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MicroRNAs are a novel class of small, ~ 18–25 nu-
cleotides long, non-coding RNAs that post-trans
criptionally negatively regulate gene expression. The 
first miRNA, lin-4, was discovered in 1993 in Cae-
norhabditis elegans [62, 95]. The lin-4 miRNA gene 
encodes a 22-nucleotide non-coding RNA that nega-
tively regulates the translation of another gene, lin-14, 
by base-pairing to complementary sites within its 
3´-untranslated region (3´-UTR) affecting the develop
ment timing. This type of regulation is an exception 
from the accepted concept of gene expression regula-
tion. However, a significant number of recent studies 
have demonstrated that miRNA-mediated regulation 
of gene expression is a wide-spread phenomena in 
eukaryotic organisms that control the fundamental 
cellular processes such as development, proliferation, 
and apoptosis [6]. Moreover, altered miRNA profiles 
have been found in a variety of cancers indicating 
their significant role in cancer development [28, 35]. 
Hundreds of miRNAs have been identified in animals, 
plants and viruses, among them > 300 miRNA genes in 
the human genome [7]. Many miRNAs are highly con-
served between variety of evolutionary distinguished 
species [6] supporting the hypothesis about important 
functions of these small molecules in organisms. In this 
review, we describe miRNA biogenesis, their functions 
in the cell, paying special attention to tumor cells.

miRNA biogenesis and modes 
of action
miRNA genes are located mainly within introns of 

protein-coding and non-coding sequences, as well 
as in intergenic regions [81, 100]. In the first case, 
expression of corresponding miRNAs may be linked 
with transcriptional regulation of their host genes and, 
hence, reveals tissue specificity due to expression of 
different sets of genes [6, 66, 67]. In the second case, 

expression of miRNAs is regulated independently 
via their own regulatory elements [100]. In addition, 
a recent study has shown that a number of mammalian 
miRNAs are derived from DNA repetitive sequences, 
including LINE-2 transposable elements [86]. miRNAs 
are transcribed by RNA polymerase II producing long 
primary-miRNAs (pri-miRNAs) [53]. Within a pri-miRNA, 
the miRNA itself forms a stem-loop hairpin structure 
(Figure), which is excised in the nucleus by the RNase III 
endonuclease Drosha associated with double-stranded 
RNA-binding domain-containing protein DGCR8 (in 
mammals) or Pasha (in Drosophila and C. elegans) 
[26, 32]. Drosha asymmetrically cleaves both strands 
of the hairpin stem-loop at sites near the base of the 
primary stem-loop resulting in release 60–70-nucleo-
tide pre-miRNA [31]. Pre-miRNA is exported to the 
cytoplasm by Ran-GTP-dependent Exportin-5 complex 
[98]. The cytoplasmic RNase III endonuclease Dicer1 
with associated proteins TRBP and PACT in mammals 
excises a RNA-hairpin duplex from pre-miRNA. The 
fully mature miRNA incorporates in a single-stranded 
form into ribonucleoprotein complex termed as the 
RNA-induced silencing complex (RISC). In mammals, 
miRNAs negatively regulate their targets by either 
binding to imperfect complementary sites within the 
3´-untranslated regions of their mRNA-targets [17], or 
by targeting specific cleavage of homologous mRNAs 
[33]. In the first case, miRNAs reduce protein levels of 
target genes by post-transcriptionally repressing target-
gene expression without affecting mRNA levels of these 
genes, whereas in the second case, miRNAs induce the 
degradation of target mRNAs by the RISC. Interestingly, 
that miR-122 positively affects the replication of hepa-
titis C virus by binding to its 5´-noncoding region [49]. 
It is unclear whether this effect is unique or represents 
an unknown yet mechanism of miRNA action.

To date, many details of miRNA-mediated gene 
expression regulation have been clarified. In contrast, 
regulation of miRNA expression is not fully understood. 
Epigenetic alterations play an important role in general 
regulation of gene expression [48], but little attention 
has been paid to miRNA genes. A recent study con-

microRNAs in normal and cancer cells: a new class 
of gene expression regulators

T.V. Bagnyukova1, 2, I.P. Pogribny2, V.F. Chekhun3, *
1Department of Biochemistry, Precarpathian National University, Ivano-Frankivsk 76025, Ukraine

2Division of Biochemical Toxicology, National Center for Toxicological Research,  Jefferson, AR 72079, USA
3Department of Mechanisms of Anticancer Therapy, R.E. Kavetsky Institute of Experimental Pathology, 

Oncology and Radiobiology, Kyiv 03022, Ukraine

MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at posttranscriptional level. They 
are involved in cellular development, differentiation, proliferation and apoptosis and play a significant role in cancer. This review 
describes miRNA biogenesis, their functions in normal cells, and alterations of miRNA sets in cancer and roles of antitumorigenic 
and oncogenic miRNAs in cancer development.
Key Words: microRNA, cancer, oncogene, tumor suppressor.

Received: November 1, 2006. 
*Correspondence:	 Fax: +380 44 2581656 
	 E-mail: chekhun@onconet.kiev.ua 
Abbreviation used: miRNAs — microRNAs.

Exp Oncol 2006
28, 4, 263–269



264	 Experimental Oncology 28, 263–269, 2006 (December)

ducted by Saito et al. [82] showed clearly the role of 
epigenetic mechanisms in expression of mir-127 gene, 
which is located within a CpG island on chromosome 
14q32.31. Additionally, the inhibition of histone deacet-
ylase and the resulting rapid alterations in miRNA 
levels in breast cancer cells [83] further indicate the 
importance of epigenetic mechanisms in regulation of 
miRNA genes expression. On the other hand, miRNAs 
may be involved in regulation of chromatin structure 
(Figure). In support of this hypothesis, a recent pre-
diction of miRNA target genes in humans contained 
various histone-modifying proteins, including histone 
methyltransferases, methyl CpG-binding proteins, and 
histone deacetylases [64]. Recent finding by Gross-
hans et al. [34] that chromatin-remodeling factor is one 
of let-7 predicted target genes in C. elegans provided 
extra evidence to this hypothesis. In addition, miRNAs 
can affect chromatin structure indirectly by regulating 
proteins that involved in the maintenance of chromatin 
organization. For instance, miR-106a involved in the 
histone H3 lysine 9 methylation and preservation of 
heterochromatin via regulation of retinoblastoma-1 
protein [30]. In any case, the area of miRNAs/epigene
tic changes relationships remains unexplored.

miRNAs as regulators of different 
cellular processes
miRNA genes represent only a small part (~0.5–

3%) of the genome [7, 17], but they regulate approxi-

mately 20 to 30% of all human genes and there is an 
average 200 predicted targets per miRNA [54, 56, 
63, 64]. Among these putative target-genes, there is 
a large group of genes involved in development, cell 
differentiation, apoptosis, transcriptional regulation, 
and other physiological processes [4–6, 16, 50, 51, 56, 
70, 78, 80]. Possibly, not all predicted mRNAs are real 
targets of corresponding miRNAs. However, recent 
report about altered expression of hundreds of mRNAs 
in response to in vivo inhibition of miR-122 supports 
hypothesis of multiple targets for one miRNA [58]. 

To date, only a few miRNA targets have been identi-
fied and confirmed experimentally thus clarifying the 
mechanisms of their action. For example, the let-7 
family controls the timing of developmental processes 
in C. elegans [1,17], and the involvement of miRNAs 
in developmental processes has also been shown in 
Drosophila [9]. Several studied miRNAs are involved 
in regulation of cell differentiation; thus, miR-31 in 
Drosophila [61] and miR-196a in mice [69] control axial 
patterning of the embryo. Brain-specific miR-124a and 
miR-9 affect neural differentiation in mouse embryo
nic stem cells [57]. A complex system of interacting 
miRNAs and transcription factors have been found 
to regulate cell fate determination in C. elegans [19, 
20, 47, 99] and Drosophila [65]. In these models, the 
miRNAs and protein factors formed reciprocal negative 
feedback loops allowing the existence of only one of 
two stable states; the switch is gained by mutual re-

Figure. Biogenesis and cellular functions of miRNAs. Polymerase II transcribes miRNA gene forming long hairpin-bearing primary 
miRNA (pri-miRNA). The hairpin structure is excised by RNase III endonuclease Drosha, and resulting pre-miRNA is transported 
into cytoplasm by Exportin-5 in a RAN-GTP dependent way. The cytoplasmic RNase III endonuclease Dicer excises the top loop of 
the miRNA giving RNA-RNA duplex. After unwinding, one strand of the duplex is degraded, and another strand is mature miRNA. It 
can induce mRNA cleavage, if complementarity to 3´-untranslated regions of targets is perfect, translational repression, if comple-
mentarity is imperfect, and transcriptional repression due to interactions with chromatin
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pression of miRNA expression through corresponding 
transcription factors.

A very intriguing problem is miRNA patterns in stem 
cells and their changes during differentiation. Generally, 
stem cells possess a specific set of miRNAs which is 
replaced during development [42, 88]. A key charac-
teristic of stem cells is their capacity to divide for long 
periods. In this respect, stem cells are similar to cancer 
cells, which are also capable of escaping cell cycle ar-
rest. Therefore, there is growing interest to elucidate 
the mechanisms responsible for indicated properties. 
Results of recent experiments suggest miRNA involve-
ment in stem cell self-renewal [22, 84]. Drosophila with 
a null mutation of Dicer-1, which is required for miRNA 
processing, reduced by 80% germline stem cell division 
[37]. It is known that the transition from G1 to S phases 
of the cell cycle is negatively regulated by Dacapo (Dap), 
an inhibitor of cyclin-dependent kinase. In the mutant 
Drosophila, Dap was over-expressed, possibly due to 
absence of Dap-down-regulating miRNAs. Therefore, 
miRNAs are required for germline stem cells to transit 
the G1/S checkpoint by repressing the G1/S inhibitor 
Dap. These results allow speculating that miRNAs could 
have a similar role in cancer cells [37].

In addition to important roles of miRNAs in regulation 
of various cellular physiological pathways mentioned 
above, a recent observation of targeting repetitive se-
quences, such as Alu elements, by miRNAs indicates 
a crucial role of miRNAs in defense of the mammalian 
genome via silencing of foreign DNA sequences pre-
venting and maintaining stability of the genome [87]. 

miRNAs and cancer
Taking into account an important role of miRNAs in 

regulation of the key processes of cell life and death, 
the involvement of microRNAome deregulation in di
sease development, including cancer, can be predicted. 
Indeed, recent studies showed a link between altered 
miRNA patterns and cancer [10,12, 25, 28, 31, 44]. Al-
tered miRNA patterns in tumor versus non-tumor cells 
have been found in chronic lymphocytic leukemia [13], 
B-cell lymphomas [27, 39, 55,], Burkitt’s lymphoma 
[73], breast cancer [45], lung cancer [46, 90, 97], 
colorectal cancer [74], glioblastoma [18], follicular 
thyroid carcinoma [94], cholangiocarcinoma [72], and 
hepatocellular carcinoma [75]. Additionally, detailed 
studies reveal that more than half of miRNA genes are 
located at sites in the human genome associated with 
amplification, deletion or translocation in cancer, sug-
gesting direct relationship between miRNA abnormali-
ties and cancer pathogenesis [11, 14, 31, 60, 101].

Generally, there are two approaches linking 
miRNAome deregulation to cancer in the context of 
diagnosis and prognosis: (i) comparison of global 
miRNA profiles in cancer and non-cancer tissues; 
and, (ii) search for individual miRNAs that may have 
diagnostic and prognostic significance in certain types 
of cancer. For example, chronic lymphocytic leukemia 
is accompanied by loss of miR-15a and miR-16-1 lo-
cated in frequently deleted chromosomal region [13]; 

in lung cancer, the let-7 miRNA is down-regulated, and 
its reduced expression correlates with poor survival 
of patients [90]; miR-155 is over-expressed in B-cell 
lymphomas [27, 55].

miRNAs involved in cancer can have either pro- or 
anti-tumorigenic action [52]. Anti-tumorigenic, or 
tumor-suppressing miRNAs act as inhibitors of cell 
proliferation and stimulators of apoptosis. Contrarily, 
group of miRNAs acting in the opposite direction by 
stimulating cell proliferation and inhibiting of cell death 
is termed “oncogenic miRNAs” [35].

Table summarizes available information regarding 
cancer-related miRNAs and their targets. Tumor-sup-
pressor miRNAs are frequently down-regulated or 
deleted in cancer and, respectively, their targets are 
over-expressed. These include transcription factors 
and other regulatory proteins stimulating cell growth 
and proliferation. Oncogene RAS is negatively regulated 
by let-7 miRNA, which is down-regulated in human 
lung cancer [46]. Two members of BCL family, BCL2 
and BCL6, are targets of miR-15a/miR16-1 and miR-
127, respectively. Both miRNAs are often deleted or 
down-regulated in leukemia and lymphomas [13, 27] 
and increased level of 2 and BCL6 proteins suppresses 
apoptosis and promotes cell proliferation [24]. miR-143 
regulates extracellular signal-regulated kinase 5 (ERK5), 
a MAP kinase that is activated by growth factors and in-
volved in regulation of cell proliferation [76].
Table. Selected tumor suppressor and oncogene miRNAs

miRNAs Targets Type of cancer References
Tumor suppressor miRNAs (downregulated or deleted in cancer)
miR-15a BCL2 B-cell chronic lymphocytic 8, 11, 13, 15, 

24, 27
miR-16-1 BCL2 Adenomas, leukemia, lymphomas, 

pituitary
let-7 RAS lung cancer 2, 46, 90, 97
miR-143 ERK5 breast, colon and lung cancer 3, 45, 74, 97
miR-145 ?
miR-127 BCL6 Bladder, colon and prostate cancer 82
Oncogene miRNAs (upregulated in cancer)
miR-155 ? B-cell lymphomas, Burkitt’s lymphoma, 

breast, colon, lung, thyroid cancer
27, 45, 55, 
73, 91, 92, 97

The miR-17-
92 cluster

E2F1
PTEN
TGFBR2

lymphomas, breast, colon, lung, 
pancreas and prostate cancer

38, 39, 92

miR-21 PTEN breast, colon, glioblastoma, liver, lung, 
pancreas, prostate, stomach cancer

18, 5, 59, 
72, 92, 97

miR-372 LATS2 testicular germ cell cancer 93
miR-373 LATS2
miR-106a RB1 colon, liver, lung, pancreas, pros-

tate cancer
59, 92, 97

miR-9 CDH1 breast cancer 45
Both tumor suppressor and oncogene miRNAs
The miR-17-92 cluster:
miR-17-5p E2F1 77
miR-20a E2F1 77
miR-17-5p AIB1 breast cancer 41

miR-130a MAFB 29

Over-expression of oncogenic miRNAs negatively 
regulates tumor-suppressor genes including retino-
blastoma 1 (RB1; a regulator of the cell cycle), large 
tumor suppressor homolog 2 (LATS2; an inhibitor 
of cyclin-dependent kinase 2), E-cadherin (CDH1; 
involved in cell-cell adhesion), transforming growth 
factor-β receptor II (TGFBR2). PTEN (phosphatase 
and tensin homolog), a target of two miRNAs, miR-21 
and the miR-17-92 cluster, encodes a phosphatase 
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that inhibits PI-3 kinase pathway; the last promotes 
cell survival/growth [72]. 

Several target genes have been found for the miR-
17-92 cluster that includes seven miRNAs: miRs-17-5p, 
-17-3p, -18, -19a, -19b, -20, and -92. The miR-17-92 
cluster is located on human chromosome 13q31, a re-
gion that is easily amplified in several types of cancer 
including lymphomas [89]. A remarkable feature of this 
cluster is its capacity to function as both oncogene and 
tumor suppressor with the result depending on the real 
situation in the cell. Using a mouse model of c-Myc-in-
duced B-cell lymphoma, He et al. [39] found that en-
forced expression of the miR-17-92 cluster dramatically 
accelerates disease development with a simultaneous 
decrease in apoptosis, indicating that these miRNAs 
act primarily by suppressing cell death.

O’Donnell et al. [77] showed that c-Myc trans
criptionally regulated the miR-17-92 expression. In 
addition, two miRNAs in this cluster, miR-17-5p and 
miR-20, regulated the transcription factor E2F1, func-
tioning both as oncogene and tumor suppressor, at 
posttranscriptional level. E2F1 and c-Myc are known to 
induce each other’s expression. In the absence of other 
controls, this can set up a positive feedback loop lead-
ing to over-expression of both genes with destructive 
consequences for normal cell-cycle regulation. At high 
level of expression, E2F1 favors apoptosis induction 
through the ARF-p53 pathway [35]. Therefore, damp-
ening of translation efficiency by the miR-17-92 cluster 
might shift the E2F1 action to enhanced proliferation. 
Generally, the loop c-Myc/miR-17-5p-miR-20a/E2F1 
ensures precise control by c-Myc of target gene expres-
sion with simultaneous activation of their transcription 
and restriction of their translation. Therefore, this cluster 
reveals, on one hand, oncogenic action stimulating cell 
proliferation and, on the other hand, suppressor activity 
via negative regulatory feed-back loop c-Myc/miR-
17-5p-miR-20a/E2F1 [50]. Recently one more tumor 
suppressor action of this cluster has been found: in 
breast cancer, miR-17-5p repressed translation of the 
oncogene AIB1 (“amplified in breast cancer 1”) [41].

Another miRNA, miR-130a, also exhibits both tumor 
suppressor and oncogene action. This miRNA targets 
the transcription factor MAFB that plays a dual role in 
carcinogenesis acting as both oncogene and tumor 
suppressor [79].

Despite the fact of the established link between 
miRNAs deregulation and cancer, very little is known 
regarding miRNA changes during early stages of 
carcinogenesis. He et al. [40] showed that in non-tu-
mor tissues adjacent to papillary thyroid carcinoma, 
miR-221, highly expressed in tumor cells, was also 
up-regulated — probably reflecting an early event in 
pathogenesis. In hepatocellular carcinomas, miR-23 
and miR-21 expression was enhanced in preneo-
plastic nodules compared to normal liver, and further 
increased in tumors [59]. First signs of miRNA altera-
tions during carcinogenesis require extensive studies 
to determine the key miRNAs that could reflect early 
events in cancer development.

Conclusions and perspectives
Discovered recently, miRNAs have been unexpected

ly recognized as new global regulators of gene 
expression that control the key processes in the 
cell — growth, development, apoptosis. miRNAs are 
able to simultaneously regulate many mRNAs forming 
regulatory network that can act in a flexible manner for 
precise and quick effects on gene expression.

A prominent role of oncogene and tumor-suppres-
sor miRNAs in cancer renders them as a useful tool for 
diagnostic and prognostic purposes [68, 97]. miRNA 
profiles are very informative, reflecting the develop-
mental progress and differentiation state of tumors; 
moreover, they better than mRNA profiles distinguish 
cancer and non-cancer tissues [25, 68] and in some 
cases are changed already at early stages of cancer 
development prior clinical signatures of disease [11, 
75]. Altered expression of specific miRNAs has been 
found in a diversity of cancers giving a promising per-
spective to use such miRNAs as targets for anticancer 
therapy. One approach may be treatment with precur-
sors of tumor suppressor miRNAs that are often down-
regulated in cancer. For example, the let-7 miRNA may 
be useful in treatment of lung cancer [85]; as demon-
strated on human cancer cells, transfect ion with its 
precursor suppressed proliferation and simultaneously 
decreased RAS and c-MYC proteins [2]. In case of 
oncogene miRNAs, an effective approach might be 
using antisense olidonucleotides to inhibit respective 
miRNAs due to competition with mRNAs for binding 
miRNAs [23, 36]. Antisense therapy has been success-
fully tested in vitro [43, 71], and chemically modified 
anti-miRNAs termed ‘antagomirs’ could inhibit specific 
miRNAs and subsequently upregulated their targets 
in vivo [58]. However, before wide practical use, a 
number of questions should be clarified. They include 
miRNA roles in cellular pathways and mechanisms of 
regulation of their expression in general and search 
and confirmation critical miRNAs involved in the de-
velopment of given type of cancer in particular. Finally, 
a fully unexplored area is effects of anticancer therapy 
on the miRNA expression. Some data indicate that 
such treatment can alter miRNA profiles in cancer cells 
and result in resistance to anticancer drugs [21, 72]. 
Therefore, both fundamental and clinic-related studies 
are needed to better understand roles of miRNAs in 
normal and cancer cells and modulate cellular growth, 
proliferation and metabolism using miRNAs.
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МикроРНК в нормальных и опухолевых клетках: 
новый класс регуляторов экспрессии генов

Микро РНК (�������� �� ���� ������ ������������� ����� ������������ ����������� ����������� ������ ��� ������������������miRNAs�� �� ���� ������ ������������� ����� ������������ ����������� ����������� ������ ��� ������������������) — это малые некодирующие РНК, негативно регулирующие экспрессию генов на посттранскрипцион-
ном уровне и принимающие участие в развитии, дифференцировке, пролиферации и апоптозе клеток, а также выполняющие 
важную роль в опухолевом процессе. В обзоре обсужден биогенез �������� ������� ����� ����������  ������������ ����������� miRNA��� ������� ����� ����������  ������������ ����������� , функции этих молекул в нормальных клетках, из-
менения набора ���������  ����������� �����������  ��� ���������������������  ��������������������   ���������� �����������miRNA����  ����������� �����������  ��� ���������������������  ��������������������   ���������� ����������� в опухолевых клетках и роль противоопухолевых и онкогенных ����������  ���������� �����������miRNAs����  ���������� ����������� в опухолевой прогрессии.
Ключевые слова: микроРНК, рак, онкоген, опухолевый супрессор.
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