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Monte-Carlo computer simulation as well as theoretical estimate of the properties of
dendrimers with long, flexible branches in good solvent were conducted. It was shown that
such dendrimers demonstrate universal behavior independent on details of their internal
building. In particular, there exist a critical dendrimer generation number G.~5 that
signifies the transfer from coil-type structure with properties similar to linear polymer
coil to fractal structure (with fractal dimension & ~ 1.82). Numerical simulations as well
as theoretical estimate shows that both G.. and ¢ (at G > G,) are independent on the
number of spacers M in dendrimer branch and on dendrimer generation G (at G > G,,).

O6cyxaaloTesl pe3yJbTaTH KOMIILIOTEPHOI'O MOAeanpoBaHud MeromoM Mourte-Kapio u
TeopeTuUYecKre OIleHKM CBOMCTB JeHAPUMEPOB C IJNHHBIMA M'MOKMMHN CerMeHTaM{ B PACTBO-
purene. IlokasaHo, 4TO Takue JAeHAPUMEPHl JeMOHCTPUPYIOT YHHBepCcaJbHOE IIOBeJeHUe He-
3aBHCHMO OT JeTajiell UX BHYTPEHHEro CTpoeHusd. Tak, CyIIecTByeT KPUTHUYECKUI HOMeEp
noxonenns (,~5, TP KOTOPOM IPOMCXOAWT IIEPEXOJ OT CTPYKTYPHI THUIA KJIYOOK CO CBOIi-
CTBaMU, MOJOOHBIMHU CBOICTBAM JMHEHHBIX IIOJMMEPOB, K (PaKTaIbHOH CTPYKType (dhpak-
TaJbHAA pasMepHOocTh €~ 1.82). Kax uncienHoe MOIeIMPOBAHHNE, TAK U TEOPETHYeCKHe
OLIEHKM IIOKAa3bIBAIOT, uTO (7, He 3aBUCHUT OT 4YHCJa 3BeHbeB M B OXHOU BeTBU [JeHApUMEDA,
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a € e 3aBucuT oT M u moroseHus geaapumepa G (upu G > G

Dendrimers are synthetic macromolecules
with a tree-like branched structure. The
schematic representation of 27¢ generation
dendrimer on cubic lattice is given in Fig. 1.
Researching dendrimers is a part of molecu-
lar nanoscience with the purpose of tailor-
ing material properties at molecular level.
A considerable number of researches were
dedicated to computer simulation of den-
drimer properties (see e.g.[1-3]). However
length of dendrimer branches of the re-
searched structures was restricted to sev-
eral (up to seven) spacers, which led to the
dependence of dendrimer scaling properties
on the details of concrete model [2, 4]. The
purpose of the present work is to conduct
computer modeling of dendrimers with long
flexible branches, containing a large num-
ber (up to fifty) of spacers. Such den-
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drimers, like linear polymers, are expected
to obey universal scaling lows independently
of details of their building. In the present
work dendrimer properties are modeling by
Monte-Carlo method using algorithms, de-
scribed in the next section.

In the present work dendrimer chain is
modeled by a random walk along the ribs of
cubic lattice, the length of each rib taken
equal to unity. Excluded volume interac-
tions are modeled by prohibition to the den-
drimer chain to visit the same lattice node
more then once. According to [5] such
model corresponds to a macromolecule in a
good solvent where repulsion between its
segments much exceeds the attraction. In
the present work dendrimer modeling was
realized via the following algorithms.
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During the first step of dendrimer con-
struction, two random chains (branches),
containing M links each are built by conse-
quent adding links, starting from central
node. Each link is represented by one lattice
rib while the end points of each link repre-
sent dendrimer beads (similar to those in
bead-rode model [5]). Orientation of each
newly grown link is randomly chosen from
the available free positions to which new
bead could be placed. Then, during the sec-
ond step, two new child branches are built
in the same way starting from the end
beads of previously built parent chains.
After G-steps, dendrimer of generation G is
built. A schematic representation of 2nd
generation dendrimer with M = 4 on cubic
lattice is given in Fig. 1. All branches, ob-
tained at k-th step of constructing given
dendrimer constitute its k-th shell. The
total number of dendrimer beads Ntot
equals to 26TIM. It is possible that at some
moment branch gets stack, i.e. it has no
place for further growth. In this case a lim-
ited number of tries, n,,,, to built given
branch is made starting from the same end
node of the parent branch. If even then the
new branch can not be built, the entire
structure is discarded and the growth proce-
dure starts again from the central bead. To
each dendrimer D;, obtained by algorithm I,
the statistical weight Wj is aseribed

W, 1 (1)

’ H Nyries

all branches of Di

that is equal to probability to obtain given
structure if each structure was discarded
after first unsuccessful try to built new
branch.

Average value of any macroscopic char-
acteristic Z of dendrimers of given genera-
tion is determined as

<Z> = Z Wij/ZWj , 2
J J

where the summation is conducted over all
obtained structures.

Let us note that there is no guarantee
that conformations with the highest statis-
tical weight Wj can be obtained by algo-
rithm I. It is evident, that, due to exponen-
tial growth of number branches with shell
number, outer shells of dendrimer D. make
greater contribution to its statistical weight
than inner ones. On the other hand, algo-
rithm I leaves more free space, available for
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Fig. 1. A schematic representation of second-
generation dendrimer on cubic lattice.

growth, to inner shells, then to outer ones.
In order to diminish given drawback, the
following improvement of the described al-
gorithm is proposed.

The idea of such algorithm is to "artifi-
cially” extend inner branches of dendrimer
in order to allow more space for the outer
ones. In the present work this idea is real-
ized via regulating the two following pa-
rameters. The first regulated parameter is

r...: - r
child par ent 3
K — s ( )

|rp arenl‘

where r.;;,,; is a vector connecting first and
last beads of a branch from the given shell
while Yparent is the same vector for the par-
ent branch of the previous shell (see Fig. 1).
In fact parameter K presents some kind of
"effective stiffness” of dendrimer. Increase
of K diminishes probability for the child
chain turn backwards relative to its parent
chain, thus leading to dendrimer swelling
and allowing outer branches more space to
grow. Let us note that parameter K has
local character and does not apply on den-
drimer requirements of spherical symmetry.
As it will be shown below, this is important
due to pronounced fractal structure of mod-
eled dendrimers. Second regulated parame-
ter is

1
Reenter= §|rchild1 - rchild2|’ (4)

where r.;;4; and r ;42 are two branches of
a given shell originating from the same
bead (see Fig. 1). Increase of R,,,,;., leads to
separation in space of two branches points
of the same shell with the smallest topologi-
cal distance between them.
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Fig. 2. The dependence of beads concentra-
tion ¢ on the distance r from dendrimer cen-
ter. Generation number for each curve is in-
dicated in the figure.

In the present work parameters K and
R...ier for each branch were limited from
below. The statistical weight (1) of obtained
structures was calculated with account of
stuck brunches as well as of discarded
branches, that did not satisfy restrictions
for K and R, In order to increase ele-
ment of randomness, the lower limits of
these parameters were chosen randomly for
each branch. Both uniform and Gaussian
random distributions with various disper-
sions were used for this purpose, then
structures with maximal statistical weight
were selected. Results with the best statisti-
cal weight were achieved by regulating pa-
rameter R,,, ;.. only for the first and second
shells and parameter K only for the rest of
shells. The both described growth algo-
rithms were used. Starting from the sixth
generation, structures, obtained by algo-
rithm II have larger statistical weight.
Starting from the seventh generation, only
algorithm II can provide further dendrimer
growth. In the present work dendrimers
with M = 20 were investigated. The results
were averaged with account of statistical
weight (1) over 1000 conformations for each
dendrimer generation.

The examples of dendrimer radial density
and concentration profiles p(R) and c(R),
that is the number and the concentration of
dendrimer beads, found at distance R from
the central bead, are presented in Figs. 2
and 3 correspondingly. It can be seen from
the figures, that, although maximal concen-
tration is achieved at R = 0, most of the
beads are found at relatively large distance
from the central one. At dendrimer genera-
tion G < 5, the radial density profiles have
asymmetric shape similar to linear chains
with excluded volume [5], with left slope
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Fig. 3. The dependence of beads radial con-
centration p on the distance r from den-
drimer center. Generation number for each
curve is indicated in the figure.

essentially steeper then the right one. When
dendrimer generation reaches five, shape of
density profiles changes, becoming almost
symmetric with right slope slightly steeper
then the left one.

In order to investigate the described phe-
nomena in more details, let us consider av-
erage distance R,,/{G) of the dendrimer
endpoints to central bead (see Fig. 3). This
characteristic interesting due to easy anal-
ogy with linear polymers of the length L =
MG. Indeed, as it can be seen from Fig. 3., at
G < 5, the dependence of R,,; on G is close to
that predicted by scaling theory for linear poly-
mer of length L = MG (see e.g. [5]):

R,,{® = MG",v ~ 3/5(G < 5). (5)

At G > 5 R,,,(G) is well approximated by
the exponential dependence on G:

Rend@ ~ Rend(Gcr)z(G ~ CerViraet, (6)
Virger ~ 0.53.

Such dependence can be explained by the
fractal properties of dendrimers considered
in the next subsection.

It can be expected that dendrimers pos-
sess fractal properties since, from the topo-
logical point of view, each dendrimer bead
of k-th shell is a center of G—k generation
dendrimer. Indeed fractal properties of den-
drimers with a small number of spacers be-
tween branching points were described in
work [4] with fractal dimension ¢ close to 3.
In the present work, as it can be seen from
Fig. 4, dendrimers of generation G larger
than critical value G,.= 5 possess fractal
properties with fractal dimension ¢ close to
1.82 on the scale larger than R,,,(G.,). It is
natural to suppose that these properties are
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Fig. 4. The dependences of center-to-end dis-
tance R,,; on dendrimer generation G (solid
curve). The approximating functions are
f1(G) = 20G%-6 (short dashes) and f,(G) =
17.5.2(G-6)-0.53

due to the fact that when system scaling is
diminished by n times each dendrimer D of
generation G > G,, is split into n® partially
overlapping sub- of generation G — n® that
repeat structure of initial dendrimer. Cen-
tral beads of new sub-dendrimers are sepa-
rated in space via extension of their con-
necting branches. The process of splitting
continues until sub-dendrimer generation
reaches its minimal value G,.. It can be
easily seen that characteristic size R(G) ~
R,,4(G) of such system is of the order of
R(G,.,)2G - GJ/e) that well agrees with Eq.6.
Thus, according to the results of numerical
simulations, at G < G,,. = 5 dendrimers show
structure similar to linear polymer coil with
the same dependence of characteristic size
on total number of beads while at G > G,.,
the transfer to fractal structure occurs. In
the next subsection theoretical estimation is
made of the dependence of ¢ and G, on
dendrimer generation number G and spacer
length M.

When transfer from “coil” to "fractal”
state occurs at G = G, 2nd shell branching
points of dendrimer become centers of new
sub-dendrimers of generation G,.— 1. Such
transfer is accompanied by extension of
branches that connect 27¢ shell branching
points with central bead and corresponding
total free energy increase F.(G). On the
other hand, concentration of beads in each
sub-dendrimer decreases, as compared to in-
itial dendrimer, that leads to the total free
energy decrease F_(G). It is evident that
transfer from “coil” to "fractal” state oc-
curs at the value of G when F, (G) and F_(G)
become comparable. The part of free energy
F..,.(G), connected with the inner degrees of
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Fig. 5. The dependences of the number of
filled cells on cell size (for branching points).
Dendrimer generation is indicated in the fig-
ure. The linear fit for G =9 is indicated by
dashed line.

freedom of a dendrimer can be estimated as
that of linear polymer, containing 26M
links and placed into the cavity with linear
size R(G) ~ R,,4(G) determined by Eq. 5.
Such estimate gives (see e.g. [5]):

1
9GAr\3v - 1 ()
R(G)3j

Then free energy decrease due to trans-
fer to fractal structure is

F (G ~ ZGM{

F(G)=F,;(G)—2F,,;(G-1) ~ (8)

3y
1(2G\3v-1 1(2G
2e) *4e)
The free energy increase F (G) is due to
space separation of the second shell branch-
ing points. F,(G) can be estimated as that
for a linear polymer chain with excluded
volume, containing 2M beads and extended
to the distance 2R(G — 1) (measured in the
units elementary link length). Then esti-

mate of F,(G), obtained from linear poly-
mer scaling properties (see e.g. [5]) gives:

2.25

F(G) ~R(G)2/(2M)%¥ = (G/2)%. 9

Thus F,(G) and F_(G) become comparable at

Gcr. ~ ZQizzGcr ~ 20'52Gcr. (10)

From Eq.(10) follows transfer from
"coil” to fractal” state occurs at critical
dendrimer generation G,.,.~ 5 in full accord-
ance with numerical results. Moreover,
Eq.(10) predicts that the number of critical
generation G, is independent on the num-
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ber of links in the branch M. Indeed, pre-
liminary simulations with M = 30 and 50
show the same transfer from "coil” to frac-
tal” state at "critical” generation G,,. =~ 5.
In order to check the dependence of frac-
tal dimension € on M the free energy of the
system should be estimated with account of
interpenetration of different sub-den-
drimers. Let us consider sub-dendrimer of
generation @ + 1 with characteristic size
L(Q + 1) that is split into two smaller sub-
dendrimers of generation @ and charac-
teristic size L(Q). Sub-dendrimer of genera-
tion @ + 1 can from geometrical point of
view be considered as a spheres of the ra-
dius R(@ + 1) equal to L(Q + 1)/2 while the
smaller sub-dendrimers of generation @ pre-
sents two overlapping spheres of radii equal
to L(®)/2 and distance between their centers
equal to 2R, ;. so that L(& + 1) = L(Q) +
2R, ior- Considering the shape of sub-den-
drimers to be spherical, one easily finds the
volume V; of overlapping area:

intersec
Vintersec(Q) _ Rgenter_ 3Rcenter (11)
V(@) 2R%@ 2 R@Q

Thus, similar to the way it was made in
subsection 3.2.1., sub-dendrimers of genera-
tion @ can be associated with linear polymer
chains with the same number of links,
placed into the cavities of the radii R(Q).
Then free energy of the system can be esti-
mated as

2

F @ N(Rcentej 4 (12)
fract (2M)V
_8v_ _3v_
N (ZQMJ&’I N [2QMJ3V1 Vintersec
Rl/v Rl/v V .

Here first term corresponds to free en-
ergy increase due to space-separation of
sub-dendrimers, 27¢ term corresponds to
their internal energy and 87¢ term corre-
sponds to interaction of sub-dendrimers
with each-other.

Substituting Eq.(11) into Eq.(12) and
minimizing the free energy (12) with re-
spect to R one obtains

Teenter(Q) __ 2 ~0.53 (13)
R(@) 3v + 2
and
%= Le Teenter(Q) + R(Q) ~ 1.53.(14)

TLR-1) R@Q)
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Fig. 6. Snapshots of concentration distribu-
tion of the same 9™ generation dendrimer.
The spatial scale L of density averaging is in-
creased by 2 times for snapshots a, b and ¢
consequently. Black areas relate to concentra-
tions six time higher than ht-grey ones.

Now the fractal dimension of the system
can be estimated using the fact that as the
scaling L of fractal system diminishes by A
times, the number of filled cubic cells with
rib length L increases twice.

L@ Y _, (1%
L@-1)

Substituting Eq.14 into Eq.15, one obtains
€ ~1.62 that is close to obtained numerically
value ¢ » 1.82. As it follows from Egs.(14),
(15), the fractal dimension & of a dendrimer
is independent on G and M (at G > G,,).

It is interesting to note that, as it fol-
lows from Egs. (13-15), the best coincidence
of theoretically and numerically obtained
fractal dimension values is achieved at criti-
cal index value v, # 0.54 slightly smaller
critical index value v ~ 0.54 of liner poly-
mer chains. On the other hand, as it follows
from Eq.6, the following equality is met:

R(G) ~ Ny @iract, Vipger = 0.54.  (16)

Thus, it can be supposed that all proper-
ties of dendrimer at G > G, are determined
by the single characteristic size N, .(G)Yfract

and critical index vg,. plays for den-
drimers the same role as critical index value
v for linear polymers.

In conclusions, Monte-Carlo computer
simulation as well as theoretical estimate of
the properties of dendrimers with long,
flexible branches in good solvent were con-
ducted. It was shown that such dendrimers
demonstrate universal behavior independent
on details of their internal building. In par-
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ticular, there exist a critical dendrimer gen-
eration number (..~ 5 that signifies the
transfer from coil-type structure with prop-
erties similar to linear polymer coil to frac-
tal structure (with fractal dimension
€ ~ 1.82). Numerical simulations as well as
theoretical estimate shows that both G, and
e (at G > G,,) are independent on the num-
ber of spacers M in dendrimer branch and
on dendrimer generation G (at G > G,,). It
was shown that both in "coil” and "fractal”
states dendrimers possess universal scaling
properties, the dependence of dendrimer’s
characteristic size on its generation number
being determined by Eqgs.(5), (6). In particu-
lar, it was shown that dendrimer in fractal
state is split into sub-dendrimers that inter-
act with each other in the same way as
parts of a linear polymer chain (blobs) with
the same number of links, but with critical

index Vg4~ 0.54 slightly smaller than
that for linear polymers (v = 0.6).
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CkelIiHroBi BJIACTHBOCTI JeHAPHUMEPIB 3 JOBTHMHU
THYYKHMH CerMeHTaMH

M.Pamnep

OOGroBOpPOIOTHCS PE3yJIbTATH KOMII'IOTEPHOr'o MojenoBanHs meromom Monre-Kapuo i Teo-
PETHMYHOTO OI[iHIOBAHHS BJIACTUBOCTEH [OEHAPUMEDPIB 3 AOBIrMMHU TI'HYYKMMU CETMEHTAMHU Y
posunHHUKY. [JokasaHo, 110 TaKki JeHIpUMEepHU AeMOHCTPYIOTh YHiBepCcaJbHY IIOBEIIHKY Hesa-
JIeKHO Bim meranedl BHyTpimHboi Oymosu. Tak, icHye KpuTuuHuil HOMep nokoxinmua G, ~ 5,
3a SIKOr'o BimOyBaeThCsA IIepexij Big JIAHIIOrOBOrO THUIY CTPYKTYPH 3 BJIACTHUBOCTAMU, ITOMIi-
OHuMH m0 JiHifiHMX moaimepiB, mo dparrTambHOl cTPpyKTypu (dDparranbHa pPo3MipHicTb
€ ~ 1.82). fIx umcmoBe MOAeNIOBAaHHS, TAK i TEOPETWUYHI OUIHKHW AeMOHCTPYIOTh, mo G,.. He
3aJIe}KUTHh Bif KijgbKocTi jJaHOK M B OAHIN TiaIli JeHAPUMEDPY, a € He 3aJIeKUThb Bigm M i

moKoNiHHA AeHapumepy G mpu G >G,,.
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