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Melanocytes play a central role in the response of 
skin to sunlight exposure. They are directly involved 
in ultraviolet (UV)-induced pigmentation as a defense 
mechanism [1]. However, their alteration can lead to 
melanoma, a tumor that has become one of the most 
rapidly increasing malignancies in the Caucasian 
population [2]. Melanoma seems to be the result of 
complex interactions between environmental, constitu-
tive and genetic factors [3]. Although direct evidence 
is lacking, it is assumed that solar ultraviolet A (UVA) 
radiation (320–400 nm) may play a significant role 
relative to ultraviolet B (UVB) radiation (290–320 nm) in 
melanoma etiology [2, 4]. The transformation process 
whereby UV damage may result in melanoma initiation 
is poorly understood, especially in terms of UV-induced 
genotoxicity in pigmented cells, where melanin can act 
either as a sunscreen or as a photosensitizer [1, 5, 6]. 
People with different skin color possess varied sensi-
tivity to ultraviolet (UV) exposure, with darker skinned 

individuals being less susceptible to sun-induced skin 
alterations, including cancer, than fair skinned ones 
[7]. Such a difference can be explained in terms of UV 
transmission of the epidermis, because the skin color 
is also related to the type of melanin, the number, size, 
type, distribution and degradation of melanosomes, 
and the tyrosinase activity in melanocytes [8, 9]. Three 
enzymes, phenylalanine hydroxylase, tyrosine hydroxy-
lase isoform I and tyrosinase are crucial for the initiation 
of melanogenesis. Intracellular phenylalanine hydroxy-
lase is providing L-tyrosine through the conversion of 
L-phenylalanine while the last two enzymes are using 
L-tyrosine as a substrate [10, 11]. Tyrosinase catalyzes 
the hydroxilation of L-tyrosine [12] and the production 
of ortho-quinones from both monohydric and dihydric 
phenols [13]. Tyrosine hydroxylase isoform I uses 
L-tyrosine to form L-DOPA in melanosomes [14].

High levels of tyrosine are known to reduce the 
proliferative effect of alpha-MSH and forskolin and 
also alter melanocytes morphology [15]; tyrosine also 
stimulates the activity of tyrosinase and melanogene-
sis [4, 15–18].

In the melanocytes, the dominant skin pigment 
melanin and its precursors are complex redox systems, 
the resultant properties of which are modified by pH, 
temperature, illumination with ultraviolet and visible 
light [19]. There are conflicting reports on the role 
of melanin or melanin precursors in modulating the 
biologic effects of UV radiation [20]. It is conceivable, 
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however, that melanin, which may be present in large 
concentration in melanocytes, may be the most impor-
tant antioxidant [4]. Melanocytes, in particular, seem 
to be extremely susceptible to free radicals, either in 
the activation of their physiologic role or in deleterious 
effects [1, 21, 22]. The main enzymatic antioxidants in 
the melanocytes are superoxide dismutase (SOD) and 
catalase (Cat), considering the low glutathione peroxi-
dase activity (GSH-Px) in melanocytesn [23], so that 
the SOD/Cat ratio is considered as a parameter of the 
cells susceptibility to external oxidative stress [1].

The different pattern of antioxidants in melanocytes 
from people with low phototype and their physiologic 
response to UV light could be an adjunctive risk fac-
tor for developing a melanoma, when exposed to UV 
irradiation [1, 24].

We studied the effects of UV induced oxidative stress, 
using normal human melanocyte cultures from cauca-
sian individuals, phototype II, III, according to Fizpatrick 
classification, as cellular models [25]. L-tyrosine was 
used to selectively modulate melanin synthesis in the 
melanocytes. The aim of this study was assessment of 
melanogenesis, cell survival, proliferation and defense 
against oxidative stress in fair skin melanocytes when 
exposed to high levels of tyrosine and UVA, respective 
UVB radiation. In view of the potential role of UV irradiation 
in skin carcinogenesis and especially melanoma it is im-
portant to understand how melanin synthesis modulates 
the activity of the oxidative stress defense enzymes, such 
as SOD and Cat after UV induced cell damage.

MATERIALS AND METHODS

Melanocyte cultures. Adult human melanocytes 
were grown as previously described [26, 27]. Skin 
 biopsies were taken from healthy skin, trimmed of ex-
cess subcutaneous tissue and dermis. Separation of 
epidermis from dermis was done after overnight incuba-
tion in 2000 UI/ml colagenase (Cellsystems, Germany). 
The epidermal cells were separated by trypsinisation 
and the cells of the stratum basalis were collected by 
gentle scraping. Recovered cells were resuspended and 
seeded onto a 25 cm2 culture plates in serum free, kerati-
nocyte growth medium (KGM) (Promocell, Germany). All 
cultures were fed twice weekly and incubated in a 37 °C 
and 5% CO2, humidified environment. At first passage, 
the melanocytes were separated from the keratinocytes 
by differential trypsinization and resuspended in com-
plete melanocyte growth medium (MGM) (Cellsystems). 
We used 3 primary epidermal human adult melanocytes 
cultures from individuals with phototype II and III and one 
epidermal human melanocyte culture from Caucasian 
newborn foreskin (Promocell).

L-tyrosine media. L-tyrosine (Sigma Chemical Co., 
St. Louis, USA) was dissolved in DMEM, supplemented 
with 5% FCS to prepare the media with concentra-
tions of 0.5 mM, 1 mM, 2 mM and respective 3.4 mM, 
inclu ding the tyrosine already present in the medium. 
Although this medium is not optimal for melanocyte 
growth; it readily maintains cell survival over a short 
period of time (24 h, respective 72 h) and thus allowed 

for the experiments to be performed on melanocytes 
without exposure to potent non-physiologic stimulants 
such as phorbol esters or cholera toxin [26].

Melanocyte bioassay. All the experiments were 
conducted in subdued light, in triplicate. Melanocytes 
in the 3rd and 4th passage were used. In proliferation 
assays the melanocytes were seeded at 104 per well in 
ELISA 96 wells micro titration flat bottom plaques (TPP, 
Switzerland). For the enzymatic bioassays and melanin 
assessment, the cells were seeded at 2 x 104 cells per 
35 mm Petri dish. After 24 h accommodation in com-
plete MGM at 37 °C, 5% CO2, humidified environment, 
the cells were washed and exposed to the L-tyrosine 
media for 24, respective 72 h. Untreated controls were 
exposed to DMEM, supplemented with 5% FCS, con-
taining 0.397 mM tyrosine.

UV irradiation. Irradiation was conducted us-
ing a 6 W power UV lamp (Fisher Bioblock Scientific, 
Belgium) with filters for UVB (312 nm), respective UVA 
(365 nm). Melanocytes were washed twice in PBS and 
irradiated, in PBS, with 20, 30, 40 mJ/cm2 UVA, respec-
tive UVB. The light intensity at the position of the irradi-
ated cell plates with UVA was 700 μW/cm2 and with UVB 
was 680 μW/cm2. Then, the cells were incubated for 
24 h in basal medium for melanocytes (Promocell).

Melanocyte proliferation/cytotoxicity assay. 
It was done using CellTiter 96® AQueous Non-Radio-
active Cell Proliferation Assay (Promega Corporation, 
U.S.A). The cells in 100 μl medium were exposed to 
20 μl of MTS/PMS mixture (2 ml/100 μl), for 1–4 h. 
Absorbance at 490 nm was recorded using an ELISA 
plate reader (Tecan, Austria).

Morphology. Morphological aspect of the mela-
nocytes was observed by microscopic examination 
(Nikon Eclipse T 100, Japan) and documented photo-
graphically. Melanocytes were released from the culture 
dishes with a soft rubber cell scraper and pelleted.

Cell viability. It was assessed by trypan blue exclu-
sion dye method (Biochrom AG).

Cell lysis. Cells were lysed on ice, in Nonidet 1% 
(Sigma) in PBS solution for one hour, in the pre sence 
of 1% complex of protease inhibitors (Sigma). Cell 
extracts were spun at 14 000 g for 30 min at 4 °C. 
Supernatant was removed and a fixed volume (50 μl) 
was used for determining the protein content by the 
Bradford method (Biorad, USA).

Total melanin content. It was determined as pre-
viously described [28]. Remaining pellet was dissolved 
in 0.1 ml 1 M NaOH, and diluted with 0.4 ml water. 
Melanin content was assessed by spectrophotometric 
determination (DU 730 UV VIS Beckman Coulter, USA) 
of absorption at 475 nm against a standard curve of 
synthetic melanin (Sigma).

Tyrosinase enzymatic activity as DOPA oxidase. 
100 μl cell lysate were incubated for 30 min at 37 °C with 
1000 μl DOPA (2.5 mg/ml) in 10 mM phosphate buffer, 
pH 7.2. The recording L-dopacrom formation at 475 nm 
was measured by spectrophotometry (DU 730 UV VIS 
Beckman Coulter); absorbance was compared with a stan-
dard curve using mushroom tyrosinase (Sigma) [29, 30].
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SOD enzymatic activity. 50 μl cell lysate were 
added to 2.9 ml cytochrome c (2 μmol) from horse 
heart (Sigma) in 50 mM phosphate buffer, ph 7.8, 
containing 0.1 mM EDTA solution and the reaction 
was started with 50 μl of freshly prepared solution of 
0.2 U/ml xanthine oxidase in 0.1 mM EDTA. Absor-
bance at 550 nm was recorded by spectrophotometry 
(DU 730 UV VIS Beckman Coulter), against a standard 
curve using pure bovine liver SOD (Sigma) [31, 32].

Cat enzymatic activity. 20 μl of cell lysate were 
mixed with 3 ml solution of 10 mM H2O2 in 50 ml potassium 
phosphate buffer; absorbance at 240 nm was continu-
ously measured by spectrophotometry (DU 730 UV VIS 
Beckman Coulter) at 240 nm, for 3 min. For calculation we 
considered one unit of catalase as the amount of enzyme 
which induces a change of 0.43 in the absorption (240 nm) 
during the 3 min incubation period [31, 32].

Statistics. Data were analyzed using non-parametric 
methods: Mann — Whitney U Test, Kruskall — Wal-
lis test, Spearman r calculus. Dynamic evaluations 
were assessed by means of area under curve (AUC) 
calculations. Specific tests (Mann — Whitney U Test, 
Kruskall — Wallis test) were used to evaluate differences 
between 2 or three dynamic patterns. Although chars 
are presented with equal interval among moments in 
time, real time scale was used when determining AUC 
values and for testing AUC differences. Results were 
considered significant for p ≤ 0.05. Statistical packages 
SPSS 13.0 — Statistical Software Package (SPSS Inc, 
Chicago, Illinois, USA) and MedCalc 8.1.0.0 were used 
for data analysis.

RESULTS

Melanocyte proliferation and cytotoxicity. 
Overall, tyrosine had a negative, statistically significant 
dynamic effect on proliferation, as seen in Fig. 1 (overall 
AUC comparison among all tyrosine concentrations, 
p = 0.000). Tyrosine diminished cell proliferation com-
pared to controls, when used in lower concentrations 
(AUC control versus tyrosine 0.5 mM, p = 0.000; respec-
tive AUC control vs tyrosine 1 mM, p = 0.000). However, 
no significance was obtained between tyrosine 0.5 mM 
vs 1 mM dynamic effect (AUC comparison, p = 0.987).
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Fig. 1. Melanocyte proliferation after tyrosine exposure for dif-
ferent time periods

High tyrosine concentrations had a significant 
negative effect on cell proliferation (AUC control vs 
tyrosine 2 mM, p = 0.000, respective control vs ty-
rosine 3.4 mM, p = 0.000). However, no significance 

was obtained and between tyrosine 2 mM vs. 3.4 mM 
dynamic effect (AUC comparison, p = 0.897).

UV irradiation of the tyrosine exposed melanocytes 
reduced cell proliferation. There were no significant 
differences in the proliferation rates after exposure 
to low concentrations of tyrosine (0.5 mM, 1 mM) ac-
cording to tyrosine concentration and UV irradiation, 
compared with controls (Fig. 2).
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Fig. 2. Melanocyte proliferation after UV irradiation of previ-
ously low tyrosine concentrations exposed cultures for different 
periods of time

However, 24 h exposure to high tyrosine concentra-
tions (2 mM, 3.4 mM) induced an increased cell prolife-
ration rate after UVB irradiation compared to UVA, while 
the 72 h tyrosine exposed cultures showed an increased 
proliferation rate after UVA irradiation, compared to UVB 
radiation and non irradiated cultures (Fig. 3).
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Fig. 3. Melanocyte cytotoxicity assay after UV irradiation 
(30 mJ/cm2) of previously high tyrosine concentrations exposed 
cultures for different periods of time

The differences between the proliferation rates of 
UVA and UVB irradiated cultures previously exposed to 
tyrosine were not statistically significant (AUC control 
UVA, vs control UVB, p = 0.769; tyrosine 2 mM UVA 
vs UVB, p = 0.825; tyrosine 3.4 mM UVA vs UVB, p = 
0.854). High tyrosine concentration strongly inhibited 
cell proliferation in the UVA irradiated cultures (AUC 
control vs tyrosine 2 mM, p = 0.026, AUC control vs 
tyrosine 3.4 mM, p = 0.019). However, no statistically 
significance was obtained between AUCs of tyrosine 
2 mM vs 3.4 mM, p = 0.897. Same results were re-
corded after UVB irradiation (AUC control vs. tyrosine 
2 mM, p = 0.036, AUC control vs tyrosine 3.4 mM, p = 
0.029, but AUC tyrosine 2 mM vs 3.4 mM, p = 0,657). 
There is no statistical significance between AUCs of 
tyrosine 2 mM unirradiated vs UVA, p = 0.843 respec-
tive no irradiated vs UVB, p = 0.954 (see Fig. 3).
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Microscopic examination. The short period (24 h) 
of tyrosine exposure did not produce visible alterations in 
the melanocyte morphology; their aspect was similar with 
untreated controls (Fig. 4, a). Melanocytes exposed to 
tyrosine for the longer period (72 h) were deeply modified. 
2 mM tyrosine exposed cells were heavily pigmented, 
with the cell body occupied with large melanosomal com-
plexes (Fig. 4, b). Higher tyrosine concentration (3.4 mM) 
severely altered the microscopic aspect; the cells were 
showing mosaicism, polymorphism, with heterogeneity of 
pigmentation, vacuolar degeneration, and loss of surface 
adherence (Fig. 4, c) — characte ristics of a late-passage, 
senescent melanocyte culture in vitro [33].

a

b

c

Fig. 4. Microscopic examination of the melanocyte cultures. 
a, normal microscopic aspect of the epidermal human melano-
cytes in culture (untreated controls, photo taken through Nikon 
Eclipse T 100 microscope, 40 x). b, heavily pigmented cells, with 
a few, short, plump dendrites; the cell body is occupied with 
large melanosomes, except the central area, where the nucleus 
is still visible (melanocyte cultures exposed for 72 h to 2 mM 
tyrosine, photo taken through Nikon Eclipse T 100 microscope, 
40 x). c, polymorphism exhibiting large, monstrous cells, small 
cells, bipolar and round cells, uneven distribution of the melanin 
pigment, vacuolar degeneration, loss of surface adherence 
(melanocyte cultures exposed for 72 h to 3.4 mM tyrosine, photo 
taken through Nikon Eclipse T 100 microscope, 40 x)

Melanocyte viability was assessed for the 
untreated controls and the higher (2 mM) tyrosine 
exposed cultures (Table 1). It showed a high viability 
ratio. Viability was significantly decreased with tyrosine 
exposure (Table 2). Interestingly, time exposure to 
tyrosine had no significant influence on melanocyte 
viability. We noticed a slight viability decrease when 
melanocytes were exposed to tyrosine and UVB, com-
pared with the tyrosine and UVA combination, but the 
difference was not significant (Table 3).

Total melanin content. Tyrosine exposure had 
a different effect on melanin synthesis according to 
concentration. Lower concentrations (0.5 mM, 1 mM) 
significantly increased melanin content, while the high 
concentration (2 mM) decreased it (not significant), 
compared to controls (see Table 1). Melanin content 
was significantly increased with time exposure to 
tyrosine in 1 mM tyrosine treated melanocytes (see 
 Table 2). Pigment production was increased with higher 
UV energy irradiation; significantly after UVA irradiation 
30 and 40 mJ/cm2, respective after UVB irradiation 
40 mJ/cm2, compared to unirradiated controls (see 
Table 3). There was a higher melanin content in the 
cultures exposed to the combination of UVA and tyrosine 
than the combination of UVB and tyrosine (Table 4).

Tyrosinase enzymatic activity significantly 
increased with high tyrosine concentration (2 mM) 
(see Table 1). Time exposure to tyrosine increased 
tyrosinase activity (see Table 2).

Both UVA and UVB stimulated tyrosinase activity. 
UVA irradiation determined a higher stimulation of 
tyrosinase activity than UVB; the difference was signifi-
cant with lower concentrations (0.5 mM, 1 mM) (see 
Table 3). Tyrosinase enzymatic activity increased with 
irradiation energies, not significant (see Table 4).

SOD and Cat enzymatic activity were significantly 
increased in the melanocyte cultures exposed to lower 
tyrosine concentrations (0.5 mM, 1 mM) compared 
to controls (see Table 1). Time exposure to tyrosine 
significantly altered the activity of SOD. Cat activity dif-
fered significantly when melanocytes were exposed to 
0.5 mM and 2 mM tyrosine concentration. Interes tingly, 
after high tyrosine concentration exposure, SOD and 
Cat showed increased activity rates after a short treat-
ment, compared to untreated controls, but their activity 
was dramatically decreased with longer tyrosine expo-
sure. However, this situation was completely different 
with low tyrosine concentrations (see Table 2).

UVA irradiation stimulated SOD and Cat activity 
at lower tyrosine concentrations (0.5 mM) than UVB 
(1 mM). UVA increased Cat activity after low tyrosine 
concentration (0.5 mM) exposure, relative to UVB. 
However, higher concentrations of tyrosine exposure 
prior to UV irradiation changed this effect. After 1 mM 
tyrosine concentration exposure, the effects of UVA 
and UVB on Cat activity were similar, while at high 
tyrosine concentration (2 mM) UVA decreased Cat ac-
tivity compared to UVB and controls (see Table 3). The 
enzymatic activity of both SOD and Cat was increased 
with the energy of irradiation (see Table 4).
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SOD activity was directly correlated (r = 0.732, p = 
0.000) with the enzymatic activity of tyrosinase, when the 
melanocytes were treated with 1 mM tyrosine (Fig. 5).
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Fig. 5. Correlation between SOD and tyrosinase enzymatic 
activity in the melanocyte cultures exposed to 1 mM tyrosine 
and irradiated

However, when the melanocytes were exposed to 
2 mM tyrosine, SOD and enzymatic tyrosinase activity 
were indirectly correlated (p = 0.011. r = –0.488) (Fig. 6).
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Fig. 6. Correlation between SOD and tyrosinase enzymatic 
activity in the melanocyte cultures exposed to 2 mM tyrosine 
and irradiated

Table 1. Melanocyte bioassay: effects of different tyrosine concentrations on cell viability, total melanin content and the enzymatic activity of tyrosinase, 
SOD and Cat

Tyrosine 
concentration (mM)

Total melanin content 
(μg/culture)

Enzymatic activity 
of tyrosinase (U)

Superoxide dismutase 
(U/mg protein) Catalase (U/mg protein) Viability (%)

Median/range Median/range Median/range Median/range Median/range
0.397 3.39/4.7 18.44/57.52 1363.91/3618.66 27.335/43.04 88.965/15.71a

0.5 2.64/3.1b 20.08/50.16a 2022.13/2355.80b 37.086/231.54b

1 2.38/2.1b 19.86/32.44a 2247.57/2724.52b 69.15/190.54b

2 3.4/5.1a 73.54/91.44b 1649.58/4421.74c 37.165/81.46a 91.86/8.93b

ap > 0.05, not statistically significant, bp < 0.05, statistically significant, cp = 0.166, marginally significant, compared with the untreated control, represented 
by the melanocyte cultures treated with DMEM with 5% FCS, tyrosine concentration 0.397 mM.

Table 2. Melanocyte bioassay: effects of different periods of time exposures to tyrosine on cell viability, melanin content and the enzymatic activity of tyrosinase, 
SOD, Cat

Tyrosine 
concentration mM

Exposure time to 
tyrosine (h)

Total melanin 
content (μg/culture)

Enzymatic activity of 
tyrosinase (U)

Superoxide dismutase 
(U/mg protein)

Catalase (U/mg 
protein) Viability (%)

Median/range Median/range Median/range Median/range Median/range
0.397 24 3.3/3.5 13.46/29.52 1855.47/3367.49 30.16/20.18 88.825/14.59

72 3.79/4.5a 27.44/56.80a 939.43/1840.54b 20.285/43.04a 91.475/10.78a

0.5 24 2.76/3.1 18.56/50.16 1698.97/2282.54 34.10/28.54
72 2.42/3.6a 25.04/35.08c 2580.84/2105.83b 87.37/230.32b

1 24 1.96/2 19.36/29 1982.14/2724.52 56.43/170.68
72 2.4/1.6b 24.84/27.84a 2620.61/1943.48b 81.61/190.54a

2 24 3.45/2.4 15.50/45.04 2695.47/2861.13 70.85/50 41.94/61.31
72 3.2/3.9a 87.12/41.28b 941.68/2779.75b 20.55/62.62b 20.285/45.73b

ap > 0.05, not statistically significant, bp < 0.05, statistically significant, cp = 0.158, marginally significant, effects of 24 h compared to 72 h time of tyrosine 
exposure.

Table 3. Melanocyte bioassay: comparison between the effects of UVA vs UVB irradiation after previous tyrosine exposure on cell viability, melanin 
content and the enzymatic activity of tyrosinase, SOD, Cat

Tyrosine 
concentration (mM) Radiation type

Total melanin 
content (μg/culture)

Enzymatic activity of 
tyrosinase (U)

Superoxide dismutase 
(U/mg protein)

Catalase (U/mg 
protein) Viability (%)

Median/range Median/range Median/range Median/range Median/range
0.397 UVA 3.75/4.4 28.44/57.52 1274.84/3618.66 27.07/17.49 88.825/14.59

UVB 3.39/4.7a 13.46/31.08a 1378.5/3618.66a 30.425/43.04a 91.475/10.78a

0.5 UVA 3.165/2.3 29.35/37.48 2720.90/1699.31 79.84/218.05
UVB 2.875/2.5a 37.96/41.48b 1365.85/1200.0b 27.10/21.63b

1 UVA 2.57/1.7 19.86/20.14 2127.48/1793.78 61.325/184.63
UVB 2.215/1.8b 30.74/17.44b 3404.78/1300b 68.67/176.59a

2 UVA 4.75/2.2 46.44/79.92 407.145/1581.42 24.32/51.46 88.96/7.39
UVB 4.2/3.9a 28.44/79.2 a 384.455/2504.43a 36.285/43.04a 88.15/12.94a

ap > 0.05, not statistically significant, bp < 0.05, statistically significant, UVA compared to the UVB effects on the previously tyrosine exposed cultures.

Table 4. Melanocyte bioassay: comparison between the effects of the UVA respective UVB irradiation energies after previous tyrosine exposure on 
melanin content and the enzymatic activity of tyrosinase, SOD, Cat

Radiation type Doses of radiation 
(mJ/cm2)

Total melanin content 
(μg/culture)

Enzymatic activity of 
tyrosinase (U)

Superoxide dismutase 
(U/mg protein) Catalase (U/mg protein)

Median/range Median/range Median/range Median/range
Unirradiated cultures 0 2.4/1.6 12.24/91.44 1363.91/4422.4 20.66/61.95

UVA 20 2.53/2.5a 17.64/45.8a 1778.3/1157.77a 38.41/107.36b

30 2.7/2.7b 19.4/53.24a 2735.02/3032.05a 33.34/203.35a

40 3.76/2.7b 36.71/79.92a 2560.02/3192.75a 43.31/243.42b

UVB 20 2.42/2.5a 26.77/64.24a 1848.4/1826.41a 32.39/93.16c

30 2.4/4.8a 29.52/79.2a 2022.13/3698.8a 26.98/138.9a

40 3.36/4b 38.9/82.76a 2393.95/2342.12a 37.19/170.86b

ap > 0.05, not statistically significant, bp < 0.05, statistically significant, cp = 0.109, marginally significant, compared with the unirradiated cultures for UVA 
irradiation, respective for UVB irradiation.
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SOD activity was also directly correlated (r = 0.227, 
p = 0.099) with the total melanin content of the cultures 
treated with 1 mM tyrosine (Fig. 7).
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Fig. 7. Correlation between SOD enzymatic activity and total 
melanin content in the melanocyte cultures treated with 1 mM 
tyrosine and irradiated

After exposure to 2 mM tyrosine SOD activity was 
indirectly correlated with melanin content (p = 0.022, 
r = –0.446) (Fig. 8). There were no correlations be-
tween SOD and tyrosinase activity, respective melanin 
content in the cultures treated with 0.5 mM tyrosine.
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Fig. 8. Correlation between SOD enzymatic activity and total 
melanin content in the melanocyte cultures treated with 2 mM 
tyrosine and irradiated
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Fig. 9. Correlation between Cat and tyrosinase enzymatic 
activity in the melanocyte cultures treated with 2 mM tyrosine 
and irradiated

Cat indirectly correlated with tyrosinase activity 
when the melanocytes were treated to 2 mM tyrosine 
(p = 0.045, r = –0.397), but not with melanin produc-
tion (Fig. 9). There were no correlations between the 
activity of Cat and tyrosinase when the cultures were 
exposed to lower tyrosine concentrations.

DISCUSSION

We observed the effects of oxidative stress on the 
rate of proliferation, melanogenesis, using normal 
human melanocyte cultures as cellular models. There 
were no significant differences in reaction between 
the adult and newborn epidermal melanocytes in the 
studied conditions. In our experiments, irradiation of 
the melanocytes was expected to increase oxidative 
stress defense enzymes directly and by triggering 
melanogenesis. This effect was modulated by tyrosine 
exposure before UV irradiation [4, 15–18, 34].

Proliferation studies showed a nonlinear decrease 
of proliferation with concentration, enhanced by time 
exposure to tyrosine, as previously described [15].

Exposure to lower concentrations of tyrosine 
(0.5 mM, 1 mM) discretely diminished the proliferation 
rate of the melanocytes, while the higher concentra-
tions (2 mM, 3.4 mM) proved to be toxic for the cells. 
The cells were still viable, as shown by the trypan blue 
staining, but they had no ability to proliferate.

Only small doses of UVA respective UVB (20, 30 and 
40 mJ/cm2) were used in our experiments, comparable 
to physiologic sun exposure. There were no important 
differences of the irradiation time with UVA vs UVB, 
as the intensities of the light generated by the lamp 
were similar.

UVB decreased proliferation relative to UVA when 
melanocytes were exposed for 72 h to high tyrosine 
(2 mM, 3.4 mM), but not in cultures exposed to lower 
tyrosine concentration (0.5 mM, 1 mM). These dif-
ferences can be due to the different UV light action 
mechanism depending on wavelength. Most of the 
biologic effects of UVA radiation in the epidermal 
melanocytes are mediated by reactive oxygen species 
(ROS). ROS seem to activate growth factors’ receptors 
and in particular those of epidermal growth factor and 
initiate multiple signaling responses associated with 
mitogenesis and cell growth regulation [35–37].

UVB radiation has been established as the main cause 
of nonmelanoma skin cancer, particularly squamous cell 
carcinoma, due to direct DNA damage [38].

ROS generated in the cells by UVA irradiation and 
in a lower degree UVB, did not destroy the plasma 
membrane integrity, but decreased cell proliferation. 
This effect was enhanced by previous tyrosine exposure 
for both UVA and UVB irradiation. This is consistent with 
the research done by others, who showed an increased 
sensitivity of the skin type I melanocytes to UVA after 
increasing their melanin content, with tyrosine exposure 
[18]. This suggests that UVA irradiated cultured mela-
nocytes are photosensitized by their own synthesized 
chromophores: melanin and pheomelanin [18].

We used melanocytes from individuals with low skin 
phototype (II, III). They do not present an intense tanning 
response after UV irradiation [25]. These melanocytes 
synthesize eumelanin and pheomelanin, in contrast 
to Negroid individuals who synthesize only eumelanin 
[9]. Melanin in light skin could contribute to sunlight-
induced genotoxicity and maybe — to melanocyte 
transformation [34]. Eumelanin is capable of scav-
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enging the superoxide anion and hydrogen peroxide, 
whereas pheomelanin acts as a photosensitizing agent 
[39]. It has been shown that melanocytes in culture are 
protected against UVB-induced direct DNA damage 
by increased melanin synthesis [40]. However, several 
experiments with normal and displastic nevi melano-
cytes or melanoma cells have failed to demonstrate 
that melanin in melanocytes protects them significantly 
against UV-induced direct DNA damage [41, 42].

In our experiments, tyrosine exposure stimulated 
melanogenesis, as previously described [4, 15–18]. 
This effect was enhanced with the time of exposure 
and tyrosine concentration. UVB stimulated pigmenta-
tion more than UVA after previous tyrosine exposure 
with lower concentrations (0.5 mM and 1 mM), as 
expected, considering that UVB is three to four times 
more effective per unit physical dose (J/cm2) than 
UVA in inducing erythema, DNA damage, tanning 
and skin cancer in mice [43]. However, this situa-
tion was changed at high levels of tyrosine (2 mM) in 
medium.

Exposure to tyrosine, even in low concentrations, 
was stressful for the cells, which exhibited high levels 
of SOD and Cat activities. This was consistent with the 
work of others who found that tyrosine-induced melano-
genesis in melanocytes was accompanied by increased 
production of ROS and decreased concentration of 
intracellular glutathione [42]. It also increased early 
induction of heme oxygenase 1 gene, a typical response 
to oxidative stress, after UVA irradiation [34].

Considering that UVA acts mainly through the ROS 
generation, physiological antioxidants play a crucial 
role in the skin photoprotection [44].

Lower tyrosine concentrations (0.5 mM, 1 mM) 
stimulated the enzymatic activity of SOD and Cat, but 
the high tyrosine concentration (2 mM) after an initial 
increase at 24 h, decreased their activity dramatically 
with time exposure to tyrosine. That correlated with 
the proliferation assay, which demonstrated that this 
concentration of tyrosine was toxic for the melanocytes 
through deleterious effect on the oxidative stress de-
fense of the cells.

In cultures exposed to tyrosine, UVA was a more ef-
ficient stimulus for the induction of the stress enzymes 
than UVB. This could be explained through ROS genera-
tion. UVA irradiation enhanced SOD and Cat activity after 
less tyrosine stimulation than with UVB, but depleted the 
enzymatic reserves, especially Cat, after lower tyrosine 
exposure relative to UVB. Overall, UVA was more effec-
tive than UVB in inducing impairment in Cat activity, as 
shown also in previous studies [45, 46].

Our data showed that the levels of SOD and Cat ac-
tivity in the cultures after 2 mM tyrosine exposure were 
low, regardless of the irradiation type. Low levels of Cat 
activity were previously observed in different cutaneous 
experimental models and they were always associated 
with a stress-prone status [1, 24, 47–49]. In melano-
cytes, the role of Cat is critical because it is the major 
enzyme responsible for the neutralization of H2O2 [23], 
a byproduct of the melanogenic pathway [50]. Cat oxi-

dative damage is detrimental, because when damaged 
it recovers slowly [45, 51]. This results in accumulation 
of H2O2 in the cell and damages of several constituents, 
including Cat [22, 51] and tyrosinase [11].

Enhanced proliferation at high tyrosine concentra-
tion following UVA compared with UVB increased the 
number of melanocytes that exhibited imbalances of 
the normal antioxidant mechanisms, common in hu-
man melanoma cells [52]. Although viability was not 
significantly altered, cells experienced further oxida-
tive stress and were depleted of antioxidant enzymatic 
defenses.

The hypothesis of melanocyte carcinogenesis 
states that an essential part of melanocytes’ malig-
nant transformation is a change in the redox state of 
melanin from a mostly antioxidant state to a prooxidant 
state [20]. This is supported by data that show that 
melanoma cells have a remarkably abnormal content 
of antioxidants, including vitamin E, polyunsaturated 
fatty acids, and catalase [4, 44, 53]. Also, on the 
clinical level, displastic nevi, recognized precursors of 
melanoma, suffer from chronic oxidative stress, even 
without the influence of UV radiation, due to increased 
pheomelanin synthesis [42].

In the cultures exposed to 1 mM tyrosine concen-
tration the increased pigment production was directly 
correlated with the enzymatic activity of SOD. This is a 
very good indicator that melanogenesis itself directly 
produced oxidative stress in the cells.

The highest tyrosine concentration (2 mM) used for 
the melanocyte bioassay is 35–40 times higher than 
the physiological one and exerted a strong proliferation 
inhibition of the melanocytes, while modulating melano-
genesis [5, 15]. In these cultures, increase of melano-
genesis was correlated with the decrease of SOD and 
Cat activities that depleted the defense mechanisms 
against oxidative stress and proved to be damaging for 
the cells. This effect was enhanced by longer tyrosine 
exposure, which stimulated melanogenesis and trig-
gered early senescent aspect of the melanocytes. Ex-
hausting of the cell defense mechanisms rendered the 
melanocytes incapable of neutralizing the free radicals 
generated by UV exposure and melanin production. 
Also, synthesis of pheomelanin consumes cysteine and 
this may limit the capacity of the cellular antioxidative 
defense [42]. This hypothesis is sustained by the dy-
namics of the oxidative stress defense enzymes activity 
and the proliferation rate of the melanocytes.

The few types of melanocytes examined do not allow 
us to draw general conclusions. Our data indicate that in 
low phototype melanocytes, pigment formation, either 
following UV irradiation, or stimulated by tyrosine expo-
sure is inducing oxidative stress defence mechanisms 
activation. In the studied conditions, UVA was more effi-
cient in stimulating the activity of the stress enzymes but 
also in depleting enzymatic defenses against oxidative 
stress (especially Cat) compared with UVB. Pigment 
formation was detrimental for the cells, when exposed 
to high tyrosine concentrations, by reducing the activity 
of Cat and SOD, the natural antioxidants.
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The physiologic response to UV light may be an 
adjunctive risk factor for people with low phototype 
for developing a melanoma, when exposed to UV ir-
radiation.

How these findings relate to an enhanced skin car-
cinogenesis in low phototype individuals needs further 
investigation using long-term irradiation experiments.
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