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LSO:Ce, LSO:Ce,Dy and LSO:Ce,Yb nanocrystals were synthesized by the sol-gel
method. It has been found that the co-activation with Yb3* and Dy®* ions allows the energy
storage in a LSO:Ce crystal to be modified and the thermoluminescence and afterglow
effects to be controlled. The effect observed is due to electron properties of the co-dopant
ion (donor or acceptor) causing the trap charge exchange in a LSO crystal.

30JIb-TeIb METOJOM CHHTE3UPOBAHLI AKTUBUpPOBaHHbIe CE€ U COAKTUBUPOBAHHLIE HAHO-
kpucramnsl LSO:Ce,Dy u LSO:Ce,Yb. Vcramosieno, uto BBegeHUE [QOIOJHUTENLHOTO MOHA
cogorranTa (Yb wmam Dy) mossBossier M3MEHATh YPOBEHb BAIaCAHWS JHEPIHM B KPHCTAJLIE
LSO:Ce u TeM caMbIM yHPAaBISATH €ro IOCIECBEYeHHEM M TepMoJioMuHecueHmuei. Haburo-
JaeMblil oPMEKT CBA3AaH C 2JEKTPOHHLIMU CBOMCTBAMM MOHA COMOIAHTA (JOHOP MM aKIlell-
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TOp), KOTOpPbIe O0YCJIOBIMBAIOT IIePe3apAaKy 9JIeKTPOHHBIX JoByIlIlek Kpucramita LSO.

Due to a fast f—d luminescence of cerium
ions in the visible spectral range, numerous
Ce3*-activated crystals are used successfully
as scintillators [1]. Lu,SiOz:Ce3* (LSO:Ce)
crystals that possess good scintillation pa-
rameters stand out against such scintilla-
tors [2]. The LSO:Ce application in modern
positron-emission tomographs requires a
combination of efficient high energy regis-
tration (511 keV) with high time resolution
of the scanning system [3]. However, it has
been revealed that irradiation of LSO:Ce by
photons in the UV spectral range or ioniz-
ing radiation causes an effective energy
storage that is manifested in the crystal as
afterglow and thermoluminescence [4, 5].
This feature restricts significantly the
LSO:Ce application.

In [5-7], the nature of electron traps in
LSO.Ce crystals was studied in detail. It
was revealed that Ce3* ions can be pho-
toionized under some conditions through
the excited 5d level. Since the Ce3* excited
level is located close to the bottom of the
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LSO conduction band, the photoionization
can be thermally induced [6]. It was found
that the electron traps are formed in the oxy-
orthosilicate matrix and Ce3* ions are not the
centers of electron trap formation [6]. Under
optical excitation of Ce3* ions, the activator
ions act as electron donors and recombination
centers, but not as centers of electron trap
generation as it was supposed in [4]. The
structure of oxyorthosilicate crystal lattice
defects responsible for the electron trap for-
mation and thermoluminescence feature were
discussed in [8].

As doped rare-earth ions and electron traps
in a LSO:Ce crystal are independent subsys-
tems [6], the trap subsystem can be influenced
by the crystal co-activation with other rare-
earth elements. The co-dopant selection is de-
fined by its ability to affect the trap subsystem
in the crystal, i.e. a co-dopant should possess
pronounced electron donor or acceptor proper-
ties. In our experiments, Dy and Yb ions were
chosen as co-dopants. The Lu,, ,Ce,Dy,SiOg
(LSO:Ce,Dy) and Lup_y_,Ce,Yb,SiOg
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Fig. 1. (a) Luminescence spectrum of Lu,SiO4:Ce (1 at.%),Dy at various Dy%* concentrations (0, 0.5,

5 at.%), A

exc

=325 nm, T =300 K. The inset represents luminescence excitation spectrum of

Lu,SiO5:Ce(1 at.%),Dy (5 at.%) Kreg =490 nm, T = 800°K; (b) Lu,SiO4:Ce(1 at.%),Dy thermolumi-
nescence spectrum at various Dy®' concentrations (0.5, 5 at.%).

(LSO:Ce,Yb) nano-scale samples were syn-
thesized by the sol-gel method [9] from cor-
responding Ln,O3 (Ln=Lu, Dy or Yb) oxides.
Tetraethoxysilane Si(OC,Hg), was used as
SiO, precursor. Metal oxides were converted
into corresponding nitrates by dissolving in
nitric acid. Nitrates of the metals,
tetraethoxysilane, ethanol, surfactants were
taken in a stoichiometric ratio and stirred
at ¢+ = 80°C for 4 h. Ammonia solution was
used to increase pH value of the solution to
7 and the mixture precipitation. Then the
mixture was dried at 80°C under continuous
stirring to paste-like state. The sample ob-
tained was annealed stepwise within the
200-1150°C temperature range. The concen-
tration of cerium was the same for all sam-
ples (1 at.%), while the concentration of co-
dopants varied within 0.1-5 at.%.

The optically excited luminescence spec-
tra were registered using an automatic spec-
trofluorimeter on the base of a grating
monochromator. The luminescence was ex-
cited by a He—Cd laser (A = 325 nm) or a
Hg-lamp (A = 365 nm). The luminescence
excitation spectrum of Dy3* in LSO:Ce,Dy
was obtained using second monochromator
and a xenon lamp to select the necessary
excitation wavelength.

Fig. 1 shows the optically excited lumi-
nescence spectra of LSO:Ce,Dy. The spectra
represent the combination of the well-
known band of the Ce3* 5d—4f intercon-
figurational transitions with A,,, = 410 nm
and Dy3* 4f554f% intrastate transitions

314

within the 460—600 nm range. The increase
in dysprosium concentration causes a de-
crease in cerium luminescence intensity and
increase in dysprosium 4Fg,—%H;;, and
4Fg,9>%H; 3,5 luminescence intensity. How-
ever, along with an energy transfer process,
the direct excitation of Dy3* could be sup-
posed resulting from the spectral overlap of
its high-energy 4f states and the laser exci-
tation line (A = 325 nm). To verify this sup-
position, the luminescence excitation spec-
trum of Dy3* in LSO:CeDy was obtained
(Areg = 480 nm, see the insert in Fig. la).
The luminescence excitation spectrum con-
sists of a single wide band that coincides
with the Ce3* absorption band in
LSO:Ce,Dy. The absorption coefficient on
dipole-allowed 4f-5d transitions of Ce3* is
several orders of magnitude higher than
that on dipole-forbidden 4f—4f transitions
of Dy3*. So, in spite the fact that 4f states
of Dy3* are located in the 300—450 nm spec-
tral range, the Dy3* luminescence in
LSO:Ce,Dy is excited mainly through the
Ce3* jon due to energy transfer.

As it was shown in [8, 10], the energy
storage effect is a feature of oxyorthosili-
cates Ln28iO5:Re3+ (Ln = Lu, Y, Yb, Er, Gd).
The location of thermoluminescence maxi-
mum depends on a regular Re ion only and
is independent of the co-dopant [8]. The
variation of co-dopants causes changes in
thermoluminescence spectral composition
only. In LSO:Ce, thermoluminescence maxi-
mum is observed at 340 K [11]. Fig. 1b rep-
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Fig. 2. (a) Luminescence spectrum of Lu,SiO4:Ce(1 at.%),Yb at various Yb3* concentrations (0, 0.1,

0.5 at.%), A,y
various Yb3* concentrations (0.1, 0.5 at.%).

resents a fragment of the LSO:Ce,Dy ther-
moluminescence spectrum that corresponds
to the specified temperature range. The
thermoluminescence was registered in the
maximum of cerium Iluminescence (A=
410 nm) after irradiation of the LSO:Ce, Dy
crystal within cerium absorption band (A =
325 nm). In the case of the optical excita-
tion in the impurity absorption band, only
Ce3* ions act as electron donors charging
electron traps that are responsible for ther-
moluminescence. Figs. 1a and 1b show that
increase in Dy3* concentration causes the
cerium luminescence decrease and at the
same time, increase in thermoluminescence
intensity.

The luminescence spectrum of LSO:Ce,Yb
consists of the Ce3* luminescence band only
(Fig. 2a). Similarly to the LSO:Ce Dy
nanocrystal, increase in Yb3* concentration
causes the Ce3* luminescence decrease.
However, in contrast to LSO:Ce,Dy, the
thermoluminescence intensity decreases and
becomes inobservable at Yb3* concentration
of 0.5 at.% (Fig. 2b).

Thus, the efficiency of energy storage in
the LSO:Ce nanocrystal depends signifi-
cantly on the co-dopant type (donor or ac-
ceptor) and its concentration. As for now,
we cannot exactly specify the microscopic
mechanisms of the thermoluminescence
change in the LSO:Ce crystal depending on
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=325 nm, T = 300 K; (b) Lu,SiO5:Ce(1 at.%),Yb thermoluminescence spectrum at

the co-dopant type. We can just note that
the effect observed depends on the donor or
acceptor properties of the co-dopant and its
interaction with electron traps in the crys-
tal involving the conduction band. To de-
velop the adequate physical model, the data
concerning the location of impurity and
trap energy levels with respect to the crys-
tal band states are necessary.
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Kepysanna 3anacanaam eHneprii y Lu,SiO5:Ce3*
HAHOKPHCTAJAX NLJIAXOM CIHiBaKTHBYBaHHSA

A.O.Macanos, O.I''Bazin, 1.1.I'anina,
IO.M.Benixoeé, IO.B.Manwkin

304b-reIb METOLOM CHHTe30BaHO akTuBoBaHi Ce Ta cHiBaKTMBOBaHI HAaHOKpHCTAIN
LSO:Ce, Dy ta LSO:Ce,Yb. Bcranosieno, 1o BBefeHHs MLOAATKOBOTO iOHa CHIBJOMAHTY
(Yb a6o Dy) mosBoasic sminuTu piBens sanacauus emeprii y kpucranai LSO:Ce i rakum yuzoM
KepyBaTHu HOTro IicJACBiITIHHAM Ta TepMoJioMiHecieHIIielo. KdekT, mo crmocrepiraerscsa, mo-
B’A3aHUN 3 eJeKTPOHHUMHU BJIACTUBOCTAMH ioHA cHiBmomaHTy (moHOp ab6o aKIemTop), IIo
00yMOBJIIOIOTE IIepe3apsaIKaHHA eJeKTPOHHUX macTok Kpucrana LSO.
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