УДК 541.1:546.273.171

В.З. Туркевич, д-р хим. наук, **Т.О. Прихна**, д-р техн. наук, член-корр. НАН Украины, Д.В. Туркевич

Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины, г. Киев

ТЕРМОДИНАМИЧЕСКИЙ РАСЧЕТ ДИАГРАММЫ ПЛАВКОСТИ СИСТЕМЫ В-В₂О₃-ВN ПРИ 5 ГПа

The melting diagram of the $B-B_2O_3-BN$ ternary system at 5 GPa has been calculated in the framework of phenomenological thermodynamics models. The literature data has been used for the model stability parameters and the unknown interaction parameters of models have been defined from the experimental studies of the phase equilibria. The diagram is characterized by the existence of two eutectic, one peritectic and the maximum in univariant eutectic line invariant equilibria.

Соединения бора имеют короткую ковалентную связь, уникальные кристаллографические и физико-химические свойства, высокую твердость. Они стали основой для создания ряда тугоплавких и сверхтвердых материалов, в том числе: кубический нитрид бора cBN и карбид бора B_4C [1]. Указанные свойства присущи еще двум соединениям бора – субоксиду B_6O и субнитриду B_6N , которые получают в результате химической реакции соответственно бора с оксидом бора B_2O_3 (III) и графитоподобным гексагональным нитридом бора hBN. Подробнее методы получения B_6O , B_6N и их свойства, опубликованы в работах [2-4]. Экспериментальные исследования фазовых превращений, термодинамический анализ и построены диаграммы состояния двойных систем B_2O_3 и B_2O_3 и B_2O_3 и B_3O_3 .

Приведем термодинамический расчет диаграммы плавкости тройной системы B–B₂O₃– BN при 5 ГПа.

Анализ экспериментальных данных (температуры образования соединений и появления жидкой фазы), показал, что соединения исследуемой системы – B_2O_3 , cBN, hBN, B_6O , $B_{13}N_2$, а также бор могут быть описаны как фазы постоянного состава, а для описания жидкой фазы достаточно учесть взаимодействие в двойных системах $B-B_2O_3$ и B-BN без необходимости учета тройного взаимодействия в системе $B-B_2O_3-BN$ [5]. Другими словами, концентрационнаая зависимость свободной энергии Гиббса жидкой фазы может быть записана в приближении регулярных растворов с тройным параметром взаимодействия, равным нулю:

$$G^{L} = x_{B}^{o}G^{L}_{B} + x_{BN}^{o}G^{L}_{BN} + x_{B_{2}O_{3}}^{o}G^{L}_{B_{2}O_{3}} + RT(x_{B}\ln x_{B} + x_{BN}\ln x_{BN} + x_{B_{2}O_{3}}\ln x_{B_{2}O_{3}}) + x_{B}x_{BN}E_{B,BN} + x_{B}x_{B_{2}O_{3}}E_{B,B_{2}O_{3}} + x_{BN}x_{B_{2}O_{3}}E_{BN,B_{2}O_{3}}$$

где ${}^{o}G_{B}^{L}, {}^{o}G_{B_{2}O_{3}}^{L}$ — мольные энергии Гиббса жидких бора и оксида бора (III) (взяты из [6]); ${}^{o}G_{BN}^{L}$ — мольный изобарно-изотермический потенциал жидкого нитрида бора (взяты из [7]), $E_{B,B_{2}O_{3}}, E_{B,BN}, E_{BN,B_{2}O_{3}}$ — параметры взаимодействия в расплавах двойных систем B–B₂O₃, B–BN, BN–B₂O₃ (взяты из [3, 4, 8]).

Температурные зависимости свободной энергии Гиббса β -ромбоэдрического бора, α -оксида бора B_2O_3 взяты из [6], hBN и cBN – из [7], B_6O – из [3] и $B_{13}N_2$ – из [4].

Высокие давления вызывают увеличение свободной энергии Гиббса каждой фазы на

величину $\int_{0}^{p} V_{m}^{\Phi} dp$, где V_{m}^{Φ} – мольный объем фазы со структурой Φ . Для расчетов использова-

ны те же значения термодинамических величин и допущения, что и в [3, 4, 8], а именно: мольные объемы и их изменение при плавлении; модули сжатия кристаллических веществ; модули сжатия соответствующих жидких фаз рассчитаны так, чтобы максимально точно описать барические зависимости температуры плавления; коэффициенты термического расширения для жидкой и кристаллической фаз всех веществ одинаковы.

Объем жидкой фазы тройной системы рассчитан в приближении нулевого объема смешения по формуле

$$V_{m}^{L} = x_{B}V_{B}^{L} + x_{B_{2}O_{3}}V_{B_{2}O_{3}}^{L} + x_{BN}V_{BN}^{L}$$

Диаграмма плавкости тройной системы B–B₂O₃–BN при 5 ГПа, рассчитанная с использованием описанных модельных представлений, показана на рис. 1, а ее изотермические сечения – на рис. 2 и 3.

Рис. 1. Проекция поверхности ликвидус и элементов поверхности солидус системы В–ВN–В₂O₃ при 5 ГПа

Рис. 2. Изотермическое сечение диаграммы состояния системы B–BN–B₂O₃ при 5 ГПа и 2550 К

Рис. 3. Изотермическое сечение диаграммы состояния системы B–BN–B₂O₃ при 5 ГПа и 2200 К

Диаграмма характеризируется наличием двух эвтектических нонвариантных равновесий L \Rightarrow B + B₆O + B₁₃N₂ (E₁, 2320 K), L \Rightarrow B₆O + B₂O₃ + cBN (E₂, 1300 K), одного перитектического L + cBN \Rightarrow B₆O + B₁₃N₂ (P₁, 2480 K), а также максимумом на моновариантной кривой L \Rightarrow B₂O₃ + cBN при 2550 K, через которую проходит квазибинарное сечение B₆O–BN.

Выводы

Наиболее широкие области первичной кристаллизации при 5 ГПа в системе $B-B_2O_3-$ ВN имеют субоксид бора B_6O и кубический нитрид бора cBN. При температуре 3220 К наблюдается изотерма равновесия кубической cBN и графитоподобной гексагональной модификации hBN нитрида бора. Монокристаллы субнитрида бора $B_{13}N_2$ можно получить путем кристаллизации из раствора в расплаве в относительно узком температурном интервале (2320-2600 К) и концентрационном (84-93 ат.% бора и до 10 ат.% кислорода).

Литература

- 1. Синтетические сверхтвердые материалы. В 3 т. Т. 1. Синтез сверхтвердых материалов / Отв. ред. Н. В. Новиков. – К.: Наук. думка, 1986. – 280 с.
- 2. Соложенко В. Л., Куракевич А. А., Туркевич В. З., Туркевич Д. В. // Сверхтвердые материалы. 2005. № 3. С. 14–18.
- 3. Соложенко В.Л., Туркевич В.З., Туркевич Д.В. // Сверхтвердые материалы. 2005. № 6. С. 27-34.
- 4. Туркевич В. З., Соложенко В. Л., Туркевич Д. В. // Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения: Сб. науч. тр. К.: ИСМ НАН Украины, 2006. Вып. 9. С. 163–167.
- 5. Туркевич В. З., Петруша И. А., Туркевич и др. // Сверхтвердые материалы. 2008. № 1. С. 23-30.
- 6. Термодинамические свойства неорганических веществ / под ред. В.П. Глушко, Л.В. Гурвича, Г.А. Бергмана и др. М.: Наука, 1981.
- Solozhenko V.L., Turkevich V.Z., Holzapfel W. // J. Phys. Chem. B. 1999. Vol. 103 N. 15. – P. 2903-2905.
- 8. Туркевич В.З., Воронин Г.А., Луценко А.Н. // Сверхтвердые материалы. 1999. № 2. С. 49-53.

Поступила 15.05.08