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tion conditions are considered.  These examples allow to detect new conditions in an experiment. 
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INTRODUCTION 

It is known that the effective interaction of waves in 

weakly inhomogeneous, nonstationary and nonlinear 

media occurs when the following conditions are ful-

filled: k 0i

i

k   , 0i

i

    . These condi-

tions mean that the detuning of the frequencies and 

wave vectors of the interacting waves should be mini-

mal (see, for example, [1 - 3]). This also means that the 

synchronism conditions between the interacting waves 

must be satisfied along each of the four axes of the four-

dimensional space-time space. We note that often these 

four conditions are called the laws of conservation of 

energy and momentum in the interaction of waves. In-

deed, if each of these conditions is multiplied by the 

Planck constant, then these are the laws of conservation 

of energy and momenta in the interaction of individual 

photons with each other. In our previous works [4, 5] it 

was shown that in the general case, in some distributed 

systems, some other relationships for the frequencies 

and wave vectors of the interacting waves can be per-

formed for effective wave interaction. This possibility is 

due to the fact that detuning along one of the directions 

of the four-dimensional space can be compensated by 

detunings along other directions. As a result, certain 

lines (characteristic lines) can be identified in space 

along which an effective exchange of energy is possible. 

Effective exchange occurs, in spite of the fact that the 

known conditions of interaction between waves (see 

above) are not fulfilled. In this paper we consider the 

simplest examples of the realization of such a wave in-

teraction. It is shown that in the interaction of two 

waves in an inhomogeneous nonstationary medium, can 

arise the waves, whose frequencies do not satisfy the 

known conditions given above. 

1. PROBLEM STATEMENT.  

BASIC EQUATIONS  

Let's consider a medium whose permittivity can be 

represented as two terms. The first term is a constant. 

The second term is assumed small, but is a periodic 

function of space and time. As an example, we can con-

sider the following expression for such a permittivity: 

 
0 , cos( ), 1.q r t q          (1) 

Let two electromagnetic waves propagate in such a 

medium, the wave frequencies of which are different. 

We will be interested in the conditions for the effective 

interaction of these waves in such a medium.  The equa-

tions for each of these waves are the Maxwell equation. 

From the Maxwell equations it is easy to find the equa-

tions for the electric field vectors of each of these elec-

tromagnetic waves: 
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

  
     

  
 (2) 

By assumption, we have two waves, so we will seek 

the solution of (2) as the sum of two terms: 

0 0 0 1 1 1( , )exp( ) ( , )exp( ),E A r t i t ik r A r t i t ik r       (3) 

here 
2 2 2 2 2 2

0 0 0 1 1 0/ , /k c k c     .  

Let us consider the simplest case, which shows the 

most important characteristics of the new interaction 

conditions and which, apparently, is most easily realized 

in the experiment. We will assume that the interaction 

occurs between transverse waves, that the medium is 

periodically non-uniform in only one direction (in the z 

direction). In this case, the time detuning can be com-

pensated only by a detuning along the z axis. Moreover, 

we will assume that the waves are located on one dis-

persion linear branch. In this case, the phase velocities 

of the waves and their group velocities coincide. As will 

be seen below, all of these restrictions are non-essential 

(they are imposed only to simplify the formulas) and, if 

necessary, can be easily removed. We will also assume 

that the waves propagate only in one direction  in the 

direction of the axis. In this case, substituting (3) in (2), 

we can obtain the following equations for finding the 

amplitudes 
iA : 
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 (4) 

where ( , )r t k r t      ,  1 0k k k     , 

1 0 .       
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This system is regorous. It is supposed that the de-

tuning   though is arbitrary however it is chosen in 

such a way that only these two waves can interact. 

Characteristics of the equations (4) without the second 

derivatives (i.e. subcharacteristics) are parallel to 

straight lines: 

( , )r t k z t const       . 

It means that derivatives along these subcharacteris-

tics are equal to zero: 0








, here z   , 

0/t c   . 

The interaction of waves is due to the small inhomo-

geneity ( 1q  ) of the dielectric constant. It is natural 

to expect that the wave amplitudes will change slowly. 

Therefore, in the system of equations (4), we can omit 

the second derivatives. 

It should be noted that this assumption always re-

quires additional analysis. In particular, as a minimum, 

the obtaining solutions should be tested to satisfy this 

assumption. We note that taking into account the second 

derivatives in the system of equations (4), of course, 

opens the possibility of the appearance of new solutions, 

which may be interesting in their own way. 

However, the questions arises: "How the presence of 

second derivatives can change solutions that are ob-

tained without taking into account these derivatives." 

Will the solutions obtained (within the framework of 

accounting only the first derivatives) be stable with re-

spect to accounting for second derivatives? "This ques-

tion can be quite easily studied. Indeed, following [6], 

we consider one equation from system (4), in which we 

omit the right-hand side: 

 
2 2

2 2
0

A A A A

z z
 

 

    
    

    
.  (5) 

In equation (5)   and    are arbitrary constants. 

Add the following new variable: z   . Equation (5) 

in the new variables has the form: 

   
2

4
A A A

   
   

  
    

   
.     (6) 

We will consider the dynamics of the jumps along 

the sub-characteristics: 0z const       and 

0z const      . For example, the amplitude jump 

at propagation along the subcharacteristic 

0 const    has form: 

0 0( , ) ( , )
A A

s    
 

  
 
 

.           (7) 

Substituting into Eq. (6) one by one 0    and 

0   , also combining obtained the equations, we find 

the following equation, which describes the dynamics of 

jump: 

 4
s

s 



 


.  (8) 

From this equation it follows that the dynamics will 

be stable if the following conditions are fullfield: 

Re( ) 0   . Similarly, we can find the stability con-

dition for the solution as the jump propagates along the 

second subcharacteristic. Finally, the stability condi-

tions for the solutions obtained by neglecting the second 

derivatives will look: 

Re( ) 0   ,     Re( ) 0   .   (9) 

These conditions are quite general. They are suitable 

for the stability analysis in many applied problems. For 

example, in the case of the propagation of wave beams 

in inhomogeneous, nonstationary and nonlinear media. 

In our case, it is easy to see that the coefficients   and 

  purely imaginary. This means that in our case the 

second derivatives are unable to radically change the 

dynamics of the solutions obtained considering only the 

first derivatives. 

We drop the second derivatives on the left-hand side 

of system (4). Then the left-hand side of these equations 

can be regarded as a derivative along the characteristic 

lines: z C const     . Moreover, these directions 

for interacting waves coincide. We also pay attention to 

the fact that the right-hand sides of the system of equa-

tions (4) contain complex conjugate factors 

 exp ( , )i z t . In this case, taking into account that 

0








  or  0/k c        (10) 

in the system of equations (4) differentiating the left and 

right sides of the equations with respect to the new vari-

able, we obtain the following equations for determining 

the amplitudes 
0A  and 

1A : 

 
2

2

2
0 0,1i

i

A
K A i




   


,       (11) 

where  2 2

0 1 / 64K q k k  . 

Solutions of equations (11) can be, for example, 

functions: 

0 cos( )A a   , 
1 sin( )A b   .  

This choice of solutions, in particular, can mean that 

there is a periodic transfer of energy from one wave to 

the second wave in the process of their interaction. 

The interaction of waves considered above occurs 

when they propagate in the same direction, in the direc-

tion of the positive z axis (
0 10, 0k k  ). It is easy to 

show that if they propagate in the opposite direction 

(
0 10, 0k k  ), then the interaction will occur under 

the same laws of interaction. However, this interaction 

will occur along another subcharacteristic. Namely, 

along z   . In this case, the system of equations 

(11) will be transformed into a system of equations: 

   
2

2

2
0,i

i

A
K A




  


   (12) 

where z   ,  0,1i  . 

2. INTERACTION IN THE LAYER  

In this paper we study new conditions for the effec-

tive interaction of waves in inhomogeneous media. In 

addition to general theoretical considerations, it is of 

interest to consider some simple case in which the basic 

elements of the new interaction conditions under con-

sideration were contained and that would be as simple 

as possible so that they could be realized in the experi-
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ment. In this section such case will be considered. It is a 

layer of thickness L  of an inhomogeneous medium. 

The boundaries of the layer are ideally reflective. Inside 

the layer, two waves propagate perpendicular to its 

boundaries. Each of these waves represents the sum of 

two waves, one of which propagates along the z axis, 

and the other is a wave reflected from the boundary 

(Fig. 1).  

 
Fig. 1. Interacting waves in layer 

Dynamics of interaction of each of these waves has 

been described above. Expression for the field compo-

nents in such a system can be represented in such form: 

 

 

 

 

0 0 0

1 1 1

0 0 0

1 1 1

Aexp( ) exp( ) exp( )

Cexp( ) exp( ) exp( ),

Aexp( ) exp( ) exp( )

Cexp( ) exp( ) exp( ).

x

y

E ik z B ik z i t

ik z D ik z i t

H ik z B ik z i t

ik z D ik z i t





 

 

    

    

     

     

 (13) 

In formula (13)   is homogeneous part (constant) 

dielectric permeability of the layer 0 , 1z L    , but 

, , ,A B C D  are slow functions of time and coordinate.  

The analytical type of these functions is determined by 

the solutions of equations (11) and (12). To determine 

the constants of these functions, it is necessary to use 

the boundary conditions. In this case, they are simple: 

   0 :z    0; 0A B C D    . 

   :z L  
0 0

1 1

( ) exp( ) ( )exp( ) 0;

exp( ) exp( ) 0.

A L ik L B L ik L

C ik L D ik L

   

  
 (14) 

In the system equations (14) functions , , ,A B C D  

can be presented in the form: 

exp(i )A a    ;  exp( i )B b     ;   

 exp(i )C c    ; exp( i )D d     .             (15) 

In the expressions (15) a,b, ,dc  constants. Taking 

these expressions into account, the algebraic system of 

equations (14) can be rewritten as follows: 

   0 :z    a b  ;   c d  . 

   :z L              

   0 0exp ( ) exp ( )a i k L i b i k L i            . (16) 

We note that for the effective interaction of waves in 

the considered dielectric layer, it is necessary that the 

wave numbers satisfy the following relation: 

 0k L n  .   (17) 

Taking into account the relations (16), the expres-

sion for the electric component of the total field in the 

layer can be expressed by the following formula: 

   
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0 0
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1
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(18) 

or  

   

   

0 0

0 0 1

1 12

1

Re sin sin

sin sin .
4

E a k z

k k k
a k z

k

 

 

          

          

.    (19) 

3. INVESTIGATION OF THE DYNAMICS  

OF INTERACTION OF WAVES  

BY NUMERICAL METHODS  

Conditions of the effective interaction of waves in 

inhomogeneous media have been verified by numerical 

methods. For this purpose introducing new dimension-

less variables 
0 1 0 0 1/ ;k k t c k k z       , and 

also introducing new dimensionless amplitudes 

0 0
3 34

0 1

1
( , ) ( , )a A

k k
   


 , 1 1

3 34
0 1

1
( , ) ( , )a A

k k
   


  

from (4) (without taking into account the second deriva-

tives) we will obtain the system of equations for the first 

derivatives in the form: 
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 

0 0
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0
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4
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4
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i

a a q
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i

  
 

  
 
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      
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       

 

 (20) 

Here ( , ) k           and introduce dimen-

sionless detunes 01

0 1 0 1

kk
k

k k k k

 
    

 
 

, 

001

0 1 0 1

kk

k k c k k




 
     

 
 

. 

The initial and boundary conditions are chosen in 

accordance with the analytical solutions. Amplitude 

value of the field 
0 1a  . The parameter 0.8, 0.1q  . 

The results of the analytical and numerical analysis 

of the system of first-order equations obtained from (4) 

are presented in Figs. 2-4. In Fig. 2 at 0.8q   presented 

dynamics of the interaction of waves for the case of ful-

fillment of known synchronism conditions 

( 0k     ), also for the case of identical detunings 

( 0k     ). As can be seen from this plot, the dy-

namics of the interaction of waves is practically the same. 

If there is a detuning along one of the directions (for ex-

ample 1.095k  ), there is no effective interaction be-

tween the waves (Fig. 3). Analytic and numerical solu-

tions coincide with a good degree of accuracy. 

 
Fig. 2. Analytic and numerical values of the field ampli-

tudes along the line    for detuning 0k     , 

1.095k     , 0.707k     , 0.8q  ,  

0Re( )a   red line, 
1Im( )a   blue line (dotted line) 

Fig. 3 shows that the interaction of waves is practi-

cally absent. Indeed, the amplitude of the wave oscilla-

tions, which is caused by interaction with other waves in 

1

0

0 L

z
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absolute magnitude, is negligible. Besides, it is seen that 

the frequency of these oscillations of the amplitude cor-

responds to the value of detuning. 

 
Fig. 3. Value of amplitude 

0Re( )a  along the line    

for detuning 1.095k  , 0  ; 0.1q   

   
Fig. 4. Plots of amplitude 

0Re( )a  

a  – 0k     , b – 0.707k     ; 0.8q   

Fig. 4 shows that both in the case of the known syn-

chronism conditions and in the case of equal detunings, 

the amplitude of the initial wave varies periodically 

along the characteristic line   . Notice that under 

the known conditions of synchronism the real part of the 

amplitude of the initial wave is strictly transferred into 

the imaginary part of the second wave and back. When 

the new conditions are fulfilled, the energy exchange 

process is more complicated, which is represent in 

Fig. 4,b. It should also be noted that, unlike the known 

synchronism conditions, in which the energy exchange 

between waves can be observed in the ordinary space, 

the energy exchange between the waves in the presence 

of detunings in the general case is effectively observed 

along the selected subcharacteristic. This feature of the 

interaction of waves in the presence of detuning is clear-

ly visible from Fig. 2 at 1.095k     . 

CONCLUSIONS  

Thus, the results obtained above show that, in addi-

tion to the known conditions for the effective interaction 

of waves ( 0k     ), there are more general condi-

tions for energy exchange between the waves.  

In the case considered above, these conditions have 

a simple form k
c

 
  . Under these conditions, 

detunings k and    are almost arbitrary values. As 

can be seen, these new conditions contain, as a particu-

lar case, known synchronism conditions 0k     . 

To visually see the difference in old and new condi-

tions, in the Fig. 5 shows an example of waves which 

can effectively interact is presented. If to use the known 

conditions of interaction, then for most of these waves 

they can't be fulfilled. We use the new conditions of 

synchronicity. It is easy to see that any triplets of waves 

that are represented in the figure satisfy the new syn-

chronism conditions /k c    . They can effi-

ciently exchange energy. There are infinitely many such 

triples. 

An important example of the conditions under con-

sideration is an example of the interaction of waves in a 

plane layer, which was considered above. Indeed, as can 

be seen from the formula (19), the expression for the 

real component of the electric field can be easily meas-

ured in real experiments. It can be seen that the appear-

ance of waves with new frequencies (
1 ) can easily be 

observed if at the initial point of time only one wave 

with a frequency (
1 ), in a layer there was only one 

wave with a frequency (
0 ). 

 
Fig. 5. Dispersion effectively interaction of waves  

at 0k      
If we consider an unbounded region of interaction, 

then the new synchronism conditions are not very con-

venient to observe. They can effectively manifest them-

selves, for example, in systems with electron beams. In 

other cases, it is rather difficult to observe these condi-

tions. However, if the wave interaction region is bound-

ed, for example, as was done in Section 3 above, then it 

follows from formulas (18), (19) that it is easy to observe 

these conditions. Indeed, it is enough to fix the probe at 

an arbitrary point in the layer. And in time, the probe will 

appear oscillations both at the frequency of the original 

wave and at frequencies that might not appear when the 

known synchronism conditions are fulfilled. 
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ОБ ЭФФЕКТИВНОМ ВЗАИМОДЕЙСТВИИ ВОЛН В НЕОДНОРОДНЫХ,  

НЕСТАЦИОНАРНЫХ СРЕДАХ 

В.А. Буц, А.П. Толстолужский 
 

Дано описание новых условий эффективного взаимодействия волн в периодически неоднородных и не-

стационарных средах. Новые условия, как частный случай, содержат известные условия взаимодействия 

волн (условия синхронизма). Рассмотрены примеры взаимодействия волн, характеристики которых удовле-

творяют новым условиям взаимодействия. Рассмотренные примеры позволяют обнаружить новые условия в 

эксперименте. 

ПРО ЕФЕКТИВНУ ВЗАЄМОДІЮ ХВИЛЬ У НЕОДНОРІДНИХ,  

НЕСТАЦІОНАРНИХ СЕРЕДОВИЩАХ 

В.О. Буц, О.П. Толстолужський 

Даний опис нових умов ефективної взаємодії хвиль у періодично неоднорідних та нестаціонарних сере-

довищах. Нові умови як окремий випадок містять відомі умови взаємодії хвиль (умови синхронізму). Розг-

лянуто приклади взаємодії хвиль, характеристики яких задовольняють новим умовам взаємодії. Розглянуті 

приклади дозволяють виявити нові умови в експерименті. 


