 640 с.

Поступила 02.03.2005