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It is shown that low temperature asymptotics of various thermodynamic and transport properties of
s-wave superconductors can become power-law ones if wide distributions of gap values exist, originating
from structure domains, charge stripes, charge-density waves or other mesoscopic nonhomogeneities. The
relevant experimental data for high-Tc oxides are analyzed on the basis of the developed theory.
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Power-law low-T asymptotics for s-wave superconductors

1. Introduction

The controversy over the order parameter sym-
metry in cuprates constitutes a great challenge to
investigators and is far from being resolved [1–3],
contrary to what is sometimes claimed [4,5]. Re-
ally, the relevant experimental data may be divided
into three main groups. The first group includes
phase-sensitive methods, e.g., the phase-sensitive
observations of the half-flux quantum spontaneous
magnetization of the three-grain boundaries [4,6]
and of the anomalous π-phase shift across the c-axis
junction straddling a single twin [7]. These experi-
mental results are often considered as an unequivo-
cal evidence of the d-wave order parameter charac-
ter. Nevertheless, as discussed in Ref.[2], the
ordinary s-wave order parameter suppression at
twin boundaries, the flux trapping there or in the
corners, and meanderings of the grain boundaries
on the scale of 100–1000 A°  [8] can reproduce such
a behavior as well. Moreover, the most recent
measurements (see discussion in Ref. [9]) of the
c-axis (perpendicular to the layers) Josephson criti-
cal current Ic between twisted bicrystals of
Bi2Sr2CaCu2O8+y ruled out the purported «naive»
identification of the order parameter symmetry
there with dx2−y2-wave form. Namely, there was no
dependence of Ic on the twist angle ϕ0 , whereas in
the d-wave case it would have been Ic ∝ cos 2ϕ0 .
At the same time, c-axis tunneling between
Bi2Sr2CaCu2O8+y and Pb shows a distinct Fraun-
hofer pattern appropriate to s-wave order parame-

ter, although the magnitude of the Ic is very
small [10].

Two other groups are phase-insensitive. One of
them probes the gap features, if any, at the Fermi
surface (FS). It includes, in particular, the angle-
resolved [11], tunnel [12], and point-contact [13]
spectroscopies. The results obtained, making use of
these methods for a number of specific hole-doped
oxides, are also usually interpreted as manifesta-
tions of the d-wave pairing. However, this interpre-
tation may be misleading. Namely, the emergence of
the dielectric gap on the nesting FS sections due to
the charge-density wave (CDW) formation may
mimic the superconducting pseudogap above the
critical temperature Tc and severely hamper various
measurements of the superconducting gap below
Tc [2,14–16]. For example, the predicted current-
voltage characteristics (CVC’s) asymmetricity for
junctions involving CDW superconductors with
s-type pairing [16] resemble those of the ab-plane
tunnel CVC’s for Bi2Sr2CaCu2O8+y [17]. The same
can be said about the persistence of the smeared
pseudogap features in this experiment, so that
the CDW’s rather than the d-wave scenario with
V-shaped conductance show themselves. The inves-
tigations [18] of inelastic Cooper pair tunneling for
various phases of the Bi-Sr-Ca-Cu-O system clearly
demonstrated the existence of the Riedel-like singu-
larity and the subsequent steep reduction of the
Josephson current inherent to Bardeen-Cooper-
Schrieffer (BCS) isotropic superconductors [19],
whereas the d-wave picture lacks such a threshold
behavior [20]. The indications of the d-wave incon-
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sistency with measured photoexcited relaxation dy-
namics in YBa2Cu3O7−x were also found [21]. The
direct evidence of the s-wave pairing in
YBa2Cu3O7−x and YbBa2Cu3O7−x using tunnel and
point-contact measurements was also obtained in
Ref. [22], where clear classical gap features were
seen.

It is also claimed that the type of pairing can be,
in principle, deduced as well from the phase-insen-
sitive experiments by analyzing the properties of
high-Tc oxides in the low-temperature limit. In-
deed, the BCS theory leads to the following asymp-
totics for various thermodynamic and transport
properties Ps of superconductors at temperatures T
far below Tc [23]:

P
s
 asympt(∆0, T) = A∆0

mTl exp 



− 

∆0

T




 . (1)

Here kB = h− = 1, ∆0 is the value of the supercon-
ducting gap at T = 0 and the quantities m and l are
specific to the property concerned. Instead, a lot
of investigations reveal power-law T-dependen-
ces [1,2,4]. Such a behavior was explained on the
basis of the assumed d-wave symmetry of the order
parameter with gap point or line nodes of the
FS [1,4]. Our article is devoted just to this kind of
experiments. However, in contrast to the tradi-
tional viewpoint, it is shown below that, if one
takes into account the wide distribution of the
superconducting order parameter magnitudes always
existing in complex nonhomogeneous structures of
high-Tc oxides [24–26], the same results can be ex-
plained by the conventional s-wave pairing.

2. Experimental low-temperature asymptotics
for cuprates

To be more specific, let us consider some experi-
mental low-T data for cuprates. In particular, for
YBa2Cu3O7−x the specific heat Cs ∝ T [2], al-
though the recent experiment [21] shows additional
contribution ∝ T2 and Schottky anomalies ∝ T−2

[27], making the whole picture uncertain. At the
same time, the results for the d-wave gap function
would have been proportional to T2 for hexagonal
or T3 for cubic lattices [28].

For δ λL(T) = [λL(T) − λL(0)] λL
−1(0), where λL(T)

is the constant magnetic field penetration depth,
the experimental data are quite ambiguous. For
nominally pure YBa2Cu3O7−x samples linear de-
pendences on T are observed [29], whereas for Zn-
and Ni-doped as well as nonhomogeneous crystals
δ λL ∝ T2 [29–33] in a formal accordance with the
theory of d-wave superconductors, either dirty

ones [4] or those with surface-induced Andreev
bound states [33]. There are also data showing
two-gap low-T asymptotics of δ λL(T) in
YBa2Cu3O7−x [34]. The authors of Ref. [34] claim
that this dependence is intrinsic, whereas the results
of Ref. [29] are due to a non-uniform sample oxygena-
tion. For electron-doped oxide Nd1.85Ce0.15CuO4−δ ,
which always reveals s-wave features, δ λL(T) fol-
lows the exponential law [1]. At the same time, the
initial d-wave picture with δ λL(T → 0) ∝ T
was shown to be inconsistent with the third law
of thermodynamics [35]. Further modifications
[36,37] (see reply in Ref. [38]) changed the electro-
magnetic response of the d-wave superconductor in
such a way that the calculated in-plane dependence
δ λab(T → 0) ∝ T2 holds, not violating thermody-
namics but destroying the apparent agreement with
the experiment.

Unfortunately, it is hard to extract the electronic
thermal conductivity component κe from the experi-
ment due to the complex action of electrons, pho-
nons, and impurities [39,40]. Nevertheless, the ex-
periments indicate that κe ∝ T in Zn-doped
YBa2Cu3O7−x [41] and below Tc

∗ = 200 mK in
Bi2Sr2Ca(Cu1−xNix)2O8 [42]. The ultrasonic attenu-
ation coefficient αs also exhibits a power-law Tn

decrease for T << Tc both for YBa2Cu3O7−x
[43,44] and La1.8Sr0.2CuO4−x [43] with a large
scatter of the exponent n for each substance. As for
the nuclear relaxation rate T1

−1, it demonstrates
power-law dependences with 1 ≤ n ≤ 3 [4].

This experimental material shows that the uni-
versal dependence for any phenomenon discussed
does not exist. Moreover, the agreement with the
theories based on the gap function with point or
line nodes is superficial. Even with additional as-
sumptions being made, the equality between experi-
mental and theoretical power-law exponents still
cannot be ensured. It is usually considered as a basis
for the adoption of the d-wave concept [1,4]. At the
same time, while analyzing local structures ob-
served in the nonstoichiometric superconducting
and nonsuperconducting oxides [24–26,45], we
drew the conclusion that there is a quite different
solution to the problem. Our approach starts from
the assumption of a wide distribution of order
parameter ∆ values in the bulk of the samples at
each T < Tc .

3. Theory

The key idea of the theory is that not only a
polycrystalline but even a single crystal supercon-
ducting oxide sample can be considered as
mesoscopically nonhomogeneous, i.e., consisting of
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domains. This domain structure is supposed to be
T-independent, with each domain having the fol-
lowing properties:

(A) at T = 0 it is described by a certain supercon-
ducting order parameter ∆0;

(B) up to the relevant critical temperature
Tc0(∆0) = γ∆0/π, where γ = 1.7810... is the Euler
constant, it behaves as a true BCS superconductor,
i.e., the temperature dependence ∆(T) of the super-
conducting order parameter is the Mu..hlschegel
function ∆(T) = ∆BCS(∆0 , T); any property P under
investigation is characterized in this interval by the
function Ps(∆,T);

(C) at T > Tc0 it changes into the normal state,
and the relevant property is Pn(T).

At the same time, the values of ∆0 scatter for
various domains. The current carriers move freely
across domains and inside each domain acquire the
respective properties. Thus, possible proximity ef-
fects resulting in the correlation of the properties of
adjacent domains are neglected. The current carrier
density is assumed constant all over the sample, so
transient processes are excluded from consideration.

The averaging procedure considered below re-
quires (i) the effective sample size L to be much
larger than the mean size of the domains dmean and
(ii) the size of each domain di to be larger than the
relevant coherence length ξi . The first condition is
needed to regard the superconductor macroscopi-
cally homogeneous. The second one stems from the
property (B) indicated above. In the opposite case,
when di << ξi , we are led to the lattice model of
superconductor with a local atomic disor-
der [46,47]. Such a model was applied to the de-
scription of YBa2Cu3O7−x in Ref. [48]. In essence,
the domain size there is comparable to that of the
elementary cell. However, in this limiting case we
go beyond the scope of the BCS s-wave picture
based on the long-range character of the phonon-in-
duced interaction between electrons [23] (see dis-
cussion in Sec. 4). In contrast, the actually adopted
condition di > ξi is fully in line with the basic
concept.

Under these conditions, we consider the current
carrier liquid to involve normal, ρn(T), and super-
conducting, ρs(T), fractions with ρn(T) + ρs(T) = 1,
and the superconducting fraction to be multicompo-
nent. Each superconducting component corresponds
to domains with a certain ∆0 . They possess the
properties (A), (B), (C) mentioned above. The
superconducting fraction at T = 0 can be described
by a distribution function f0(∆0) in the interval
0 ≤ ∆0 ≤ ∆o

max:

ρ
s
(0) = ∫

0

∆
0

max

 f0(∆0)d∆0 = 1 − ρ
n
(0). (2)

The distribution is assumed wide, i.e., f0(∆0) is
non-zero at every point of the interval. In principle,
f0(∆0) can be random or not, but the former case
seems more frequently occurring.

At T ≠ 0 the superconducting components with
Tc0 < T, i.e., with ∆0 < ∆∗(T) = πT/γ, lose their su-
perconducting properties. The normal fraction of
the current carriers in the sample is

ρ
n
(T) = ρ

n
(0) + ∫

0

∆∗(T)

 f0(∆0)d∆0 , (3)

whereas the remaining superconducting part is

ρ
s
(T) = ∫

∆∗(T)

∆
0

max

 f0(∆0)d∆0 .
(4)

Due to the condition (B), the components, possess-
ing at T = 0 order parameters within the interval
[∆0 , ∆0 + d∆0], at T ≠ 0 acquire order parameters
within the interval [∆, ∆ + d∆], where ∆ =
= ∆BCS(∆0 , T). This conversion is expressed by an
equation

f(∆,T)d∆ = f0(∆0)d∆0 . (5)

Here f(∆,T) is a function characterizing a new dis-
tribution of components in the interval
0 < ∆ < ∆max(T) where ∆max(T) = ∆BCS(∆0

max, T).
This equation is a consequence of (i) the supposed
domain structure permanence, (ii) the constant cur-
rent carrier density, and (iii) the independence
between superconducting components. Then, the
function ρs(T) takes the form

ρ
s
(T) = ∫

0

∆max(T)

 f(∆, T)d∆ . (6)

As for any investigated property P, each compo-
nent, being superconducting or not, makes its con-
tribution to the measured (averaged) value 〈P〉:

〈P(T)〉 = P
n
(T) ρ

n
(T) + ∫

o

∆max(T)

P
s
(∆, T) f(∆, T) d∆ .  (7)
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This formula is valid (with restriction given
above) for additive quantities, such as, e.g., the
specific heat. But what about, for example, the
penetration depth λL?. Really, in the situation
when the superconducting gap changes (and in fact
goes to zero) on a very short length scale, even the
notion of the penetration depth becomes question-
able. Moreover, since each of our elementary vol-
umes includes an ensemble of domains with differ-
ent parameters λL,i’s, the matter becomes much
more entangled. Nevertheless, even in this situation
one may introduce an effective penetration depth
λL
eff and measure its T-dependence. Really, the

measured electromagnetic response of the nonhomo-
geneous superconductor is the sum of individual
domain responses from the sample surface layer.
The quantity λL

eff is a parameter that is extracted
from the essentially averaged experimental data
treated as obtained for a homogeneous BCS super-
conductor. In the specific case of cuprates the do-
main sizes di are substantially smaller than the
intrinsic penetration depths λL,i for each domain
and, therefore, the effective λL

eff. We conceive that
within such a context the calculation of λL

eff(T) as a
weighted quantity is at least qualitatively reason-
able.

The first term in Eq. (7) describes the contribu-
tion 〈P(T)〉n of the normal fraction. It is well-known
and will not be considered below. The last term
corresponds to the contribution 〈P(T)〉s of the super-
conducting electrons (holes). Since f(∆ = 0, T) =
= f0[∆0 = ∆∗(T)] ≠ 0, for each T there is a nonva-
nishing portion of superconducting components
with ∆ → 0. It is their contribution that leads to the
deviation of the temperature behavior 〈P(T)〉s from
the classical one. To make our statement even more
sound, we suggest that the low-T asymptotics (1)
holds true for each superconducting component up
to the relevant critical temperature Tc0 , i.e.,

P
s
(∆, T) = P

s
 asympt(∆0 , T) . (8)

The allowance for the exact dependences may only
strengthen our standpoint.

Note that Ps
 asympt(∆0 , T) in the framework of the

BCS scheme depends on T and on ∆0 rather than on
∆ value. Accordingly, due to Eq. (5) the contribu-
tion 〈P(T)〉s can be rewritten as follows:

〈P(T)〉
s
 = ∫

∆∗(T)

∆
0
max

 P
s
 asympt(∆0, T) f0(∆0) d∆0 .

(9)

The distribution function f0(∆0) can be expanded
into the series

f0(∆0) = 
1

∆0
max ∑ 

k=k
0

∞

Bk








∆0

∆o
max








 k

, (10)

where k0 is the order of the leading expansion term.
Substituting Eqs. (1) and (10) into Eq. (9) we
obtain

〈P(T)〉
s
 = 

ATl+m+1

∆0
max  ∑ 

k=k
0

∞

Bk




T

∆0
max





 k

∫
∆∗(T)

T

∆
0

max

T

 xm+k e−xdx.

(11)

Within an accuracy of the made approximations and
for temperatures T << ∆0

max we may extend the
upper limit of integration to infinity, so

〈P(T)〉
s
 ≈ ATl+m 



T

∆0
max




 ×

× ∑ 

k=k
0

∞

B
k




T

∆0
max





 k

 Γ 



m + k + 1, 

∆∗(T)
T




 , (12)

where Γ(a, x) is the incomplete gamma func-
tion [49]. Since ∆∗(T)/T = π/γ, the apparently
dominant exponential dependence of 〈P(T)〉s on
(− 1/T) resulting from the second argument of
Γ(a, x) disappears altogether, whatever the particu-
lar value of k0 .

One more important result of this formula is that
in the framework of the proposed model the mea-
sured properties of the superconducting components
〈P(T)〉s at low temperatures are insensible to the
particular profile of the distribution function f0(∆0)
at large ∆0 . Hence, for T << ∆0

max a few first terms
of the series (12) constitute a good approximation.
Restricting ourselves to the leading k0-term we
obtain

〈P(T)〉
s
 = AB

k
0
(∆0

max) l+m Γ 

m + k0 + 1, 

π
γ



 


T

∆0
max





M

,

(13)

with M = k0 + l + m + 1. The corrections to this
expression are of the next order in T/∆0

max. This
justifies the validity of substituting the upper limit
of the integral in Eq. (11) by infinity. At the same
time, this makes eligible the evaluating of the
〈P(T)〉s contribution in Eq. (7) using the low-T
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asymptotics Ps
 asympt(∆0, T) in the integrand instead

of the exact value Ps(∆, T). Indeed, the T-depen-
dences of various parameters in the BCS theory are
induced by the T-behavior of the gap ∆ [23], e.g.,
the exponential multiplier in Eq. (1) originates
from that in the low-T asymptotics of ∆(T). Since
∆(T → Tc) ∝ (Tc − T)1/2 in the BCS theory, the
considered parameters have at T → Tc the power-
like asymptotics as well. Thus, the use of exact
functional dependences Ps(∆, T) results not in expo-
nential but power-law dependences 〈P(T)〉s .

One should note that in each specific experiment
only a certain lowest temperature Tlim is accessible,
so that, according to the Eq. (9), only gap values
down to ∆0

lim = πTlim/γ are relevant. Hence, the
restriction imposed above on the distribution func-
tion f0(∆0) to extend down to ∆0 = 0 may be wea-
kened. Namely, f0(∆0) should be nonzero for
∆0 > ∆0

lim. In the case when the domain ensemble
possesses the minimal value ∆0

min and the lowest
accessible Tlim < γ∆0

min/π, the value ∆0
min will mani-

fest itself as the exponential factor exp (− ∆0
min/T)

in 〈P(T)〉s (cf. Ref. [23]).
Returning to Eq. (13), we see that the actual

distribution function reveals itself in the final result
only through the expansion parameters Bk

0
 and k0.

The most popular distribution functions [50],
namely, normal Gaussian

f
G

(∆0) = 
1

∆0
max 



2

π σ2




1/2

 

2Φ 



1

σ



 + 1




 −1

 ×

× exp 









− 

1

2
 







∆0 − ∆0
max

σ ∆0
max








2






 , (14)

exponential fE(∆0) = (α/∆0
max) exp (− α∆0/∆0

max),
and uniform fU(∆0) ones, where α and σ are dimen-
sionless parameters and Φ(x) is the error function
[49], have finite values at ∆0 = 0, so the leading
term (13) in the series has the k0 = 0 order of
smallness. At the same time, different distribution
functions have different values of coefficient B0 .
Now it is impossible to make a choice in favor of one
of them. The analysis of the heat capacity measure-
ments for various oxides [51,52] makes us to sug-
gest that the function f0(∆0) is mainly concentrated
in a narrow interval near ∆0 = 0, which is beneficial
for our hypothesis.

Applying the general approach to the properties
concerned, taking their actual low-T expres-
sions [23], and comparing them with Eq. (1) we
come to the following dependences for the chosen
case k0 = 0: for the specific heat

〈C
s
(T)〉 ≈ B0√2π  N(0) ∆0

max Γ 



 
7

2
 , π

γ



 


T

∆0
max





2

,

(15)
where N(0) is the electron density of states at the
Fermi level; for the penetration depth

〈δλ
L

(T)〉 ≈ B0√π/2 Γ 



 
3

2
 , π

γ



 

T

∆0
max ; (16)

for the thermal conductivity

〈κ
e
(T)〉 ≈ B0

2n
e
τtr

m
e

 ∆0
max Γ 


 3, 

π
γ




 


T

∆0
max





 2

 ,

(17)
where ne is the normal state electron density, τtr is
the transport collision time, and me is the electron
mass; for the ratio δα = αs/αn of the ultrasonic
attenuation coefficients in superconducting, αs ,
and normal, αn , states

〈δα(T)〉 ≈ 2B0 Γ 



 1, π

γ



 

T

∆0
max . (18)

These results correlate well with experimental data
(see Sec. 4). For other possible distribution func-
tions with k0 > 0 the preceding results will remain
power-law, although with larger M. In 2D-super-
conductors, such as cuprates, the value k0 = 0 corre-
sponds to linear objects, i.e., lines or edges of
normal regions, consisting of «nodes» (∆0 = 0) in
the real space. Point-like zeros would lead to
k0 = 1, so that the relevant power-law exponents
would increase by one.

From the methodological point of view it is of
interest to indicate an analogy between our ap-
proach dealing with the ∆-distribution in the real
space and the Abrikosov’s introduction [53] of the
distribution function for the order parameter ∆
anisotropic in the momentum space, with the ani-
sotropy being quite general and including both
d-wave and extended s-wave symmetries.

4. Discussion

The inhomogeneities leading to the spread of
∆ magnitudes over the sample may be of different
nature. As the possible driven forces of these struc-
tural and/or electronic domains in high-Tc oxides
one should mention (i) composition irregularities,
especially the inherent disorder in oxygen vacancy
positions, observed, e.g., for BaPb1−xBixO3 [51,54],
La2−x[Sr(Ba)]xCuO4−y [54,55] and YBa2Cu3O7−x
[26,54,56] and (ii) the phase separation of the elec-
tronic origin with impurity atoms frozen because of
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the kinetic barriers [57]. In oxides both mechanisms
apparently act together [45,56,58].

Vacancy disorder comprise point-like defects. As
was indicated in Sec. 3, an attempt to allow for
such irregularities was made in Ref. [48], where it
was shown that only for an anomalously great
dispersion W of the site order parameters ∆i it is
possible to obtain the gapless-like behavior of the
quasiparticle density of states. Considering the con-
dition W >> ∆ i

max for the maximal quantity ∆ i
max

very improbable, the cited authors, in order to
explain the experimental data, argued that
YBa2Cu3O7−x is a d-wave object.

The inhomogeneities attributed above to the se-
cond group are of typical sizes exceeding the co-
herence length, the latter being extremely small in
cuprates. The experimental evidence exists of the
minority phase domains in La2−xSrxCuO4 being as
large as several hundred Angstro..ms in size [58]. For
YBa2Cu3O7−x the x-ray and neutron diffraction
measurements supplemented by the lattice gas
Monte Carlo simulations revealed not only tetrago-
nal and ortho-I phases with the long range order but
also a rich variety of structural phases with anisot-
ropic correlation lengths of mesoscopic size [56].
The domain finiteness preserved even after anne-
aling, and kinetic barriers turned out to be large
enough to secure the logarithmic time ordering. The
crystal field neutron spectra of ErBa2Cu3O7−x [59]
and the Raman spectra of YBa2Cu3O7−x [60] which
reflect the local region properties also revealed
oxygen structure domains, indicating the phase
separation and the percolation character of conduc-
tivity and superconductivity. It was pointed out in
Ref. [61] as well that the percolative network of
intermediate size hole-induced polarons (clusters)
may lead to the difference between local and global
(crystal) symmetry.

In contrast to YBa2Cu3O7−x , the electron-doped
superconducting oxide Nd2−xCexO4−y is a random
alloy [62]. Such an atomic-scale disorder may pre-
vent the formation of structural domains, thus ma-
king our hypothesis of averaging inapplicable in
this case. On the other hand, the in-plane coherence
length in Nd2−xCexO4−y is ξab ≈ 70–80 A° , which
exceeds substantially ξab ≈ 10-15 A°  in YBa2Cu3O7−x
[62]. Also, making allowance that superconductiv-
ity of the former substance exists in the narrow
range 0.14 < x < 0.15 and y ≤ 0.01 [63], it is natu-
ral to conclude that the spread of ∆ assumed in our
model is not large enough to validate the averaging
procedure. Thus, Nd2−xCexO4−y should manifest its
intrinsic exponential low-T asymptotics which is
indeed the case [62].

At the same time, tunnel spectra of
YBa2Cu3O7−x show a large spread of ∆ magni-
tudes [64] which is favorable for our interpretation.
The growth with x of structural domains with
different nonoptimal (for a nominal stoichiometry)
∆’s and the attended widening of the distribution
function f(∆) may explain the increase of the nu-
merical factor in the observed linear-T term of
δ λL(T) for YBa2Cu3O7−x [65]. Another important
source of the ∆ scatter is the CDW emergence in
superconducting oxides [2,15,16,26,51]. All factors
listed above, taken together or separately, may be
responsible for the transition from the exponential
to the power-law behavior of the quantities under
consideration.

To summarize the comparison with experiment,
we may state that our theory accurately describes
the respective power-law exponents. At the same
time, at the quantitative level it is at least not
worse than the d-wave picture of the low-T asymp-
totics. To show this, let us compare our results for
〈δ λL〉 with those of the d-wave approach. The
choice of this quantity was made because it serves
as a sensitive probe to test different pairing mecha-
nisms. According to Ref. [4], δ λL ≈ (T ln 2)/∆0 ,
which is consistent with the experiments for
YBa2Cu3O7−x [29], and corresponds to the value
B0 ≈ 1.96 in Eq. (16). This value of B0 is repro-
duced for fE(∆0) and α ≈ 0.69, whereas B0 ≈ 0.29
for fG(∆) if σ = 1, and B0 ≡ 1 for fU(∆). These values
of α and σ seem quite realistic. The observations of
different exponents for δλL(T) in various sam-
ples [1,29–33] may reflect their dissimilar nonho-
mogeneous structures, leading to a change-over
from one f0(∆0) to another with different k0’s.

Note that there is also another approach [3],
valid both for s- and d-order parameter symmetry,
which is based on the proximity effect in the S–N
layer structures of cuprates and fits the experimen-
tal data on λL(T). A possibility of the transforma-
tion of the dependence (1) into the power-law one
with M ≤ 1 due to the proximity effect was demon-
strated in Ref. [66] for Nb/Al bilayer films.

Of course, the theory outlined above can be
applied not only to cuprate oxides but to other
materials as well. But the main requirement for
them to exhibit power-law asymptotics remains the
same, namely, the mesoscopic nonhomogeneity
characteristic size ought to exceed the coherence
length. Otherwise, the exponential behavior for
T << Tc would survive and the critical tempera-
tures would be slightly renormalized in full accor-
dance with the Anderson theorem [23].
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