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The problem of impurity diffusion in the melt crystallizing at a constant velocity has
been tried to solve by the method of integral functionals with unknown region of integra-
tion and free boundary condition. It has been shown that the conditions at the phase
boundary are contradictive to each other within the frame of the simplest bidimensional
model of solidification. The general problem of existence of a solution for the problem of

binary melt solidification is considered.

OcyiiecTBiieHa IIOMBITKA PelleHus 3amauu 0 Jud@ysuu mIpuMecu B KPUCTANIUIYIOIIEMCS
C IIOCTOSIHHOII CKOPOCTBHIO PAaCIliaBe METOZOM HHTEerpaJbHBIX (PYHKI[MOHAJIOB C HEM3BECTHOI
00J1aCTHI0 MHTErPUPOBAHUSA M CBOOOJHBIM I'DAHMYHBIM ycaoBuem. I[lokasamo, 4TO B paMKax
mpocTreinieil IByMEpPHON MOIeJ N 3aTBEPAEBAHUS yCJIOBHUSA Ha Me:K(pasHOIl I'DaHHUIE IIPOTUBO-
peuar apyr apyry. Paccmorpena obmias mpobjeMa CyIIeCTBOBAHMS PEIIeHHs 3agady O 3a-

TBepAeBaHUMU OMHAPHOT'O pacIljiaBa.

The numerical methods take an increas-
ing importance in theoretical solving of so-
lidification problems because of essential
nonlinearity of these problems [1]. This
work is the natural continuation of investi-
gations connected with one of such methods
[2]. It has been shown before that for infi-
nitely small bending amplitudes of the
boundary between solid and liquid phases in
the frame of the simplest bidimensional so-
lidification model of binary melt, its form
can be found under consideration of two
conditions at this boundary [3]. The ap-
proach to the problem of cellular crystal
growth developed by authors makes it pos-
sible to answer if such conclusion for finite
amplitude bending of phase boundary is
correct. The aim of this work is to answer
this question.

Let the problem be formulated first of all
in differential form and then go to its vari-
ation equivalent. Let us apply the model of
binary melt solidification with semi-infinite
diffusion zone [2], combining z axes with
crystallization direction. Coordinate z will
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be measured in D/v units, where D is the
impurity diffusion coefficient of in the
melt, and v is the crystallization velocity,
and count off from the position that crys-
tallization front would occupy if it would be
planar. The impurity concentration in the
melt C(z,x) will be expressed in Cy(1-k)/k
units, starting from the level C,, where C,
is the impurity concentration value in the
melt at infinite distance from the phase
boundary, and %, the impurity distribution
coefficient. The phase boundary described
by equation z = @(x) will be considered to be
periodical in direction x and symmetrical
with regard to the period middle. Coordi-
nate x will be measured in semiperiod units
! (halfwidth of cells). The diffusion in solid
phase and surface energy of phase boundary

are supposed to be negligibly small.
Let the following dimensionless coeffi-
cients be introduced:
K=

’

D (1)
vl
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B__ KGD (2)
(k-1)uvC,’

where G is temperature gradient; u, the
liquidus line slope in the binary system

phase diagram.
Then the problem of impurity diffusion
in the melt crystallizing at a constant veloc-

ity in the region ¢(x)<z<w, 0<x<1, can be
formulated as:

C,,+C,+ |<2Cxx =0, 3

C,(0) — K29,C(0) + (1 — K)C(e) + k=0, (4)

C(0,x) = 0, (5)
C(2,0) = C(2,1) = 0, (6)
C(0) =1 - Bo. )

The coefficients £ and B are input pa-
rameters here while the coefficient x is un-
known. It is to note also that the condition
at phase boundary in the problem (3)—(7) is
represented by two equations: (4) and (7),
that are boundary conditions of the third
and first kind, respectively. Equation (4) is
equivalent to condition of impurity balance
on crystallization front. Equation (7) fol-
lows from the phase diagram, and also from
the supposition that temperature field is
planar and depends linearly on z [3]. Condi-
tion (7) assumes a geometric interpretion
[6], that will be used from here on: the
concentration values at the phase boundary
have to lay in plane (L), defined in the
(C, z, x) space by equation

C=1-Bz. (8)
Let the introduce residual functions

R(x) = C(9) — k20, C(0) + (1 ~ B)C(9) + ,(9)

Ry(x) = C(¢) - 1 + Bo, (10)

that characterise the deviations from condi-

tions (4) and (7) along the boundary o(x),
and also root mean square residual

- (11)
G = .[ [R(x)]2dx.
0

Let us now abstract from condition (7)
and construct the problem (3-6) solution
under fixed phase boundary. Under mathe-
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matical physics canons, the solution of such
problems exists and is the only one [4]. As
it is shown in [2], the minimization of func-
tional

1 o« (12)
1C(z,%),0(x) = [dx[ e2(C2 + k2C2)dz -
0 ¢
[ ef12k + (1 - B)CICax,

¢

where (¢) means the line z = ¢(x), along
which the curvilinear integral is taken, re-
sults simultaneously to equation (3) and
condition (4). Thus, the condition (4) can be
left free [4], and conditions (5) and (6) can
be easily taken into account when selecting
the basis functions. The fundamental func-
tions of corresponding boundary problem
with planar phase boundary can be used as
such ones. Then the solution of problems
(3)—(6) can be presented as

" (13)
C,= Z“Amnexp(—qm £)eos(mmx),

m=0

where n is the approximation order (0, 1, 2, ...),

qmn:0.5+\/6.25+(mm<)7, (14)

and A, — coefficients determined basing
on the condition of minimum of the funec-
tional (12).

Obviously, the consideration of second
condition at phase boundary will result in
one of two cases: either this condition goes
into contradiction with problems (3)—(6) so-
lution and then there is no nontrivial solu-
tion of problem (8)—(7), or condition (7)
with equations (3)—(6) makes a combined
system and their solution can be repre-
sented as a pair of functions: C(z,x) and
¢(x), moreover ¢(x)=0. Here we come to the
question, which the work aimed to answer.
Let us apply the approach proposed in work
[5] to that end.

Let the condition (7) be substituted into the
expression (13) to get an equation defining
implicit function ¢(x) in n-th approximation:

" (15)
1-Bop,= Z A, exp(—q,,,0,)cos(mnx).
m=0
Substituting this function into expres-
sion (12), we come to integral functional

with unknown integrating region. Then the
problem (3)—(7) solution is reduced to
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searching for functions C(z,x) and o(x),
which correspond to conditions (4)—(7) and
provide the minimum value of functional (12).
Under stationary state, the impurity con-
centration at phase boundary has to be on
average equal to one, otherwise, the mass con-
servation law is not met. Then the equality

1 (16)
[ (o), x)dx = 1.
0

limiting the selection of unkown distribu-
tions C(z,x) is valid. Substituting (7) into
(16), we get a similar condition for un-
known ¢(x):

1 am
[ p(zydx = 0.
0

The functional value calculated in n-ap-
proximation will be noted as I, below. As
the case when n=1 and Ag; =1 is of a
particular interest, let it be considered sepa-
rately. Then, in general case, when Ay #1,
the primed symbols will be used (e.g., 1'-th
approximation).

The plane problem solution corresponds
to zero approximation. To satisfy the condi-
tion (4), it is necessary to put Agg = 1. The
unctional (12) becomes equal to Iy = —k. If
we add next in (13) component with small
amplitude A,; to plane solution, we get the
solution of the problem with small perturba-
tion [5]. It can be shown that the phase
boundary equation in first approximation
with respect to A;; takes the form:

Aqq (18)
= COSTX,
1-B

?

and functional (11) value to within second
infinitesimal order in A, is expressed as

2
All

(19)
m[m - k)B2-3B+1+Ek].

While in first approximation in Ay; the
condition (17) is fulfilled automatically, the
same condition in the second approximation
leads to the expression for eigenvalue

__ 1 (20)
9117 940 _ By

From the sign of the value AI; = I,— I,
it can be defined if the planar crystal-
lization front is stable against this pertur-
bation (plus) or not (minus). So for typical
value k£ = 0.5, the additive to I in equation
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Fig. 1. The dependences of the difference be-
tween values of functionals for the 1%t- and
Oth approximations Al, = I;—-I, on the per-
turbation amplitude of A;;. Distribution coef-
ficient £ = 0.5, values of parameter B = 0.58,
0.6, 0.634, 0.7 (curves 1, 2, 3, 4, respec-
tively).

(19) is negative at B<0.634 and B>2.37.
Experiment is corresponding (at least quali-
tatively) to the first of these inequalities.
In fact, the stability of planar crystal-
lization front (all other conditions being the
same) is breaking only when a certain criti-
cal value of crystallization velocity [6] is
exceeded, that is, at v>v,, that, according
to formula (2), corresponds to B<B.. Then
in this example B, = 0.634.

The functional (12) value for finite val-
ues of coefficients A are got by numerical
method according to the scheme described
before [5]. The results given below are got
for £ = 0.5.

Fig. 1 describes the AI; dependences on
the A;; amplitude calculated for different
values of parameter B. The initial regions
of curves in Fig. 1 correspond well to para-
bolic dependence of I; on A, represented by
equation (19). The B, value found in nu-
merical experiment differs by only 0.03 %
from that obtained from the same equation.
All curves show an end point defined by the
collapsing condition of the concentrational
over-cooling zone in the center of cellular
structure period [5]. The difference from
the result obtained before is that the mini-
mum value of functional Ilmin is attained
not at the edge of the solution definition in-
terval but inside it (curves 1 and 2, Fig. 1).

The results presented below were ob-
tained under parameter value B= 0.6, that
is, for the case when planar crystallization
front is unstable in the criterion B<B,.
Minimum of the functional (12) in the first
approximation is attained at coefficients
values ¢;; = 1.287 and A;; = 0.162. The
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Fig. 2. The phase boundary within the half-
period interval under 15t, 1’-th and 2"¢ ap-

proximations (curves a, b and c, respectively)
at k= 0.5 and B = 0.6.

perturbation amplitude is seen to be rather
small, so g;; does not differ considerably from
the value 1.25 calculated by formula (20) and
the phase boundary is close to the line de-
scribed by the equation (18) (Fig. 2a). Only
starting from the 21"¢ approximation, the
phase boundary takes the shape corresponding
at least a few to the experiment (Fig. 2c) [6].

Meanwhile, just on the 15t approximation
stage, it can be stated definitely that there
is no nontrivial solution of problem (3)—(7).
In fact, under infinitely small perturbations
of planar crystallization front, the plot of
function R(x) differs only slightly from zero
line R(x)=0. In the 15! approximation for fi-
nite perturbations, the amplitude R(x) is sig-
nificantly different from zero (curve 1, Fig.
3). As the condition (7) is fulfilled automat-
ically, the increase of amplitude R(x) at tran-
sition from infinitely small values to finite
ones means that boundary conditions (4) and
(7) are contradictory, this contradiction being
revealed ever stronger at each further ap-
proximation (curve 2, Fig. 3).

The conclusion about the absence of the
solution of problem (3)—(7) at curved bound-
ary is also confirmed by the fact that, start-
ing from 1'-th approximation, the minimum
of functional (12) is attained at the values
of parameter ¢;,<1 (Fig.4). According to
the formula (14), this is possible only under
imaginary value of parameter k that, taking
into account its definition (see formula (1)),
has no physical sense. But if we become
limited by solution in the region of real
values, the minimum of functional (12) is
attained at x« =0 that is under the cell
halfwidth I = o, that corresponds to trivial
solution with planar phase boundary. The
calculation made for other values £ and B
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Fig. 3. The dependences of residual R on co-
ordinate x with regard of two conditions at
phase boundary under 15t and 274 approxima-
tion (curves I and 2) and at fixed boundary
under 2¢-th approximation (curve 3).
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Fig. 4. The dependence of the difference be-
tween functional values for the 2"d. and Oth
approximations Al, = I,—I; on the g¢;, pa-
rameter value at £ = 0.5 and B = 0.6.

(smaller than B,) showed that in all cases,
starting from a certain n value, the funec-
tional (12) takes the least value at ¢, <l.
The inconsistency of conditions (4) and
(7) can be illustrated also by a more tradi-
tional way. Let us consider at the problem
(3)—(6) with a fixed boundary in the form of
line z = @;(x) obtained under 15* approxima-
tion (Fig. 2a). The approximation of n-th
order for the case with fixed boundary let
be noted as n@-approximation. Obviously,
for the fixed boundary selected, the 15t- and
1lp-th approximations are coincident to one
another, therefore, the residuals R(x)
(curve 1 in Fig. 3) coincide, too. The line
z = @q(x) is described by equation (15) (with
parameters n =1 and Ay = 1), so in 1¢-th
approximation the boundary conditions of con-
centration C(¢) lay in the plane (L) defined by
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Fig. 5. The dependences of residual R; on co-

ordinate x under 2¢-th approximation at
fixed phase boundary got under 15t (curve 1)
and 1'-th approximation (curve 2).

equation (8), and the residual R;(x) (see for-
mula (9)) coincides with zero line in Fig. 5.

As it was expected, in the case with
fixed boundary, the amplitude R(x) is de-
creased when n increases (curve 38 Fig. 3).
But its decreasing is easier judged from de-
crease of root mean square residual o (see
formula (11)). So, for the curves 1 and 3
(Fig. 3), respectively, we get o = 0.0598 and
0.0399. The weak convergence of approxi-
mate solution of the problem (3)—(6) to the
exact one is an inevitable consequence of ap-
plication of free boundary condition [4]. Nev-
ertheless, the plot of function R(x) is steady
tending to the line R(x)=0 as n increases.

The residual R;(x) behaves itself quite
opposite: at n>1, it is not already equal to
zero (curve 1 Fig. 5) and while n increases,
its plot tends to a curve defined by the
pre-specified boundary. The R;(x) difference
from zero means that the boundary condi-
tions of concentration C(p) are not already
located within the plane (L), and this is
natural, as they are not already connected
with plane (L) by correlation (7). If we take
the line z = @(x) got under the 1'-st ap-

proximation as a fixed boundary (Fig. 2b),
the increase of the amplitude R;(x) will be
more significant (curve 2 Fig. 5). As the
functional I, values decrease at increasing
n both at variable and fixed phase bound-
ary, the increase of amplitude R(x) at the
decrease of amplitude R;(x) and vice versa
gives evidence about inconsistency of condi-
tions (4) and (7).

Thus, in the case of finite wvalues, the
problem (3)—(7) does not have any solution
with non-planar crystallization front. This
is explained by the fact that the conditions
at phase boundary contradict to each other.
Under a closer consideration of these condi-
tions, a direct dependence between their con-
sistency and the used solidification model
type is easy to state. Thus, it can be con-
cluded that the simplest bidimentional model
used in this investigation is unsuitable for at
least a few adequate description of real proc-
ess of binary melt crystallization. It has been
shown also that the solution of the binary
melt solidification problem will be primarily
defined by the appropriate selection of corre-
sponding model. Therefore, in the problem of
binary melt crystallization, not the of phase
boundary but the solidification model itself
has to be searched for.
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Crystal-

BukopucraHHa BiJIbHOI I'PaHIYHOI YMOBM
y 3ajadi KpHcTajdizanii 6iIHAPHOTO pO3MJIaBy

B.M.Kaniwes, C.B.Bapannik

3pobieHo cupoly pilleHHs MEeToAOM iHTerpaJbHHX (PYHKIIOHAJIB 3 HEBiZOMOIO 00JaCTIO
iHTerpyBaHHs Ta BiJIbHOIO I'paHiuHOI yMOBOIO 3amaui o mudysil momimKwm y posmiasi, 1o
Kpucraxisyerbcsi 3 mocTiiiHO mBuakicrio. Ilokasano, mio y pamMkKax HaWmpocrimoi mgBo-
BUMipHOI Momesi 3arBepmiHHS yMOBHM Ha MiK(asHIA rpadHuii OpoTHpeYaTsh OJHE OJHOMY.
PosrasimyTo 3aranpHy mpobJseMy icHyBaHHS PIillleHHs 3aJa4i IIpo TBEPAiHHS OiHAPHOIro PO3ILIABY.
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