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Dispersive characteristics of a cylindrical cavity with an ideally conducting outer wall has been investigated,
whose radius is described by a sinusoidal-periodic dependence on the azimuth angle. From the convergence of the
infinite determinant (dispersion equation), we obtain a positive definite bounded algebraic form, whose properties
follow the dispersion characteristics of both a smooth and a corrugated cavity. On the basis of the obtained algebraic
form, the variances of the first harmonics of a corrugated cavity with an even number of corrugations are investigat-
ed. The obtained analytical dependences correspond quantitatively to the experimental data.
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INTRODUCTION

Corrugated resonance systems are widely used in
various microwave devices. For effective using of such
systems, it is necessary to know exactly their eigenfields
and cut-off frequencies. Traditional methods for calcu-
lating the cut-off frequencies and eigenfields fields of
such complex structures require the use of simplifying
assumptions about the form of the fields. The most uni-
versal method is the derivation of the dispersion equa-
tion in the form of an infinite determinant, followed by
its circumcision. However, this method contains a num-
ber of obvious drawbacks. In this paper, we propose a
different approach to analyzing the dispersion properties
of corrugated systems. On a particular example of a
sinusoidal corrugated waveguide with ideal walls, the
main points of this method are shown.

1. TYPES OF OSCILLATIONS OF A
CYLINDRICAL CAVITY WITH SINUSOIDAL
CORRUGATED BOUNDARIES
IN THE AZIMUTH DIRECTION

Consider a corrugated, ideally conducting metal cav-
ity, in the cross section of which the radius of the lateral
surface varies according to the law (see Fig. 1):

R(p)=R,[L+asin(Mep)), (1)
where ¢ - azimuth angle in a cylindrical coordinate

system, M >>1 is integer, a:i_R<1, AR is the
0

depth of corrugation, R, is average radius of the cavity.

We consider that there is a vacuum inside the cavity.
Along the axis z it is unlimited, and is located in the
external, directed along the axis of the cavity, a constant

magnetic field of strength qu finite quantity.

The possible modes of oscillations of such a metal
cavity can be characterized on the basis of the mode of
oscillation of the anode block of the magnetron [1].

In the cross section, the cavity is a closed chain of
completely identical M hollow cavities, arranged at
equal distances from the axis of the cavity (under the
hollow cavity we mean the recess of the corrugation).
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Fig. 1. Cross section and obtaining boundary conditions
for the electric field strength in a cavity with an ideally
conducting lateral surface. An example is taken
of a cavity with a number of corrugations M =5

In the frequency range under consideration, only one
(lower) mode of oscillation is excited in each of these
cavities. The above-described chain hollow cavity can
be regarded as a ring rolled into a periodic sinusoidal
retarding system, which is a kind of comb systems with
a metallic base.

We assume that the resonance condition for the
waves in the considered cross section of the cavity, as in
any ring cavity, is the equality of an integer number of
cavity wavelengths to the circumference of its mean
radius [2]. If we denote the wavelength in the cavity (in
the azimuth direction along the surface of the cavity of
radius R;) through A, then the resonance condition in
the cavity will be next:

2nR, =ni,, n=0,123,... (2

At the same time, condition (2) can be expressed in
terms of the phase difference in any neighboring cavi-
ties:

Qy,M=2m,n=0123,... (3)

Consequently, the phase shift of oscillations between
cavities can take only discrete values:
2nn
(\DM,n = W : (4)
Thus, in the general case, expression (4) indicates
the existence in the cavity M modes.
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Analogously to the definition of the mode of oscilla-
tions in magnetron cavities adopted in [1], we consider
the case, where M =2m — even number.

When n =0 electromagnetic oscillations in all cavi-
ties occur synchronously (there is no phase shift). When
n=M/2=m the neighboring cavities oscillate in anti-
phase, i.e. with a phase shift ¢,, . =m.

By analogy with oscillations in magnetrons, we will
call this mode of = -type oscillations, and we will consider
it as the main form of oscillations of a hollow cavity.

For even M oscillations with a phase shift for n in
the range m < n < 2m do not differ in physical content
from those obtained for 0 <n<m. Thus, it can be stat-
ed that all types of oscillations with n=0 and n=m
are degenerate; pair wise have the same frequencies. It
is known that degenerate modes of oscillations are not
used in magnetrons. Therefore, they are of no interest
for the investigation of the types of waves in the hollow
cavity we are considering.

On the basis of the foregoing, we will further con-
sider everywhere the 7 -type oscillations with an even
number of corrugations M =2m.

2. THE DISPERSION PROPERTIES
OF THE CAVITY WITH SINUSOIDAL
CORRUGATED BOUNDARIES
IN THE AZIMUTH DIRECTION

We will assume that the dependence of the electric
E(F,t) and magnetic H(F,t) fields from time and coor-
dinates along the axis of the cavity is given by a factor
exp(i(k,z — wt)), which will be omitted in the future.

To describe the field TE electromagnetic waves it is
enough to set the component H,(r,), since the re-

maining components are determined by the following
expressions:

£ (r.0)=io—L 2 (r0)= i B B, (rg)=0;

rk? o¢ k?

.1 oH .1 oH
H,(ro)=ik, —~—=; H (r,0)=ik, ——=; (5
(ro)=ik e Zri Hlne)=ik e 7k 6)

where k, =,/k?*—k? is the transverse wave number,

k :% , C is the speed of light in vacuum.

Component H,(r,) is a solution of the homogeneous
Helmbholtz equation in the cross section of the cavity S:

1o0( oH, 1 0°H
——1r +
ror or

FWZZ_FKEHZ:O' (6)

The solution of equation (6) must satisfy the bound-
ary condition on the ideally conducting lateral surface of
the cavity, which corresponds to zero tangential compo-
nent of the electric field strength TE of the wave:

E|, ) =00s(0(9)) E, —sin(®(¢)) E.. ~ (7)
Angle value 6(p) in (7) is determined according to
Fig. 1 geometric constructions, where
dR, = aMR, cos(Me)de, dR, = R(e)de,
tg(0(¢))dR, /dR, = MR, (R(¢))™ cos(Me).
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On the cavity axis, the solution of equation (6) must

be limited:
\H‘(r,t)( <. (8)

Due to the azimuth periodicity of the corrugated cavi-
ty with period n/m, we represent the solution of (6) in the
form of a Fourier series with respect to the angle o:

H.(he)= 3AJ, (k™. O
where A is the amplitude of I-th harmonic, J,(x) is the
Bessel function of the first kind n-th order from the ar-

gument X.

For n-type oscillations the perturbed magnetic field (9)
in the neighboring corrugations oscillate in antiphase, i.e.

Hz[r’w—%j: iAJlm(kJ)e”m(waj = ie"%\llm(kﬁ)e"m“”.
I=—o0 |=—w0

Hence it follows that in order to satisfy the condition
for the existence of m-type oscillations index | in (9)
must take odd  values: I=2I"-1, where
I'=...;-3,-2;-1,0;1;,2;3;... are natural numbers. In this
case, the phase opposite condition is fulfilled for the
corrugation period:

H{r,gw%j:e‘"Hz(r,(p):—HZ(r,cp).

The expression (9), taking into account the above, is
transformed to the form:

H, (I’, (\D) = IiocAzwa m(21"-1) (kL I')eim(z"'l)“’ =

= |; A|"] m(21'-1) (klr)eim(ZVAM '

For the projections of the electric field strength from
(10) we obtain expressions:

(10)

. 1 oH om & oo
E r, =1® - —_ | /J ) k r im(21'-1)¢
r( (p) I’kf (3({) I’kf I;xA m(21 71)( 1 k
__dodH, _ _io &y imer-te dJy(ar-1)(X) .(11)
Ew(r' ) k? or ky |';wA1’e dx xek

Substituting the values of the fields (11) in condition
(7), we obtain the boundary condition on the lateral sur-
face of the cavity in the form:

. Xz d‘Jm(zwn(X) i
Z A‘/‘e\m(zl’fl)w m dx . :0'
B +io2m® (21" - 1)x, cos(2me)d -, (X, )
where after taking the derivative of the Bessel function
it is necessary to substitute
x=x, =k, R,(1+a-sin(2mg)).

The left-hand side of equation (12) is a periodic func-
tion with respect to ¢ with period ©/m. Expanding the
left-hand side of equation (12) in a Fourier series on the
structure period, we obtain an infinite system of homoge-
neous equations with respect to the amplitudes A :

(12)

>AC, =0,—o<n<oo, (13)
1=
where
dJ 1) (%)
xlom |y2 2om(@-1)
S‘,l' :m I Xm dx - + Xei(l’—n)quyd(P .
2 | i 2m? (21 - 1)% s (2m) yo1--1) (X )

The condition for the existence of a nontrivial solu-
tion of the system of homogeneous equations (13) is the
requirement that its determinant be equal to zero:
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detC;, =0. 14)

Condition (14) is the dispersion equation of the cavi-

ty with sinusoidal corrugated boundaries in the azimuth

direction. It was first obtained in [3, 4] for =n- and 2x-

type oscillations. However, in the present paper, when

obtaining the dispersion equation for the identification

of m-type oscillations a physical criterion is used, con-

sisting in the requirement to change the sign of the field
strength for neighboring corrugations.

3. THE DERIVATION OF THE ALGEBRAIC
FORM FOR THE CAVITY,
WHICH IS CORRUGATED
IN THE AZIMUTH DIRECTION

An analytic calculation of the determinant (14) is not
possible. However, starting from the property of its
convergence, we construct an algebraic functional that,
by analogy with the functional obtained in [5], contains
the dispersion characteristics of the cavity. We briefly
describe the method of obtaining such an algebraic
functional.

Suppose, for example, there is a zero infinite determi-
nant detW  =0. The equality of an infinite determinant

to zero indicates its convergence. From the convergence
of an infinite determinant it follows that the sum of its

(n=1) and the product

of the elements of the main diagonal Q,, =1+W,_, [6].

The above properties of the elements of a converging
infinite determinant correspond to the convergence of

an infinite product f[(l+ > . j , those
|=—o0 n=—o0
ﬁ(l+ i [an,l ): D<o, (15)
|=—o0 n=—wx
where D is the finite number.
From the inequality P<D, P= 1—[( j it

follows that the infinite product P also converges.
From the absolute convergence of the infinite prod-
SW, jEP’<P,

n=-o

uct P, by virtue of inequality f[[

==

follows the convergence of the infinite product P’.
Thus, on the basis of the above arguments, the con-
vergence of (14) implies the convergence of the infinite
2.Coy

product:
IH[ n=—o0

and the convergence of (16) implies the convergence of
the infinite product:

(16)

jom<oo,

ﬁ[ icgl,jzc;ﬂ —C, <. (17)
|'=—o0\_[n=—00
For compute C! , we use the representation:

Serm =225 5( 2:;") (18)

Using (18), we first compute the sum
zc Wumw(zr Wy (%) (19)

and then the infinite product C; :
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c =11

I'=—of

ng‘](ztlji;(x)-"zmm (Zl )0 mz|1(0*(20)

Convergent infinite product C' in the form:

dJ
Ci=] I-JXO
I'==

ZI1

(21)

where

a4 ara) (X )J - .

cP = 2iam2(2|'—1)Jm(2,,1)(x0)(x0 "

We assume that the infinite product on the right-
_ ﬁ X2 dJ m(ZI'—l)(XO)

I'=— 0 dx
those C! <oo. Then, using arguments analogous to the

convergence of the infinite product (15), we arrive at the
convergence of the infinite product

hand side of (21) C/ converges,

=P/ /P! <, from which the convergence

of the

11

'=—o0

infinite product follows
"=P"<P!|P!<o. Thus, from the property of

convergence of the infinite product (21), we can obtain
a next bounded algebraic form:

00}
2am =10 g6 O{XU(ZtliXI)(O]

where the absence of an imaginary unit in the numerator
(22) follows from the property of the modulus of the
product of two complex numbers [7].

It should be noted that expression (22) is valid both
for positive values of the corrugation depth o, and neg-
ative. In what follows we use the following property of
convergent infinite products: the discarding of one or a
finite number of first factors from a convergent infinite
product does not affect its convergence [6]. On this ba-
sis, we can conclude that the convergence of (22) im-

plies the convergence of at least one factor |C

where |, =1,2,3,... are the harmonics of the TE oscilla-
tion of the cavity. Consider the consequences of the
convergence of one factor |C/”

4. DISPERSION PROPERTIES

OF THE CAVITY CORRUGATED
IN THE AZIMUTH DIRECTION

4.1. DISPERSION PROPERTIES
OF ASMOOTH CAVITY

It follows from (22) that for w-ype oscillations with
a—0 numerator of a convergent C; tends to zero.

Therefore, for the convergence of the infinite product
(22) for the harmonic |, it is necessary that the denomi-

nator C;" also aspired to zero:
d‘] m(ZIO—l)(XO) _ 0
dx o
xg=k | Rg
where due to the lack of corrugation m can take any
values m=0,+#1+2,..., and (2l,-1) in expression

(22), only odd. In contrast to (23), for 2n-type oscilla-
tions 2I, in the expression (22) takes only even values.

\cl \ =pr<w, (22)

—00

<o,

<0,

(23)
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Therefore, combining these two cases of oscillations (27-
type and n-type), we can conclude that the dispersion
relation TE of electromagnetic oscillations in a smooth
cavity is determined by the expression (23), where the
order of the Bessel function of the first kind can take any
integer values. The same result is obtained when solving
equations (5), (6) for an ideally conducting smooth cavity
as a result of applying the boundary condition (the equali-
ty of the tangential component of the electric field

strength (EW(RO,(p] Y :0) on an ideally conductive lateral

surface).
In the absence of corrugation (o — 0) from (23) it is

not difficult to obtain the eigenfrequencies of the TE
electromagnetic oscillations of a smooth cavity:

12
o, =C /kf +y”‘2' ;
RO

where v’ — i -th zero of the Bessel function derivative
dJ,(x)/dx order p (p=0,123,..).

In what follows, when analyzing infinite products of
the form (22), one should take into account the fact that
the positive zeros of the derivative of the Bessel func-
tion n-th order are interspersed with the positive zeros
of the Bessel function n-th order, i.e. are arranged as
follows [8 - 10]:

RS S S S R S RS (PR AR N ¢

4.2. DISPERSION PROPERTIES
OF A CORRUGATED CAVITY WITH AFINITE
DEPTH OF CORRUGATION (a<1)

4.2.1. DISPERSION PROPERTIES
OF A CORRUGATED CAVITY FOR CUT-OFF
FREQUENCIES IN THE INTERVAL
0=<Xx, <v/

(24)

21p-1),1
As noted above, the singling out of one factor in the
infinite product (22), for example |C/|, does not affect

on its convergence. In this case, the following chain of
transformations holds:

|H C'|=|Cy

Cm

_Cm

lo

5

=—00,

D, =P/<w.
I'#lg
It follows that |C/"
can be represented as a convergent infinite product [10]:
-1
0 X2 X2 pr
=[of[T] 1~ 52— |1~ A <0 (26)
H 1[ " >][ i >,n] 2Dy

n= Ym(21g-1 2lp-1

=P".D;! is a limited quantity that

m

Let us analyze the conditions for the convergence of
an infinite product (26). It follows from (26) that the
cutoff frequency with an increase in the depth of the
corrugation should decrease to zero; natural oscillations
of the cavity m-type disappear due to the connection of
an ideally conducting metal of the corrugations on the
cavity axis at o = 1. Fig. 2 shows the approach of the
vertices of corrugations with increasing depth of ripple
a for R(p)/R, =1+a-cos(Mp), where M =2m=4.
As follows from Fig. 2 graphs protruding toward the
cavity axis of the corrugation apex approach the in-
crease in the corrugation depth, and in the limiting case
o =1 connects.
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Fig. 2. Approximation of the corners of the ripple
R(p)/ R, with an increase o for M =4:1 —a = 0.2;

2 —0=0.4; 3 -0 =0.8. Dotted line 4 determines the
average radius of the cavity: R(¢)/R, =1

When crossing the vertices of the corrugations, the
cutoff frequency for oscillations is absent, i.e. it can be
set equal to zero: |x,|  —0. In this limiting case the
constant A in (26) is equal to unity: A =1.

We use the convergence of the infinite product (26)
with A =1 for describing the dispersion properties of a
corrugated cavity with a finite depth of corrugation
(o <1). To this end, we single out in the infinite product
(26) in the interval 1< X, <7/, ., factor with a sin-
gularity, and the remaining infinite product is represent-
ed by a function f,,, ,(x,), which does not have sin-
gularities in this interval:

-1
0{1—#] ozt (%) =%1.  (27)
Tm(215-1)1

Comparison of the analytical dependence (27) with
the results of numerical calculations [3], confirmed by
experimental data [4], shows that the function

f 200 (X,) Monotonically increases in the interval
1< X, < Yrya-0)2» @Nd can be represented in an asymp-
totic form:

fm(2|071)(xo): OLm(2|071) +Bm(2|071)xo +8m(2|071)xg ’ (28)
where o, 1)s By Oma,n are the constants de-
pending on the azimuth number m and harmonic hum-
bers I,. The magnitude of these constants is determined
numerically or experimentally. Thus, it follows from
(28) that in the interval 1< X, <y, ,, ), the following

asymptotic dependence of the corrugation depth on the
cutoff frequency of the cavity is valid:

o= J—’[l— , % J(am(2|0-1) +Bm(atg-2%0 +5m(2|0-1)X§ Tl- (29)
Ym(21p-1)1

Representation fm(z,ofl)(xo) square trinomial is jus-
tified, because calculated at I, =1 standard deviation
Y= <(oc—ocexp>z> depth of corrugation oo from the ob-

tained by the numerical method, and confirmed experi-
mentally o, [3, 4], is less than 4.5-107. The above is

supported by the data in Table 1.
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Table 1
Square deviations y* of the dependence (29) on the exper-

imental data for the different number of corrugations

Io m A n(2191) Bm(2|071) Sm(zlg—l) X2

1|2]0.89079 | 0.2983 | - 0.05127 | 1.20272:10°"
1]3]0.41693(0.77469 | - 0.11818 | 2.57956-10"
1|4/ 03845 | 0.8395 | -0.10684 | 4.50715-10°"
1]5]0.21638(0.95621 | - 0.10319 | 2.05052:10°"
1]6]0.17379]0.97619 | - 0.09024 | 1.42444-10"

In the interval O < x, <1 the approximation of the
infinite product (26) with the aid of expression (29) is
not applicable. Therefore, in this interval, for small val-
ues of cut-off frequencies x, (x, <<1), we represent
expression (26) in another asymptotic form:

a= +(1 7\‘ 2I0—1)X§)’ (30)
where the constants A7, ,, (30) and their derivatives

with solutions (29) and their derivatives at points with
coordinates oo =a.,,,  and X, =X
Table 2 shows the calculated values of the coordi-

nates of the joining points of the asymptotic solutions
(29) with (30).

2lp-1) *

Table 2
Crosslinking coordinates of asymptotic expressions (29)
and (30)

I, m 2 3 4 5 6
0.904 |0.710973 |0.71038|0.68396(0.67932

11 X,,4[0.33364] 0.998 |1.0399 1.17102|1.22247

11 & o0 | 0.9287 | 0.53869 [0.51207|0.48005(0.46323

OLm(2|071)

The asymptotes (29) and (30) obtained above, each
in its definition range, can be regarded as an analytical
representation of the dispersion relation, since in the
limiting cases of small (o.=0,m=0) and large (o —1)
depths of corrugation, they determine the cutoff fre-
quencies of the TE oscillations of a smooth and corru-
gated cavity, respectively.

Fig. 3 shows the dispersion curves, which character-
ize the dependence of the corrugation depth o from cut-
off frequency x, of azimuthally corrugated cavity for
mode I, =1 and the number of corrugations M =2m,
where m = 23456. Thus, in the interval
0 <X, ¥/, foragiven number m depth of ripple

o area monotonlcally decreasing function of the cut-off
frequency x, . Dispersion relations are described as not

intersecting, with the exception of the point a=1, curves.
When the cut-off frequency X, tends to zero the corruga-

tion depth tends to unity.

4.2.2. DISPERSION PROPERTIES
OF A CORRUGATED CAVITY FOR CUT-OFF
FREQUENCIES IN THE INTERVAL

= Xo = Ym(ZIg—l),l

In this interval of cutoff frequencies, the factor

'Y:T\(Zlg—l),l
Co

can be represented in the form:

32

-1
a[l— a j[l— — ] Om(zty 1) = 10 (31)
Tm(21p-1)1 Ym(219-1)1

where g, ., , are the constants.

From (31) we obtain an expression for the corruga-
tion depth:

-1
a=H1-— % 1-—% ngI Q) (32)
Ym(2lg-1)2 Ym(21o-2)1

Constants g,,,,,, are determined from the condition

that the derivatives da/dx, expressions (29) and (32) at
the points X, = ¥/, (z10-1): -
Constant values g, ,, are given in Table 3.

Table 3
Constants g,

| m 2 3 4 5 6

0
1 0.30655|0.2154/0.16358(0.12811(0.101199

gm(z|0-1)

In the Fig. 3 numbers of curves 2,3,4,5,6 correspond
to the value m. Curves 2',3,4',5',6' are mirror image of

the axis x, curves 2,3,4,5,6.

To compare the obtained analytical dependences
with the results of other authors in Fig. 3 shows the
points obtained by numerical calculations (markers
0,0,0,A,%) [3], and as a result of experimental studies
(markers m) [4]. In the figure inthe range 0<a <0.3 a
good quantitative agreement of the theoretical represen-
tations (29), (32) to the experimental and calculated data
is achieved. The noted correspondence indicates the
applicability of expressions (29), (32) for describing the
dispersion properties of a corrugated cavity with a finite
depth of corrugation in the cut-off frequency interval

O<X <’Y m(21g-1)1 *

=

-0.8

Yo
Fig. 3. Dependence of depth of ripple a from cutoff
frequency x, for first harmonics (I, =1) azimuthally

corrugated cavity with a number of corruga-
tionsM =2m, wherem=2,3,4,5,6
Thus, the analytical dependencies of the corrugation

depth obtained above o from cutoff frequencies X,

determine the dispersion properties of the first harmon-

ics of the corrugated cavity with the number of corruga-
tions M=2m (m=2,34,56), since in the range

0 < o < 0.3 they coincide with a high degree of accu-

racy with the results of numerical calculations and ex-
perimental data of other authors.
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The dispersion equation of an ideally conducting cy-
lindrical vacuum cavity with sinusoidal corrugated
boundaries in the azimuth direction was obtained. Cavi-
ties of this type are basic for the study of the spectra of
natural oscillations in gyrotrons. Conditions are deter-
mined under which the TE electromagnetic oscillations
are nondegenerate. It is shown that for non-degenerate
oscillations the number of corrugations must be an even
number. For an even number of corrugations, non-
degenerate oscillations are w-type oscillations. For r-
type oscillations the dispersion equation of the cavity
with sinusoidal corrugated in the azimuth direction is
obtained. The dispersion equation of such a corrugated
cavity is an infinite determinant equal to zero. The
equality to zero of the infinite determinant indicates its
convergence. From the property of convergence of an
infinite determinant, a positive definite bounded alge-
braic form is obtained from which it is possible to ob-
tain the dispersion characteristics of both a smooth and
a corrugated cavity. In the case of a cavity with a small
depth of corrugation, analytical expressions are obtained
that describe its dispersion properties. On the basis of
the fact that when the depth of the corrugation tends to
one, there are no natural oscillations of the cavity, an
analytical description of the dispersion curves in this
region of corrugation depths is offered. It is shown that
the dispersion equation is symmetric with respect to the
sign of the corrugation depth, i.e. the dispersion equa-
tion is valid both for the corrugation depth o = ||, and

o =—a|. In this case, in the plane, the depth of the cor- M.: “Hayka”, 1979, 832 c.

rugation is the cutoff frequency, the dispersion curves of ~ 10.T'. beiirmen, A. Dpaeiin. Pynxyuu beccens, ¢ynk-
the cavity are characterized by mirror symmetry with Yuu NapabonUuecKo0 yunuHopd, OpmooHATbHbIe
respect to the cutoff frequency axis. mHozounenvr | Ilepesopx ¢ aHrymiickoro

H.A. Bunenkuna. M.: «Hayka», 1966, 296 c.

REFERENCES Article received 26.10.2017

1. U.B.JleGeneB. Texnuxa u npudopvl c8epX@blCOKUX
yacmom. Dnexmpogakyymuvie npudoopvr CBY. T. II.

JUCTIEPCUOHHOE YPABHEHUE HUJINHAPUYECKOI'O BAKYYMHOI'O PE3OHATOPA
C UJEAJIBHBIMU 'O®PUPOBAHHBIMU B ABUMYTAJIBHOM HAITPABJIEHUU CTEHKAMMU.
YACTbH 1. PU3MYECKHA OCHOBAHHBIA METO/I IIOJIYYEHUS JUCHEPCUOHHOI'O YPABHEHUS
A.B. Makcumenxo, B.U. Tkauenko, H.B. Tkauenxo
I/ICCHGI[OBaHI)I JUCTICPCUOHHBIC XAPAKTCPUCTUKH HUIMHAPUYCCKOrO0 pEe30HaTOpa C HACAJTIBbHO MNPOBOAAIIUMU
CTCHKaMH, paanyC KOTOPOTO OIMMCBIBACTCA CI/IHyCOI/IJIaJ'II)HO-HepHOI[H‘IeCKOﬁ 3aBUCUMOCTBIO OTHOCUTECIIBHO a3UMYy-
TanbHOTO yria. M3 cXomuMOCTH OGECKOHEUHOTO OMpeenuTens (JIUCIIePCHOHHOTO YpaBHEHHS) TMOMyYeHa MOJIOXKH-
TENILHO ONpeJielieHHas] OrpaHHYeHHas anredpandeckas popMa, U3 CBOMCTB KOTOPOH CIENYIOT TUCIIEPCHOHHBIE Xa-
PaKTEPUCTUKHU KakK IJIaJIKOTO, TaK U TOGPUPOBAHHOTO pe3oHaTopoB. Ha ocHOBe nony4yeHHo anredpandeckoit Gpop-
MBI MCCJIEIOBAHBI JVCIIEPCHUHU TEPBBIX TAPMOHHUK TO(PHPOBAHHOTO PE30HATOPA C YETHBIM KOJIMYECTBOM TrO(pOB.
[NonydeHHbIe aHATUTHYECKNE 3aBUCUMOCTH KOJMYECTBEHHO COOTBETCTBYIOT SKCIIEPHMEHTAIBHBIM JaHHBIM.

JIMCHEPCIMHE PIBHAHHSA IAJTHAPUYHOI'O BAKYYMHOI'O PE3OHATOPA
3 IAEAJIBHUMHU T'O®POBAHUMU B ABUMYTAJIBHOMY HANIPSIMKY CTIHKAMM.
YACTHHA 1. ®I3MYHO OCHOBAHUI METOJ OTPUMAHHS JUCIHEPCIMHOI'O PIBHSHHS
A.B. Makcumenko, B.I. Tkauenko, 1.B. Tkauenko

JlocmimpkeHo TucTiepciiiHi XapakTepUCTHKY IFIIHAPUYHOTO PE30HATOPA 3 i7IeaTbHO MPOBIAHUMHA CTIHKaMH, Pajiyc
SIKOTO OIMUCYETHCS CUHYCOINaTbHO-TIEPIOAMIHOIO 3aJISKHICTIO TIOI0 a3UMYTAILHOTO KyTa. 3i 301KHOCTI HECKiHUEHHO-
TO BU3HAYHMKA (JIUCHEepCiiiHOrO PIBHSIHHS) OTpPUMaHa JI0IaTHRO BU3HAUCHA OOMEeXxeHa anredpaiuHa opma, 3 BiacTu-
BOCTEH SIKOT OTPUMYIOTBCSI JTUCTEPCIHHI XapaKTEepUCTHKH SIK TJIAJIKOTo, Tak 1 rodpoBaHoro pezoHaropa. Ha ocHoBi
oTpUMaHoi anredpaiuHoi GpopMH JOCHiIKEH] JUcepcii MepIIux rapMoHiK ro)poBaHOTO PE30HATOPA 3 MAPHOIO KiJIbKi-
ctio ro¢piB. OTprMaHi aHaNITHYHI 3aJI€)KHOCTI KUJIBKICHO BiATIOBIIAIOTH €KCIIEPUMEHTAIBHUM JIAHHM.
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