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The algorithm for determination of possible second order twinning laws—mirror planes
and twofold axes is presented. The method is applicable for center-symmetrical ferroelas-
tics and/or twins with non-zero obliquity. The proposed algorithm allows to determine
twinning elements using only known crystal lattice parameters without additional analysis
of correlation of para- and ferroelastic phase point groups or using other theoretical
methods of twin structure forecast.

IIpexcraBieH aaropuTMm oIlpeaeieHus BO3MOMKHBIX 3aKOHOB ABOMHMKOBAHUS IIJIOCKOCTEH
3ePKAaJbHOr0 OTPAMKEeHMs WM oceil 2-ro mopsimka. JaHHBIA MeTOx MOKeT ObITh MPUMEHEH K
IEHTPOCUMMETPUYHLEIM CErHeTOdJaCTUKAM W/WJIN ABOMHHUKAM C HEHYJIEeBBIM OTKJIOHEHWEM.
IIpemmoxeHHBINI AJTOPUTM IIO3BOJSET HAWTH 2JEMEHTHI ABOMHMKOBAHWS, MCIIOJb3Yys TOJBKO
M3BECTHBIE IIapaMeTPhl KPUCTAJINYECKON pelIeTKr 0e3 JOIIOJHMUTEeILHOI'0 AHAAN3a COOTHO-
IIeHUs TOYEUHBIX I'PYIII IIapa- M CerHEeTOdJACTUUYHBIX (Pas MM APYIHX TEOPETHUYECKUX METO-
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OB OIpEJIeJIeHUs [IapaMeTPOB ABOMHMKOBOUN CTPYKTYPHI.

Physical and chemical properties of crys-
talline materials are directly related to
their global crystal structure as well as to
their microstructure. Specific features of
some crystalline materials causes the subdi-
vision thereof into ferroelastic, ferroelectric
domains known as twins and hence, a fur-
ther type of real structure appears referred
to as domain structure. The domains are
crystalline areas consisting of the same ma-
terial joined together by certain symmetry
element, which does not belong to the space
group symmetry of a single domain of the
sample. The different domains are equiva-
lent in energy. The ferroelastic structure
inherent in domains complicates essentially
the crystal structure investigation and the
determination of their physical and chemi-
cal properties, especially the anisotropies.
The behavior of domains may strongly in-
fluence the material properties, for exam-
ple, the configuration of the magnetic do-
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main structure in solid solutions of rare
earth manganites [1]. The interaction of de-
fects in oxide sublattice with domain
boundaries determines a series of physical
properties in materials with perovskite-like
structure, which have found numerous tech-
nical applications in last years. Among
those, there is a large group of compounds
having unique dielectrie, ferroelectric prop-
erties [2—5], as well as ionic [6, 7] and high-
temperature conductivity [8].

Twinning has long been considered to be
one of the most serious potential hindrances
to structure determination. The twinning
can significantly complicate the structure
solution/refinement process. Numerous
definitions, approaches and computer pro-
grams specifically intended for the data
processing and real structure determination
of twinned crystals were developed [9-11].
These methods can be helpful only when a
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crystallographer has correctly identified the
twinning laws.

An informative and often used investiga-
tion method of domain structure is electron
microscopy, which supplies high resolution
on submicron as well as submillimeter scale
[12—-15]. Furthermore, possibility of parallel
use of selective electron diffraction in dif-
ferent areas of sample makes it possible to
find orientation of the selected zones. At
the same time, for interpretation of ob-
tained images, a complicated simulation is
necessary [16] when different symmetry
models of connection (twinning elements)
between investigated orientation states
should be postulated. This, in part, de-
mands complicated and time-consuming
analysis of possible configurations of fer-
roelastic domain structure using theoretical
group analysis [17], method of spontaneous
strain tensors (Sapriel’s method) [18] or
theory of mechanical twinning [19, 20]. Ne-
glecting of these theoretical methods often
results in incorrect interpretation.

The purpose of this work is to provide
the fundamental concepts and algorithm for
determination of possible second order twin-
ning laws — mirror planes and twofold
axes. The method presented is applicable for
center-symmetrical ferroelastics and/or so-
called twins with non-zero obliquity.

Fundamental concepts. Domains can
originate in three different ways: 1) when
the nuclei are collided during crystal
growth and a new domain is added to the
face of an already existing domain, but has
an orientation different from the first do-
main; 2) when a pre-existent crystal under-
goes a polymorphic transformation due to a
temperature change; 3) can be induced by
some applied external (mechanical, electri-
cal) fields.

In literature [21], there are several defi-
nitions of twinning, which depend on de-
limitation conception. One of the oldest
classifications is the “ecrystallographic-min-
eralogical™, which was summarized in [22].
Based wupon their diffraction patterns,
twinned crystals may be grouped into four
general categories: merohedral, reticular
merohedral, pseudo-merohedral and reticu-
lar pseudo-merohedral. A coarser classifica-
tion was introduced in [23], where zero-
obliquity twins (Twin Lattice Symmetry:
TLS) and non-zero obliquity twins (Twin
Lattice Quasi Symmetry: TLQS) are distin-
guished. This classification puts more em-
phasis on the role of a specific parameter,
the twin obliquity w, which is responsible
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for the splitting of the reflections in the
diffraction pattern of a twinned sample. A
more detailed description of the "erystal-
lographic-mineralogical™ classification is
presented, for example, at [21, 24].

Another ("physical”) definition of do-
mains is based on phenomenological concept
of transformation twins. In 1969, K.Aizu
[25] has introduced a special definition "fer-
roics” into solid state physics. According to
his definition, ferroics are a class of crys-
talline solids in which two or more orienta-
tion states (domains) can appear in the ab-
sence of external magnetic, electric or me-
chanical fields and switch from one to
another under magnetic (ferromagnetics),
electric (ferroelectrics) fields and mechani-
cal stress (ferroelastics) or their combina-
tion. For characterization of ferroics, Aizu
introduced also the concept of "species”,
which includes two point groups. The first
is a certain nonferroic point group G, which
was referred to as the "prototype”. The sec-
ond is a point group F of ferroic phase
being considered, which can be considered
as a slight modification of the "prototype”
phase. The symmetry of ferromagnetic do-
mains is characterized by specific magnetic
groups, which are combination (integration)
of space groups with specific magnetic sym-
metry element — time-inversion, and it will
be not further considered in this work.

It was shown [17] that the comparison of
point groups (the symmetry elements
thereof) of the G prototype phase and F
ferroic one allows to determine the number
of possible domains (domain states), symme-
try elements, which connect these states,
and the orientation of some (not all) possi-
ble domain walls. If F is the point group of
the D, orientation state and g; is the opera-
tion transforming from the D; state to the
D; state (including D;), then the set of all
operations connecting D; and Dj is g;'F.
This means that each state D has its corre-
sponding left coset H; of the subgroup F in
which G can be expressed [17]:

G=H;+Hy+..+H, (1)

where H;=g;F and i=1...q. Here, the
number g of possible orientation states in
the ferroic phase is equal to the order of the
G point group in the prototype phase di-
vided by the order of the F subgroup in the
ferroic phase: ¢ = ng/np.

Strain-free domain walls can exist be-
tween two orientation states only when cor-
responding “connection” elements gjeH;
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Fig. 1. Conjugated systems of twinning and twinning elements: K; is the composition plane; p,, the
shear direction; K,, the second circular cross-section; p,, the axis of the principal zone; N, the
displacement plane (the plane of the Figure); s, the displacement value.

meet the condition of orientation state per-
mutation. This means that if g; applied to
D, yields D;, then the same operation g;
upon D; should yield D, that indicates the
equivalency of D; and D; orientation states.
Thus, the ambivalence condition [17] should
be met to ensure that the condition of ori-
entation states permutation is also fulfilled:

g e F. (2)

If the domains are connected with a mir-
ror plane, this plane may be a composition
plane W between corresponding domains.
This is obvious from the fact that the re-
peated mirror reflection with respect to the
same m plane results in the identical trans-
formation E of an object in itself

mxm=E. 3)

The 214 order rotation also meets the am-
bivalence condition:

2x2=E. “)

Hence, if there is a twofold axis among
the elements connecting D; and D; orienta-
tion states, the plane containing this axis
may be a domain wall between these orien-
tation states (S-wall). In contrast to W-walls,
the orientation of this wall may have non-
integral Miller indices. In center-symmetri-
cal ferroics, the left coset H; can contain
both the mirror plane and twofold axis
which is perpendicular (in the prototype
phase) to this plane:
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if meH; thenm x C = 2 and 2eH}, because CeF(5)

if 2€Hj then2 x C = m and meH]., because C<F(:6)

It should be noted that center-symmetri-
cal ferroics can be only ferroelastics. Fer-
roelastic domains can be switched from one
domain state to another under mechanical
stress of certain value and direction. The
influence of a specifically oriented external
mechanical stress can cause the shear of
particular regions of the monodomain fer-
roelastic crystal and transform it into a bi-
domain sample. The relative position of two
twin states can be formally described as a
result of the uniform deformation through
the simple shear, i.e., appearing of new fer-
roelastic (orientation) domain can be consid-
ered as the mechanical twinning. At the
same time, twinning elements are point
group symmetry elements lost at phase
transition. Those are mirror planes and two-
fold axes of prototype phase. According to
the "crystallographic-mineralogical™ classi-
fication, the origination of such two do-
mains is referred to as pseudo-merohedral
twinning and characterized by a specific pa-
rameter, the twin obliquity o [22].

The homogeneous strain is completely de-
fined by an ellipsoid into which an imagi-
nary sphere within the body is transformed
(Fig. 1a). The K, twinning plane is a do-
main wall between a pair of orientation do-
mains, with the first domain initially exist-
ing and the second one being formed
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through the twin shear from a certain re-
gion of the first domain. The second circu-
lar cross-section K5 is a plane where all
vectors do not change their lengths, how-
ever, being rotated at the 2w angle. The
plane coincident with the Figure is called
the displacement plane N. The trace of the
intersection of the 204 circular cross-section
K45 and the displacement plane N is denoted
iy and referred to as the principal zone axis
[19, 20].

Fig. 1b shows that the same ellipsoid can
be derived through the twin shear of cell
sites at the same distance s in the direction
Uy. In this case, the composition (twinning)
plane separating the distorted part (semi-el-
lipse) and non-distorted part of the crystal
(semi-sphere) is the K, plane. In this new
case, the second circular cross-section is Ky,
and p; is the axis of the principal zone.
Hence, if there is a twin shear with ele-
ments Ky, Kq, ny and py in the crystal, then
another twin system with twin shear ele-
ments R'l*, R'Z*, “1* and pz* may exist in
the central-symmetric crystal:

K} = Ky, K= Ky uj=pp and pj = py. (0

In the first case, the twin and the non-
distorted part are separated by plane K, in
the second case, by I{l = K4. The plane R'l
is almost perpendicular to plane K; for a
small value s of the crystallographic shear.
The twinning elements can be associated
with planes and directions of the crystal cell
taking into account the discrete atomic
structure of the crystal. In the first case, if
K, and py have integer Miller indices (HKL)
and [UVW], then a new lattice formed by
the twinning shear is connected with the
non-displaced lattice by the mirror reflec-
tion relatively to plane K. In this case, the
twin is called reflection twin. Then, accord-
ing to (7), for another twin system, p, * and
K," have integer Miller indices, and K;*
and Hz* are irrational. In this case, the new
lattice is connected with the lattice in the
non-displaced region through the 180° rota-
tion around p;*=[UVW]. This twin is
called rotation twin, because twin states are
connected by twofold axis. Such two twin
systems are called corresponding twins with
the same twin obliquity w for both reflec-
tion and rotation twins [19].

The domains formed through the twin
shear from a certain region of the first do-
main D; in both cases (reflection and rota-
tion twins) belong to the same state D;, be-
cause they correspond to the same left coset

Functional materials, 14, 4, 2007

1
1
1
I X
—_————1 -

Ds

- \ iap / :
/
D

Cy a

o

1
I
I
I i
—_————i

4

RV S O

Fig. 2. The spatial orientation of domain
(twinned) orientation states of a
Lag 95Srg 95Gag gMdg 105 go5 crystal in the or-
thorhombic phase and corresponding defor-
mations of the perovskite cell.

H;, which contains the mirror plane
(Pj]K]L]) as well as the twofold axis [U;v;w;l
(see eq.(5) and (6)).

The Miller indices for crystallographic
planes of Dy and D; orientation states are
connected by Mugge transformation [26]:

hjy=2H{U; hy;+ V- ky+ Wil - (8)
—hyU; - H;+V;- K; + W; - Ly,
kyy=2KU; - hy; +V; -k + W; - 1y -
—kli(Uj Hj+V]- Kj+Wj~Lj),
Li=2LU; - hy+V;- -k +W;- 1) -
-4 U;-H;+ VyK;+ W; - Ly,

where (h;;k;;l;;) are Miller indices of the
planes in orientation state D; and (hﬁkﬁlﬁ),
those in orientation state D;, which appears
after a shear. In the case when states D;
and Dj are connected by mirror plane,
(H]Kij) are the indices of composition
plane Ky, [UjVjo] are indices of the axis of
the principal zone py;. When the states are
connected by twofold axis, (HKL) are in-
dices of K5", and [U VW] are 1ndlces of the
shear direction py".

Determination algorithm for the twinning
elements. The proposed algorithm of twin-
ning elements, determination is based on
Aizus concept that considers the ferroelastic
phase transition as a slight distortion of
paraelastic (the prototype) unit cell with
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symmetry point group G. The resulting fer-
roelastic phase cell has point group F,
which is subgroup of G. Furthermore, po-
tential above-mentioned distortion can be
realized in ¢ ways, i.e., ¢ different orienta-
tion states can appear within the ferroelas-
tic phase, where ¢ = ng/np [17]. The lattice
sites (ions, atoms) which formed a crystal-
lographic plane in paraelastic phase, in fer-
roelastic phase will also form a crystal-
lographic plane with another space position
depending on the mode of distortion, i.e.
realized domain state. The planes in differ-
ent states will be indexed differently, due
to different orientations of the lattice basis.
Nevertheless, in different states, the space
disorientation of neogenic planes relatively
to the positions of corresponding planes in
paraelastic phase is very small due to minor
displacements which is typical of ferroelas-
tic phase transitions.

If we consider an arbitrary pair of crys-
tallographic planes in paraelastic phase,
then corresponding plane pairs can be found
in all possible domain states of ferroelastic
phase. Now, if we take into account that
their space positions are close to those in
paraelastic phase, then we can assert that
the angles between above-mentioned pair of
planes in all domain states of ferroelastic
phase are close to that in paraelastic phase.
As a rule, value of angle changes does not
exceed few degrees for hard ferroelastics
and is smaller than one degree for soft
ones.

Let us consider as an example the ferro-
elastic transition m3mFmmm (q = 48/8 =
6), which is typical of most perovskite-like
ferroelastics, including, for example, rare
earth gallates, aluminates, manganites, etc.
The transformation can be considered as
stretching of ideal perovskite cubic lattice
along 6 different face diagonals of cube.
Space orientations of these possible domain
states in orthorhombic phase are shown in
Fig. 2. In Fig. 3, two crystallographic
planes (100)p and (110), are marked in
perovskite paraelastic lat{)ice. At the phase
transition to the D; state of ferroelastic
phase, these planes become transformed
into (101), and (100), planes, and in the
case of D, state, into (101), and (001),,
respectively (Fig. 3). As is seen, the Miller
indices of one plane (100), are the same in
both orientation states since that is just the
plane being the boundary between the both
states, while the second plane (110)p is
transformed into crystallographic planes
with different indices, (100), or (001), in
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Fig. 3. Angle transformation between two
crystallographic planes at ferroelastic phase
transition. Two planes (100)p and (110) ,
marked in paraelastic cubic phase, are trans-
formed into (101), and (100), of D, state and
(101), and (001), of D, state in orthorhombic
ferroelastic phase of LSGM crystal.

setting of orthorhombic phase. For example,
in LSGMO5 crystal the angle between the
marked planes forms o = 45° in paraelastic
cubic phase, while it will be equal to a.; = 44.798°
in domain state D; and o, = 45.202° in D,
state after phase transformation to orthor-
hombic structure. Hence, a difference be-
tween oy and as is equal to 0.404° at room
temperature.

In the proposed algorithm, we use an in-
dexing method of laue diffraction patterns,
for example, see [27]. The indexing algo-
rithm is based on determination of
Cartesian coordinates for N spots in a Laue
pattern (optimal value N = 6) and compari-
son of the angular distances separating the
selected spots (a§*P...a$*P) calculated from
the pattern with those calculated theoreti-
cally (affeor...atheory starting from the
known lattice parameters. For N =6, m =
15 pairs of crystallographic planes are ob-
tained. In the computer program, the proc-
ess of spots indexing is realized by way of
search of sets of angles ((xﬁheor...oc%wo’), for
which the angular distances affeor fulfill
next equation:

af*P — g < atheor < o¢*P + g, 9)
where ¢ is a small fixed angle (tolerance).
Parameter ¢ is preset by the user and does
not exceed 1-8 degrees. As a result, a set of

Miller indices for N crystallographic planes
(hlklll)theor “.(hNkNlN)theOr is determined.

Functional materials, 14, 4, 2007
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The angles between these plane pairs are in
the angle ranges meeting the condition (9).
If the input value ¢ is relatively large, then
more than one ((xtlheor...a%wo’) set can be ob-

tained, for which condition (9) is fulfilled.

In the proposed algorithm, we have modi-
fied abovementioned method for Laue pat-
tern indexing. The user inputs Miller indi-
ces for N arbitrary crystallographic planes
(hlklll)ref ...(hNkNlN)ref and then the pro-
gram calculates m angular distances
((xief...a,rgf) between all pairs of planes using
known lattice parameters. The calculated
set of angular distances (ocief...(xfnef) is ac-

cepted as (af*P...a%®) and then the standard

process of indexing is continued. For exam-
ple, if we input N planes (hlklll)’"ef
...(hNkNlN)’"ef, including planes (101), and
(100), (we conditionally accept state D; as
the reference domain state D; ), then
in the set of calculated angles (ocreff .orel

we obtain o/ = 44.798°. At the end of in-

dexing procedure, the same set (hk ll)ref

(hNthN)ref with planes (101)O and (100),
w111 be obtained. Besides, since a tolerance
€ was input, for example, € = 0.5°, then one
more set (hlklll)refz ...(hNkNlN)’"ef2 inelud-
ing planes (101), and (001), will be ob-
tained. That is, apart from the set
(hik 1)) ...(hyEpnly)"e input by the user,
that corresponds to state D;, we obtain sec-
ond set of planes (second solution), which
corresponds to state D,.

In this example, the angle between the
planes is 45° in paraelastic cubic phase.
But, if we input some planes (Z1k4! )ref
(hykply)ef, for which the angles are
smaller than 45°, then the differences be-
tween angles for planes of different ferroe-
lastic domain states are also less than the
difference oy—ogy = 0.404°. In essence, for
an LSGM crystal, 6 solutions were already
obtained at tolerance ¢ = 0.2° and conform-
able selection of input set (hlklll)’"ef
...(hNkNlN)’"ef. These 6 different sets of
plane indices correspond to 6 different
states of ferroelastic orthorhombic phase in
LSGM crystal (Fig. 2).

Due to small spontaneous deformation of
paraelastic lattice, which is typical for fer-
roelastics, we obtain ¢ sets of plane indices

(hikqly)e! (BN, (hqkqly)rer?
o (hpkpl)e2 (hqkql )'"efq . (hNkNlN)'"efq
when performing the proposed "indexing”

procedure. These g solutions correspond to ¢
possible domain states in ferroelastic phase.
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It is significant that planes (h k ) )ref
(h )refz (h k ) )refn are created from the
same plane of paraelast1c phase (h;kl; Jproto,
where j = 1...N, and mutually connected by
equation of Mugge (8).

The obtained sets (h k1) ...(hxkpln),
(h k ll)ref2 (hNkNlN)refz (h k ll)refn

(hNkNlN) ef” are further used to deter-
mine the 2nd order symmetry elements of,
i.e., indices of mirror planes (H K. ]L) and
twofold axes [U;V;W;] from equatlons of
Mugge (8) for all possible domain pairs, for
example, D; and D;, where j=1...q. Be-
cause at the end of proposed "indexing” we
obtain N planes for every solution, we can
write N Mugge equations (8), which connect
mutually the plane indices of j-th solution
(hykql))eFi ...(hykply) e with indices of the
first (reference) one (hykqly)ef

(hNkNlN)ref For N planes, we can bu11d
3 x N linear equations with only six un-
known indices H;, K;, L; and U;, V;, W;. The
unknown 1ndlces are 1nscr1bed in the equa-
tions in the form of 9 corresponding prod-
ucts H;U;, HV;, HW;, KU; KV; KW,
L;U;, LiV; and Liw;. In order to get a 11near
equatlon system, we propose to create an
equation system from 9 equations using in-
dices of only three planes from N obtained
ones:

hy hy, 2k 2L, O -h; 0 0 0 -hj Hy,

hy —k 0 0 2hy by 2y 0 0 kyl | gy

I —ln 0 0 0 -1, 0 2n, 2k, L, HW,

by 12 ZRyp2ly O <k, 00 0 -hyl | KU (10)
kil = —k 12 00 2h, k2, 00 0 kx| KV,

lf2 Ty 000y 0 2k, 2k by KJ'WJ'

hig hig 2k g2, O —h, 0 0 0 —h,l | LU

kg —k 0 0 2h kg2, 0 0 -k | XY

L LW,

s 7113 0 0 0 -, 0 2h,2k, L, i

where hyy, kn, Lt P, ki2q, Ligs Pass Fass
lig and Rjys ki Lig, hjgs Rizs Ligs Bys Rjgs Ljs
are Miller indices of first three planes in
the first (reference) and j-th solutions. The
selected three planes should not belong to
the same crystallographic zone, because in
this case, indices of selected planes 21y, k11,
l11> k12, B12, 119> P13, B13, li3 and respec-
tively hﬂ, kﬂ, lﬂ, hj2, ka, ljz’ hj3, kjg, lj3
are linearly independent and the determinant
is not equal zero. For determination of such sys-
tem, the known Kramer approach can be used.
The above-mentioned equation system
can be formed for an arbitrary pair of solu-
tions obtained after the "indexing"” proce-
dure. But, it is not needed to find twinning
elements for all possible pairs of states, i.e.
solutions. It is enough to determine the
twinning elements between the reference D,
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and other domain states D, i. e., state pairs
D,-D,, ... D;—D,, since for other pairs, the
same twinning elements will be obtained.
This follows from principle of domain state
equivalence, because any arbitrary domain
from ¢ possible orientation states of ferroelas-
tic phase can be selected as a reference do-
main.

If we use a large tolerance value g, then
among all the solutions, those with crystal-
lographic planes that are close to "refer-
ence” planes and are not connected by equa-
tion of Mugge (8) may appear. This situ-
ation may arise in case of “hard”
ferroelastics when a large value of tolerance
¢ is needed to be input. To sort out these
solutions, we should take into account that
indices H], K], L] and U], V], W] must be
integers according to theory of mechanical
twinning [19, 20, 26]. For "non-twin” solu-
tions, we obtain rational indices Hj, Kj, Lj
and U], V], W..

To conclude, the proposed algorithm al-
lows to determine twinning elements in cen-
tral-symmetrical ferroelastics using only
known lattice parameters without additional
analysis of correlation of para- and ferroe-
lastic point groups or using other theoreti-
cal methods of twin structure forecast, for
example, Sapriel method, etec. [17, 18].

This work has been supported by WTZ
(UKR04/009) and Ukrainian Ministry of
Education and Science (Project "Segnet™).
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Bu3naueHHs eleMEeHTIiB IBiHHUKYBAHHS 2-TO MOPSIAKY
Yy IEHTPOCMMETPUYHHUX CETHETOEJaCTHKAX
3a mapaMeTpaMu KPHCTAJIYHOI IpaTKH

A.I.Casuyvrui

MeToo poboTu € mpeacTaBIEHHS AJTOPUTMY BU3HAUEHHS MOMKJIMBUX 3aKOHIB ABIHHUKY-
BaHHA — ILJION[MH I3ePKAJLHOIrO BimoOparkeHHs Ta oceil 2-ro mopsaxry. HdaHuil merom moike
OyTH 3aCTOCOBAHUU [0 IMEHTPOCHUMETPHUUYHHUX CErHETOeJacTHUKiB Ta/abo ABIIHUKYBaHHSA 3 He-
HYJbOBUM BiIXHMJ/I€HHSAM. 3aIIPONOHOBAHUNA AJTOPUTM [LO3BOJISE 3HANTHU €JIeMEeHTH ABIHHUKY-
BaHHSI, BUKOPHCTOBYIOUHM TiJbKU Bimomi mapamerpu KpucTaiuHOl rpaTKm 0e3 mOZaTKOBOI'O
aHaJidy CHIiBBiHOIIIEHL TOYKOBMX I'PYII IIapa- Ta CerHeroelacTHYHHX (a3 UM iHIIUX Teope-
TUYHUX METOMIB mepem0adeHHs HapaMeTpiB ABIMHMKOBOI CTPYKTYpPH.
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