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The stochastic model that describes radiative heat transfer in dielectric medium is
analyzed. The model is based on the representation that heat transfer is realized both by
its heat conductivity and by electromagnetic radiation that is generated by thermal fluc-
tuations in the medium. Such physical suppositions, using fluctuation-dissipative theo-
rem, are realized in the form of the infinite dimensional Ornstein-Uhlenbeck process that
describes medium fluctuations. In the model frameworks, the energy flux density of
fluctuating electromagnetic field is calculated in the form of a functional of the tempera-
ture distribution in real three-dimensional media sample.
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AHanmsupyeTcs CTOXACTHUECKAA MOJEeNb PagualliOHHO-KOHAYKTUBHOTO TeIJI000MeHa B
TBePAOTENLHON AUaMeKTpUUecKoi cpeme. Mogenn ocHOBaHA HA TPEACTABIEHWUHN O TepeHOCe
Temna, HAPALY C COOCTBEHHON TEIJIOMPOBOJHOCTBIO CPEABI, TaKiKe ITOCPECTBOM TEIJIOBOTO
JIEKTPOMATHUTHOTO H3JIYUEeHUd, KOTOPOE TOPOIKIAAETCA TEIJOBBIMH (QMIAYKTyalUAMH. OTH
(pUBMUYeCKMe TPECTABIEHNS, UCTOAL3YA DIYKTYAIIMHHO-IUCCUTIAIIMOHHYI0 TEOpeMy, peaju-
30BaHbl B BUZEe OecKoHeuHOMepHOTO mporiecca OpHITelHa-YIen0eKa, oMUCHIBAOIIET0 MIYK-
Tyanmuu cpeabl. B paMKax MoOAeNnM BBIYNCIEH ToJe TJIOTHOCTU MOTOKA SHepruu (GAayKTyaliu-
OHHOTO 3JIEKTPOMATHUTHOTO TIOJIST B PeaJLHOM TPeXMEPHOM 0o0pasile cpeAbl B BUAe PyHKIIU-
OHaJIa OT paclupefeeHUs TEMIIEPATYPHI.

CtpyMm eHeprii eJeKTPOMATHITHOTO TIOJA Yy CTOXACTUYHO MOJENdi pagianiiHO-KOHIYKTHBHOTO
TEeIJIO00MIHy y TieTeKTPUYHOMY TEEPHOTiIbHOMY cepenoBuini. FO.JJ1. Bipuenxo, Jlam Tan Pam.
AHanisyeThes CTOXaCTUUHA MOJENb PaLiaifiHO-KOHAYKTUBHOTO TEIJ000OMIiHY Y TBEP/IOTiNb-
HOMY [JieJleKTpUUYHOMY cepefoBullli. Mogess yTBOpeHa Ha MifCTaBi yABJIEeHHS O NepeHeceHHi
Tell1a, MOPAL 3 BJIACHOI TEIJIONPOBiMHICTIO, TAaKOMK BHACIIOK TEIJIOBOTO BJIEKTPOMArHiTHO-
ro BUIIPOMIHIOBaHHA, IO TOPOIKyeca TemmoBuMu dayrryamiamu. i disnuni yasrenus
peajyisoBaHi, 3a JomoMoroi0 QIYKTyallifiHO-TicMamaTUBHOI TeopeMMU, Yy BUIJIAAI HeCKiHUeH-
HoBUMipHOTO Tpotiecy OpHmTeiina-Yaenbeka, 1o onucye GIyKTyamii v cepegosumii. ¥ pam-
Kax MOJeJi paxyeTbes IIoJie PifmHU cTpyMa eHepril GuyKTyamifiHoro sieKTpoMarHiTHOTro
noJisg y peajbHOMY TPLOXBUMIpHOMY cepemoBUINi y BUraazai dyHxkuwmionasy Big posmoainy
TeMIIepaTypPu.

1. Introduction.

The heat transfer in solids is realized by two mechanisms. They are the thermal conductivity and the
heat transfer by electro-magnetic radiation. The last is generated by thermal fluctuations of medium local
thermodynamic state. In accordance with this, the evolution equation of the temperature distribution
T(x,t) at fixed time moment ¢ may be written phenomenologically in the form (see, for example, [1]-[3])

KT'(x,t) = »2AT(x,t) — (V,8)(x,1), (1)
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where 2 > 0 is the medium conductivity coefficient and « is its volume heat capacity. We assume that
these quantities do not depend on temperature. The vector field S(x,t) is the energy flux density of elec-
tromagnetic radiation associated with fluctuations of charges and currents induced by them. The value
of (V,8(x,t)) multiplied by the small volume of the spatial medium region centered near the point x is
the flux part which is spent on its heating at the time moment ¢. Inclusion of this term is essential when
heat transfer problems are solved in optically transparent media with low electrical conductivity and at
sufficiently large temperature drops on character distances. In this case, it is necessary to build a closed
evolution equation for T'(x,¢) in order to solve the heat transfer problems. So, it is necessary to find the
explicit form of the functional S(x,t) = S[1'(x,t)] which transforms Eq. (1) into a self-consistent one.

Usually, the energy flux density S(x,t) is constructed phenomenologically, in frameworks of so-called
theory of radiation transfer which is based on: geometrical optics concepts applying them to heat radiation
inside the medium, on the Kirchhoff law about the relationship of irradiation and absorption intensities
of electromagnetic field and on the Bouguer law (see, for example, [1]-[4]). But thermal electromagnetic
field in such theoretical building does not exist. Such a situation exists due to the lack of a consistent
microscopic theory of radiation-conductive heat transfer which should be based on the quantum theory
of radiation and absorption of thermal photons in solid medium.

We shall not concentrate on a detailed analysis of the problems which are related with the construc-
tion of the radiation transfer microscopic theory in the framework of statistical physics (see, for more
information, [5]-[7]). We point out only that there is a statistical approach that occupies an intermediate
position in the radiation transfer theory between the microscopic and phenomenological ones. It is based
on the concept of thermodynamic fluctuations in medium which generate a stochastic electromagnetic
field (see, [8]-[9]) without specifying the microscopic transition mechanism of its energy into heat. This
field is caused by thermal fluctuations of charges and fluctuations of electrical currents induced by them.
The currents at short distances appear in the medium even if it has very low electrical conductivity.
The amplitude of these fluctuations increases on temperature, so, at sufficiently large its value, thermal
vibrations of medium atoms (ions) leads to fluctuations of electrical charges on those spatial scales which
are comparable with the interatomic ones.

At present work we analyze, within the mentioned fluctuation approach, the stochastic model thermal
radiation transfer proposed in [10] which is based on explicit statistical description of thermal fluctuations
of charges and currents in the medium. Due to complexity of used mathematical constructions, we focus
our considerations only on the case when the inhomogeneity of temperature distribution is concentrated
in a limited region of boundless environment.

2. The model construction

Thermal electromagnetic field is described by a pair {E(x, t), H(x,)} at each space-time point {x, ¢},
is stochastic. Then its energy flux density is the random function

S(x,t) = —[B, H|(x,1), 2)
47

¢ is the vaccum light velocity. This field substantially varies over distances having the order of thermal
radiation characteristic wavelength (~ 10~* cm) and during time periods ~ 10~ sec. At the same time,
the characteristic length of thermal conductivity process in crystalline dielectrics has the order 102 cm,
and the correspondent characteristic time is 10~! sec. Therefore, the vector field (2) should be averaged
over spatial regions having a scale which is much greater than the characteristic wavelength, but it is
much smaller than the characteristic length of the heat transfer process. In addition, it should be averaged
over time intervals which are much greater than the characteristic period of thermal radiation oscillations,
but it is much smaller than the characteristic time of thermal conductivity. Such an averaging allows to
ignore the small rapid changes of the divergence (V, S(x,t)) over space and time, which have no a relation
to the heat transfer process. The pointed out space-time averaging is equivalent to the averaging using
probability distribution of random electromagnetic field, when the pair random fields ]?)(x7 t) and ﬁ(x, t)
possess the ergodicity property. Thus, the energy flux density of the field used in (1) is determined by
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the mathematical expectation S(x,¢) = (S(x,t)). It should be calculated in the frameworks of the model
that describes the heat transfer by radiation.

The stochastic electromagnetic field is seemed by random realizations {E(x, ), H(x,t)} which satisfy
the system of stochastic Maxwell equations in the continuous dielectric medium neglecting its variance

c OB 47~ - . A7
vy JFTJ*[va]v (va)*?%
N (3)
pwoH ~ S
c at - [V7E]7 (v7 H) *07

where E and H are intensities of electric and magnetic fields, correspondingly. At the same time, ¢ is the
electric permeability of uniform dielectric medium and p is the magnetic one. We consider them to be
independent of {x,t}.

The values £ and p, generally speaking, depend on the temperature. This dependence may be sub-
stantial at large temperature drops when distances between spatial points have the order of the medium
sample size. Therefore, it is necessary to take into account in problems of heat transfer by radiation when
such drops are present. It is supposed that temperatures are equal to the local temperature T'(x,t) of
the value order in these dependencies. In general case, spatial and temporal derivatives of €(1'(x,t)) and
w(T'(x,%)) should be appeared in the Maxwell equations when these dependencies are taken into account.
However, these derivatives are extremely small in comparence with those length and time scales which
are characteristic of the thermal radiation by virtue of these slow T'(x,¢) dependence. Therefore, these
derivatives are not accounted in the equations (3).

Solutions of the system (1) are determined by setting of stochastic sources j. p which are the elec-
tric current and charge densities, respectively, that are nonzero in micro-regions having the order of the
characteristic wavelength. Besides, for complete determination of the solutions, initial and field bound-
ary conditions corresponding to physical situation under consideration are important. As for boundary
conditions, we shall study the simplest physical situation in present work. It consists of the attenuation
of the localized thermal non-uniformity in unbounded medium. This non-uniformity is concentrated in
a bounded space area with the linear size L having the order of lem +10? c¢cm. In such a situation,
the medium temperature tends to a constant value when the point x goes to infinity. More complicated
physical situation from the boundary conditions viewpoint has been investigated in [5]-[7] on the basis of
more simple stochastic model.

Densities j, p which are spatially distributed stochastic sources, define completely the model. At the
same time, they should be submitted to the continuity equation

pr (V.5 0. @

For this reason, the model is completely determined by the form of the stochastic field j(x, t). The current
density j is composed of the internal «electromotive forces of the medium that arises as a result of the
thermal fluctuations. It should be contained the term which is determined by Ohm’s law oE. At the same
time, we note that the coefficient o > 0 which plays the role of electrical conductivity, is not connected
with genuine macroscopic electrical conductivity of the medium that may be very small in the physical
situation under consideration. It performs an «effective conductivity» which should be different from zero
due to the so-called fluctuation-dissipative theorem (see, for example, [9]). It is necessary to account from
the mathematical viewpoint in order that a regular dissipative constituent is present in the system of
stochastic evolution equations (1) with additive noise. In turn, it is connected with necessity of stationary
evolution regime presence.

The part of the fluctuation current density a(x,¢;T)@ that serves stochastic source of electromag-
netic field should be certainly contained with probability one the vortical term (fluctuation «Foucault
current» ) in spite of the radiation transfer occurs in a dielectrics (or high-resistance semiconductor). Here,
the source intensity a(x,¢;7") depends functionally on the local temperature 1" = T'(x,t). Therefore, it
may be changed spatially and temporally. This changing is much slower in comparison with the change
of the thermal electromagnetic field. The irradiation of electromagnetic waves which transfer of heat is
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namely associated with the availability of the vortical part. In connection with the dielectric character of
medium, the fluctuation current (its correlation function) is concentrated at small space scale that has
the order of interatomic distance. Thus, the current, density j should be replaced in equations (3) and (4)
by j(x,1) = @(x,t)a(x,t;T) 4+ oE(x,t) where the intensity a(x,t;T) should be defined on the basis of
statistical physical consideration for completion of the model construction. We suppose that the squared
intensity is determined by thermal photons irradiation in a small spatial area which concentrates near
the point x at the moment time ¢. Therefore,

a%x,t;T)h/w%”(%)dw, (5)

where f is the distribution function of radiation photons frequencies w. It depends on the temperature
T(x,t) distribution. In this case, we have aggx,t; T) ~ T4(x,t), when it is the Planck function. As the

result of substitution of the explicit form of j(x, t~) into the Eq. (3), we obtain the stochastic equations
system with the additive noise ¢ where the field E(x,t) is determined by the equation

o - 4 c ~ dno
— E+—ap=-|V,H -— 6
5 TVET—ap=-[VH], y=—, (6)
and the evolution equation of the charge density has the form
ptapt(V,ap) =0, (7)

where, as above, we have neglected spatial derivatives of temperature distribution. In general case, the
coefficient o depends on the local temperature which changes slowly on x and ¢. But we neglect this
dependence for reasons above pointed out.

The random field ¢ in Egs.(6),(7) is Gaussian with zero average value {p(x,t)) = 0 due to sup-
posed physical smallness of thermal fluctuations. At the same time, {(5(x,t)) = 0. Then the Gaus-
sian field ¢(x,¢) is completely determined by the pair correlation function Kj j;,(X1,t1;%0,t2) =
(@j, (x1,t1)@5,(x2,t2)). For physical reasons, the random field ¢(x,t) is translational invariant on x
in stochastical sense and it is stationary on ¢ in the sense of the theory random processes. Besides, we
assume that this field is stochastically isotropic and temporally reversible. So, its correlation function is
represented in the form

K (X1, 815 %0,t0) = K(|x1 — x|, [ty — t2])d5, 5, - (8)
In this case, the source a@(x,t) of thermal radiation is uniform on x, it is stationary on ¢ and it is
stochastically isotropic along directions in Egs. (6),(7) if we neglect the pointed out slow dependence on
the local temperature 7'(x, ).

Further, we use some supplement assumptions about properties of the function K(r,s), r,s > 0.
These properties are associated with the locality of correlation functions Kj, ;,(x1,%1;X2,t2). For physical
consideration, the random field @(x,¢) should have extreme small correlation time. Such correlations
should be disappear during the temporal interval equal to several periods of stochastic electromagnetic
field oscillations. Then we suppose that K(r, s) ~ d(s). In this case, the field @(x,t) is transformed to
a generalized random Gaussian field of the «white noise» type on the temporal variable. Correlations of
the field @(x,t) values are also short-ranged. They disappear at the distance equal to some interatomic
lengthes. So, the correlation length is the smallest parameter of linear size dimension in the problem under
study. However, for the reasons that will become clear from subsequent analysis, we may not assume that
the function K(r,s) is proportional to d(r) by the analogy with the temporal variable. So, we use the
next representation

K(Jx1 = xal, [t1 —ta2]) = K(|x1 — x2[)d(t1 —t2), (9)

where the function K(r) is absolutely integrable [, |K(x)|dx < co and it is localized in the zero neigh-
borhood having the order of 7o, that is K(r) = 5 Q(r?/2r3) where 79 > 0 is a small parameter and
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K = [;7 Q(€*/2)d¢ < oo. Here the function Q(r) is concentrated in the region with the linear size of
order 1.

After setting of the random process j(x,t) in the stochastic differential equations system (3), the
fluctuation electromagnetic field is completely defined by the requirement of its temporal stationarity. At
the same time, the random function S(x,#) is a functional on T'(x,t), and its mathematical expectation

C

— (B H](x, 1) (10)

(S(x, 1))

is determined by the probability distribution of the fluctuation field ¢.

3. Small parameters

Consistent mathematical analysis of the stationary random process which has been built in the pre-
vious section is very complicated. In particular, in the resulting formula of S;(x,t) leads to complicated
expressions which are inconvenient for practical application. The significant simplification of these ex-
pressions is reached when the small parameters are taken into account. The natural problem formulation
consist of the calculation of the S;(x, ) expression as the form of main asymptotic term when these small
parameters tend to zero.

Let L be the linear size of temperature non-uniformity that equals to the linear size of region where
the significant varying of the temperature 7'(x,0) distribution takes place at the initial moment. We note
that the characteristic time during which the temperature distribution change is occurred due to the heat
conductivity process, is significantly longer than the time L /¢ during which the thermal electromagnetic
radiation overcomes the distance L and goes out of the non-uniformity region (during ~ 3-10~'3sec when
L ~ 1072 ¢m) where the heat transfer processes occurs. The radiation does not effect on the heat transfer
process when it comes out of the system. The natural time for the heat transfer process is determined
by the value L/ where the ratio »/x has the order of 1072 ¢cm?/sec in the typical physical situation
in solid high-resistance semiconductor crystal. Therefore, the characteristic time of thermal conductivity
process is equal to 10 sec. As a result, we obtain the small parameter (L/E)/(Lgm/%) =x/ler < 1

having the order of 3 - 10712 where &2 = c?/ep.

Further, we assume that the medium is so semi-transparent that the characteristic distance of the
radiation damping is much larger than the above-introduced size L. In this case, if we use typical val-
ues of specific electrical conductivity, the parameter vL/¢ in dielectrics has the values in the range
3-(107*+10"17) < 1 where v = 470/ has the order of 10° = 10~7 sec ™. For some semiconductors, the
parameter vL/¢ changes in the range 4 - (107 = 10%).

In view of the value 7, smallness, there is the natural small parameter ro/L, since rg ~ 107 cm,
L ~ 10 cm and, therefore, r9/L ~ 10~%. Thus, we conclude that the following relations s /Léx < vL/e <
ro/L are fulfilled in the case of dielectrics on basis of the mentioned typical values of model parameters.
As we can see from the above estimations, the parameter vL/¢ is not small for semiconductors in general
case. Thus, the calculation of the energy flux density of the fluctuation electromagnetic field suggested
in this work is valid for dielectrics and high-resistance semiconductors.

Since asymptotic term is calculated on many parameters, so, it is needed the refinement of the order
of transitions to zero limit. We assume that these transitions are understood as repeated in concordance
with the order of their typical physical values. The transition to the limit ro/L — 0 will be done at the
final calculation stage.

4. Characteristics of stationary process.

In view of the typical time of thermal conductivity is the biggest parameter of temporal size, then the
initial conditions of the fields E(k,t), H(k,t) and p(k,t) become inessential after passing the temporal
period which is longer than the time xI.2 /5.
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Since the field ¢(x,¢) is stationary temporally, then we may neglect the time dependence of the tem-
perature distribution 7'(x,¢) in the amplitude a(x,¢;7) when we use the transition to the asymptotic
region ¢ > kL2/3 ~ 10~ 7sec. Therefore, we may do such a neglect in the sources j(x,t), p(x,¢). In this
case, the stochastic fields {ﬁ)()g t), IiI(x7 t)} may also be considered as stationary ones. In such a situation,
it is natural to go to some equations which control the evolution of the amplitudes defined by the fields

spectral expansion. They are some generalized functions of k and w,

E(x,t):/exp[@'(k,x)]dx/é(k,w)ewdw, I:I(x,t):/exp[i(k,x)]dx/7:L(k7w)e“tdw, (11)
B3 —c0 R3 —o0
a(x,t;T)(,B(x,t):/exp[i(k,x)]dx/Z(k,w)ei“tdw7 (12)
R3 —o0
ﬁ(x,t):/exp[i(k,x)]dx/@(k,w)ei‘”tdw7 (13)
R3 —o0

where the generalized random fields i(k,w), o(k,w) are complex-valued Gaussian random ones due to
Gaussian property of the field ¢(x,t), and they have zero average values (i(k,w)) =0, {g(k,w)) = 0.

In view of the field a(x,t;7)@(x,t) is real, the field i(k,w) realizations has the following proper-
ty 1¥(k,w) = i(—k, —w) with probability one. Therefore, this field is completely characterized by the
correlation function Ky (k,w,k’,w’) which is positively definite matrix-function on k € R® and w. It is
connected with the correlation function Ky (x,¢;x’,¢") by the following way

f(”/(k, W, k/7 w/) = (S”/f((k, k/)é(w/ — w) 5 (14)
Kk, k) — # /eXp (06 x) — (.0 ) | K (e = e (15)
RG

taking into account the properties of the field @(x,t): the stochastic uniformity on x, the stationarity on
t and its stochastic isotropy.

Substituting these expansions to Eqs. (3) and (6) and using the uniqueness of Fourier images, we
obtain the completely equations system:

iwE(k,w) +~Ek,w) + 4?” ik, w) = %[k,?l(k, w)], (16)
H(k, w) = —M%[k,é'(k,w)], (k, E(k,w)) = —? ak,w), (kHk w)=0, (17)
iwd(k,w) +vo(k,w) + ik, i(k,w)) =0, (18)

The solutions of the equations system defined Fourier images € (k,w) and H.(k,w) are performed by the
formulas:
) (@ =ik, w) - @k, ik w)K)

Elk,w) = e (w— 1y)(w? — 22k? — jwry)

; (19)

Hk,w) = —iame, Ik ik w)]

ep (w? —2k? —qwy)

Here, the Fourier images € (k, w), H(k, w) are generalized functions.
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5. Energy flux density at the stationary regime

Let us calculate the average value of the energy flux density :S’j(x,t), J = 1,2,3 of irradiation using
the explicit expressions (19) and (20) of Gaussian random fields €k, w), H(k,w),

Si(x,t) = /Rj(x —yi,t—s;x—ya,t —s)K(ly1 — y2|)aly1, s;T)a(y2, s; T)dy 1 dyads, (21)
R'?

where

1

Rj (X7 t; X/7 t/) - (27T)8

/ R;(k,w; k', w') exp [z’((k, x) — (k' X)) + i(wt — w/t/)}dkdk/dwdw/, (22)

RE

(k;(zw(w i) — 2K+ a?kj(kmk;n))
(w —iv)(w? — 2Kk — iwy)(w? — 2k 4 iw'y)

R;(k,w;k ,w')=—R

R = 47c? e (24)
The transformation of the expression (22) on the basis of Eq.(23) leads to the following formula:
Si(x,t) = S5 (x, 1) + S5 (%, 1) + S5 (x, 1), (25)

where each of performed terms has the form:

S(x,1) = iR R Ulx—y1,t —s)V;Vi(x -yt —s) x

x K(ly1 —y2l)a(y1, s; T)alys, s;T)dy 1dyads, (26)

S8(x,t) = —R MUCES R OV V(% —yo, t —s)] x

x K(ly1 —y2l)aly1,s;T)a(yz, s; T)dy1dyads, (27)

S8 (x,t) = iR : [V VW (x —yi,t — 8)][VaV*(x — yo,t — s)] X

x K(ly1 —y2l)aly1,s;T)a(yz, s; T)dy1dyads, (28)

and generalized functions U(x,t), V(x,t), W(x,t) are defined by following integral representations:

U(x,¢) = (Qi)4 / eXp“g"_ij ) i, (29)
B4
Vix,t) — (2i)4 / ejs(j(:;)j;j?dkdw, (30)
Rél
1 exp(i(k,x) + 1w
Wt = / (w—z'%((iz o _t)m)dkdw' (31)

R4
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6. Asymptotic expressions of generalized functions U, V,W.

Let us find some asymptotic formulas of generalized functions U(x,t), V(x,t), W(x,t) when the small
parameter vL/¢ tends to zero. For the generalized function U, one can find easily the explicit form

U(x,t) = i0(t)5(x)e ", (32)

where ©(-) is the Heaviside function. The functions V(x,t) and W (x,¢) have no such a simple explicit
representation. Therefore, we show the main terms of their asymptotic representation at vL/¢ — 0:

o)

V(x,t) = —2e 2D _(r,t), Dy(r,t)=0d(r+ct)£d(r—ct); (33)
dmer
o Z@(t) —t 1 —t/2 — =
Wi(x,t) = i {e —5¢ (sgn(r +at)+sgn(r —ét)—
_a al—lr —all) = = —1/2
Llir et = —etl]) - 5= (evt) 2], (34)

7. Integral representations S;u) (x,1), S;U)(x,t), S;w)(x,t).

Using the asymptotic formula (33), we find integral representations of the functions 5*7(4“)(><,15)7

ng)(x,t), Sj(w)(x,t) which do not contain d-function singularity when ¢ > 0

o)

Vixt) = e % —at) (35)
wer
R e Vlyal/2¢
S (x, 1) =i / O K (yy — —yi,t—s;Ta(x —ya,t —s;T
P =i |y2| ¢ { (Iy2 =yihalx =yi, t —siTalx =yz.t = )L:\yz\/a
xU(y1, |yzl/c)dyidy, (36)
R e y2li2e
S ix 4) — (2) _ _ e _ e
PO 5 | Ty Y [Kly2 = yialx = yi,t = i Talx = yo,¢ S’T)L:\ygw/a
R6
xV(y1, |yal/e)dy1dys (37)
w iR [ e lyval/i2e
S (x, 1) = i WVE vy @) {K(|y2 —yilax —yi,t — s;T)a(x — ya,t — s;T)L:mVE
R6
xW(y1,|yal/c)dyidys - (38)

To obtain the asymptotic behavior of integrals in Eqs.(36-38) when »/Léx — 0, we assume that the
temperature distribution 7T'(x,t) has the following asymptotic T'(x,t — s) = T(x,1) (1 + %sO(l)/ng)
due to Eq.(1). Then, if the limit transition is applied to the integrals (36-38), we need to neglect the
temporal shifts in the functions a(x,t — s) = a(T(x,t — s8)), since

a(x,t —s;T) = a(x,t;T) + (dc;g))T(x7t)(T(X,t —s)—T(x,t))+ 0(%) :

As a result, we obtain from formulas (36-38) the following integral representations which permit to
calculate the pointed out densities after substitution of the correlation function in the form K(|x|) =
To 3Q(x2 /2r3). It is done for the purpose to introduce their dependence on rg in the explicit form:

S§“)(x,t) = V; )Q((YQ —v1)*/2)a(x — roy, t; T)U (roy1, roly2/¢)

roR [ eyroly2l/2e
AL /
4me Y2l

RG
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xa(x —roy1, t; T)dy 1 dys (39)

» roR [ e Tolyz2l/22 .
S5 t) = V(2 = 1) /2)alx = roys, & )V (royr, rolyal/0)|

- Ane? A ly2|

xa(x —roy1, t; T)dy1dys, (40)

w iR e Tolyal/2e -
SJ(‘ )(Xﬂf) = 47T7"o/ lv2| {Vg‘l)A(l)Q((YQ —Y1)2/2)G(X—7”03’1715;T)W(TOY177”0|}’2|/C)}

R6

xa(x —roya,t; T)dy1dys . (41)

8. The asymptotic expression of 5;(x,¢) at the limit ry/L — 0.

Passing to the limit 7y — 0, we calculate main terms of asymptotic expressions of densities SJ(U)(X7 t),
Sj@)(x,t)7 SYJ(LU)(X,t)7 using the asymptotic expressions of functions U(x,t), V(x,t), W(x,t), respectively.
The main terms are obtained when the amplitude a(x,¢;7) as well as the asymptotic functions U(x, 1),
V(x,t), W(x,t) in subintegral expressions are not differentiated on spatial arguments. As the result, we
obtain the asymptotic formula

—2 2
(w)y _ _ 2 . o R V,;Q(y*/2) -2
S8 — —a?(x,6;T) ( o ) / S el (42)
R3
where the integral is equal to zero due to the spherical symmetry of the correlation function. Finally, we
have Sj(u) = 15 20(1) when ro — 0.
We shall calculate the asymptotic of the integral 5*3(4”)(><7 t) using the function V(x,t) asymptotic. At

the same time, the temporal derivative of this asymptotic is equal to

. ot

Vix,t) = —%V(x,t) — % e’”t/gé/(r — o) (43)

when ¢ > 0. Substitution of this expression and transformation of the subintegral expression leads to the
following final result:

) ~ RQ yjefv\y\/é
S (x,1) /

=03 VF a?(x -y, t;T)dy. (44)
]RS
This formula shows that functions 53(4“)(7<7 t), k9’3(47j)(><7 t) may be neglected when the main asymptotic term
S,;(x,t) is calculated.
Substituting the asymptotic expression (34) into Eq.(41) and using the change of integration variables
roY; = ¥4, 7 = 1,2, we find

SR eivalie
(w) g R e (1) A (D) w292 vl vt
s (x,t)f(lmé)g/ Syl VS ADQ(ys — y0)? /28] alx = y1, 6 T)a(x — ya, T)x

RG
- e, 1 z Y
x el 2 e 120 (1 sy = yl) = = [yl + [yal = liysl = Iyal[]) -

|yl ¢ \1/2
—W<E) }dY1dY2~ (45)

It is easy to show that the last term does not lead to the faster asymptotic when ro — 0. It tends
to a finite limit in the mentioned case. Similarly, we may neglect the next-to-last term in the subintegral
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expression (45). Thus, it is necessary to calculate the asymptotic associated with the first two terms. The
coefficient at the asymptotic term proportional to ry 3 of the first summand

-3 —3vlyz21/2¢
R e 7
sl (x ¢y = 10 / viaAMg —y1)?/22
i (%1 (475)2R6 ly2|ly1l [ g (y2 —y1)"/ 7"0)} X

X a(x —y, t;T)a(x —y2,t;T)dy dy>

is equal to zero.
Thus, the main asymptotic term of the function Sgw)(x, t) is determined by the following summand

_3 o _

R e lyz2l/e

glw:2) X,t) = "o / £ VWA —v1)?/2rd)| x

i ( ) (47_(_5)2 |y2||y1| i Q((yQ yl) / O)
RE:|y 1 [>]y2]

x a(x —y1,t; Ta(x —ya,t; T)dy 1dys .

Making the same changes of integration variables when we have done at the analysis of the function
Sj(j“”’l)(x7 t) and passing to the limit ro — 0, we obtain the main asymptotic term of analyzed function in
the following form:

(w) (w,2)
S(x 1) ~ 5T (%, 1)

-3 e lyl/e
_ o RQO/W (x —y, ;T)dy . (46)

8me |y [?

9. Conclusion.

The expression (46) which has the main order as ro — 0, gives final expression of the energy flux
density asymptotic of the fluctuating electromagnetic field

-3 _v).evIx—yl/e
1y RQo (x—y)je”
Silx0) = o / |x —y]3

R3

a(y,t; T)dy , (47)

where the function a?(x,t;7T) is given by the expression (5). It solves the problem formulated at the
beginning of present work.

The derived expression of the energy flux density may be obtained in principal on the basis of ar-
guments used in the theory of radiation transfer in medium (see [1]-[3]). However, we must to improve
these arguments substantially. Such a modification is connected with the fact that there is the significant
difference from the formula of the standard theory. In frameworks of radiation transfer theory, the energy
flux density is derived on the basis of geometric optics presentation applying them for physical situation
that is under study at present work. Then, the obtained formula differs from Eq.(47) by the supplement
multiply |y| 2 in integral kernel. The appearance of this weight shows that the Beer-Bouguer-Lambert
law which describes the passage of radiation through medium, is not completely true for thermal radiation
generated by the medium and it is spread in it. The appearance of the modification may be understood
from the general physics view point. Besides damping of the radiation is obeying to the Beer-Bouguer-
Lambert law when it passes thorough the medium, there is also the damping connected with the presence
of isotropic «dissipation» of radiation that is emitted by each spatial point when the last come to it. At
this, the appearance of the supplement weight |y|~? in the energy flux density that is irradiated from
the point y = 0, is connected with the total energy conservation at such a dissipation when the radiation
passed the distance |y|. Namely, if we shall not take into account the Beer-Bouguer-Lambert absorption,
the total energy flowing through the sphere surface with the square 47|y|?, is constant. Such an effect is
not taken into account in frameworks of the standard radiation transfer theory.
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