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Carbon nanotubes (CNT) have special electrical, 
optical and thermal properties caused by the arrange-
ment of the carbon atoms confined in nanometer sized 
volumes [1]. Due to their shape (high aspect ratio since 
the tube diameter is much smaller than tube length), 
CNT can influence the electric field in their localized 
area, which enhances absorption of electromag-
netic energy and generates rapid heating of the tube 
[2–3]. CNT have been used for thermal ablation [4–6]. 
However, the multi-walled CNT (MWCNT) behave as 
highly efficient dipole antennae with broad absorption 
spectra compared with the specific resonance absorp-
tions of single-walled CNT (SWCNT), rendering them 
amenable to stimulation by a range of near infrared 
(NIR) energy sources. Additionally, MWCNT as the 
metallic tubes can be expected to absorb significantly 
more NIR irradiation compared with materials such as 
SWCNT, because, per weight, SWCNT contain both 
metallic and semiconducting ones.

Hyperthermia, defined as temperatures above 
40 °C, is used clinically to treat a variety of malignancies 
[6–8]. Irreversible cell damage is incurred for tempera-
tures above 45 °C. Therefore, clinical intraperitoneal 
hyperthermic therapy procedures use mild hyperther-
mia between 40 °C and 42 °C for peritoneal perfusion 
[7–8]. Thus, the novel paradigm of trea ting cancer with 

hyperthermic therapy using MWCNT stimulated with 
NIR irradiation [6, 9] was considered.

Chemical vapour deposition was used to produce 
MWCNT with high purity [10]. The synthesized MWCNT 
were analyzed by transmission and scanning electron 
microscopy (SEM) (Fig. 1), and thermogravimetric 
analysis (TG). From SEM and TG it was estimated 
that the content of MWCNT in the samples was higher 
than 90%. The average diameter of the MWCNT was 
estimated to be in a range from 8 to 12 nm.

Fig. 1. SEM (FEI XL30 LaB6 SE modus 30 kV) micrograph of 
MWCNT deposit. The images reveal the presence of MWCNT in-
side the deposit. The calculated length of the MWCNT is (1–4) μm

To produce a water suspension of MWCNT in a typical 
experiment, 100 mg of MWCNT was stirred in 50 ml of 
water under argon for several hours. Stirring was required 
to allow the solid MWCNT to go in the water solution. The 
mixture was then filtered through a membrane (pore size 
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of 1.2 μm). The MWCNT were collected on the mem-
brane. The filtrate has a brown color and contains small 
amounts of short CNT. CNT are soluble in water due to 
some surface carboxyl groups on the MWCNT [10]. The 
maximum concentration of MWCNT in water was deter-
mined to be 0.1 mg/ml. It is important to note that under 
this and less concentration of MWCNT in water they are 
not toxic for normal and/or transformed cells [10–11].

In our experiments the outbreed mice (with body 
weight of 20 g), maintained on standard chow diet, 
were used. All experiments were carried out according 
to the rules of local Ethic Committee.

On day 8–12th after intraperitoneal transplanta-
tion of Erlich ascitic carcinoma (EAC) to animals 
(1 x 106 cell/animal), the cancer cells were isolated. 
EAC cells were washed off the ascitic fluid and resus-
pended in RPMI 1640 medium with 8 mM NaHCO3, 
20 mM HEPES. EAC cells (1–2 x 105/ml) without ad-
ditives and in the presence of MWCNT (0.1 mg/ml) 
were incubated for 12 h at 37 °C to irradiation. The 
number of viable cells was counted after staining with 
0.4% trypan blue solution. The number of EAC viable 
cells without additives and in the presence of MWCNT 
without irradiation after 12 h of incubation was 100% 
and used as a control.

Irradiation of the MWCNT water suspension without 
and with EAC cells was carried out in a quartz cuvette 
(V = 1.5 ml) using the NIR heating lamp (IF-9900 Gold, 
Hasell CO, USA) with power density of 3.5 W/cm2 for 
2 min. This lamp irradiates light with a wavelength of 
(0.78–1.4) m, which is transparent to the biological 
systems. Changes in the temperature of samples with 
the NIR exposure time was measured at 30 s intervals 
by using the differential cooper-constantan thermo-
couple to within ± 0.1 °C.

Fig. 2 shows the temperature of MWCNT water 
suspension without (curve 1) and with EAC cells 
(curve 2) as function of NIR light exposure time. It 
was observed that NIR irradiation of MWCNT water 
suspension (MWCNT concentration 0.1 mg/ml) by 
3.5 W/cm2  = (0.78–1.4) m NIR lamp continuously 
for 2 min caused heating of the aqueous suspension 
to ~70 °C (Fig. 2, curve 1). Thus, optically stimulated 
electronic excitations of MWCNT rapidly transferred to 
molecular vibration energies and caused heating: the 
temperature of MWCNT increases highly and quickly 
with an increase in the NIR irradiation time (linear rate 
~0.4 °C/s). NIR irradiation of EAC cells suspension in 
the absence of MWCNT did not affect the number of 
viable cells. The decrease of viable EAC cells number 
in the presence of MWCNT without irradiation was 
not observed. Thus, cells have a high transparency to 
NIR light, and neither exposure to NIR nor exposure to 
MWCNT alone is sufficient to induce cell death.

Varying NIR lamp exposure time (range: 1–1.5 min) 
revealed that the thermal ablation temperature thresh-
old (~39–50 °C) of EAC cells suspension with MWCNT 
(0.1 mg/ml) could be reached (Fig. 2, curve 2) and as 
a result the hyperthermia effect on cancer cells was 
observed. For EAC cells with internalized inside MW-

CNT (mainly in the cytoplasm and intracellular vesicles) 
[12–13], which act as tiny NIR heaters/antennas (see 
Appendix), extensive cell death (95.2 ± 4.8%) was ob-
served after 1.5 min irradiation under a 3.5 W/cm2 power.
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Fig. 2. The temperature of MWCNT aqueous suspension without 
(curve 1) and with EAC cells (curve 2) as function of NIR light 
exposure time

In summary, the ability of MWCNT to induce tem-
perature increases compatible with thermal ablation at 
low concentration, and short NIR light exposure time 
suggests that MWCNT may be useful as photothermal 
mediators.

ACKNOWLEDGMENTS

This work was partly supported by a German BMBF 
grant. S. Prylutska is grateful to the DFG for support.

APPENDIX

We consider a model of MWCNT as a cylindrical 
structure comprising N coaxial infinitesimally thin shells. 
We enumerate the shells in the MWCNT consecutively 
from 1 to N, beginning from the innermost shell, so that 
their cross-sectional radii comply with the condition 
RN > RN–1 >  R1. The cross-sectional radius RN of the out-
ermost shell is assumed to be much smaller than the free-
space wavelength λ. Accordingly the model proposed in 
[14], in the NIR regime an electrically thin (RN < λ) MWCNT 
may be modeled as a thin homogeneous cylinder with the 
effective conductance per unit length given by

 N
σT = ∑ (2πRpσp),  (1)
 p=1

where σP is the axial surface conductivity of the p-th 
shell, p∈[1,N]. Following [12], the conductivity σP is 
assumed to be the same as for a SWCNT with identical 
geometrical parameters. The effective conductance σT 
practically does not depend on the chirality of shells 
for MWCNT with the diameter larger than 5 nm [15].

The scattering efficiency of a MWCNT of a finite 
length L is determined by the formula

η = Pr / (Pr + Pt), (2)
where

 ω2|σT|2
 
π L/2

Pr = ————— ∫sin3θ|∫eikz cos θ Ez
(0)(z) |2dθ (3)

 4c3
 0 –L/2

is the scattered power, and

 1 π
Pt = —Re(σT)∫sin3θ|Ez

(0)(z)|2dz (4) 2 0
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is the power loss due to Ohmic dissipation. The quan-
tity Ez

(0) is the z component of the incident electric 
field, and θ is the angle with respect to z axis. The later 
coincides with the nanotube axis.

In the NIR regime the real part of σT increases with 
the frequency increase, that leads to the growth of 
the scattering efficiency. Table gives the ranges of 
variation of the scattering efficiencies for MWCNT with 
different length L and diameter D in the investigated 
spectral range  = (1.4–0.78) m.

Table. Scattering efficiency (%) for MWCNT with different length L (μm; 
rows), diameter D (nm; columns) and number of shells N (columns) in the 
spectral range λ = (1.40–0.78) mm

Scattering 
efficiency,%

D = 8
(N = 12)

D = 12
(N = 17)

D = 20
(N = 28)

L = l 0.30–0.70 0.70–1.5 1.2–3.5
L = 2 0.40–0.76 0.87–1.7 2.0–3.8
L = 4 0.43–0.80 0.93–1.7 2.2–4.0

From Table one can conclude that the largest 
scattering efficiency corresponds to MWCNT of the 
largest diameter and maximal length at the smallest 
wavelength of the investigated range and does not 
exceed 4%. Thus, MWCNT intensively absorb in the 
above NIR light range and can be lead to the destruc-
tion of malignant tumors as a result of the local heating.
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