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Dysprosium titanate have been developed and used as absorbing material for control rods of thermal neutron nuclear 

reactors. The study results of phase formation kinetics in the pellets prepared from powder mixtures composition 1 

(50 mol.% TiO2 + 50 mol.% Dy2O3) and composition 2 (56 mol.% TiO2 + 44 mol.% Dy2O3) after sintering at tempera-

tures of 1250...1650 °C in an air are presented. It is shown that initial mixture composition affects the phase composi-

tion of sintering dysprosium titanate pellets. Also, it was revealed the formation of high-temperature radiation-resistant 

fluorite phase of Dy2TiO5 using composition 1 powder mixture. Two-stage sintering with partial synthesis allows ob-

taining fine-grained dysprosium titanate pellets with high density of 7.1 g/cm
3
 and low open porosity. 

 

INTRODUCTION 

Radiation tests and post-radiation studies of absorb-

ing material have revealed that ceramics based on lan-

thanide oxides have high radiation damage resistance 

[1, 2].  

Dysprosium titanate (Dy2O3TiO2) as a material of 

this class of ceramics got sufficiently wide usage. Since 

1995, after preliminary tests in reactor MIR, it has been 

successfully applied as a vibrocompacted powder in 

absorbing elements of the rod cluster control assembly 

(RCCA) of the WWER-1000 reactor [35]. 

Except Russia, investigations of properties of dys-

prosium oxide based absorbing materials are also per-

formed in such countries as India, South Korea and 

China [57].  

In general, compositions with 78...82 wt.% Dy2O3 

content are considered. One of the ways to improve the 

absorbing elements physical efficiency is a transition to 

a pellet type of the absorbing core that provides density 

increasing of Dy2O3TiO2 from 4.9 to 6.2 g/cm
3
 and, 

accordingly, increases both initial efficiency of RCCA 

and their exploitation terms [5]. 

It is of interest to investigate phase composition and 

properties of dysprosium titanate based materials ob-

tained by high-temperature solid-phase synthesis of na-

tive oxides in air. 

Therefore the aim of this work is to study the phase 

composition and characteristics of dysprosium titanate 

based absorbent material after sintering at temperatures 

in the range between 1250 and 1650 C. 
 

1. MATERIALS AND EXPERIMENTAL 

PROCEDURES  

According to the phase equilibrium diagram (Fig. 1) 

two type of compounds are crystallized in the           

Dy2O3-TiO2 system: dysprosium titanates, Dy2Ti2O7 

and Dy2TiO5 [8]. 

 

 

 

Fig. 1. Phase diagram of Dy2O3-TiO2 system:  

F  fluorite Dy2TiO5; P   pyrochlore Dy2Ti2O7;  

  orthorhombic Dy2TiO5;   hexagonal Dy2TiO5;  

R  rutile TiO2; С   solid solution based on Dy2O3;  

L   liquid 
 

Investigations made on powders obtained by dyspro-

sium and titanium hydroxides sediments coprecipitation 

from hydrochloric acid solutions with ammonium hy-

droxide testify that dysprosium titanate Dy2Ti2O7 crys-

tallizes at 700 C in a pyrochlore structure and melts 

congruently at 1850 C [9]. Dy2Ti2O7 compound has 

FCC lattice (pyrochlore structure type) with parameter 

а = 1.0132 nm. A specific feature of pyrochlore-type 

phase is non-stoichiometry, which appears by partial 

substitution of Ti
4+

 ions with Dy
3+

 ions (at the same 

time additional vacancies are formed in the anion sub-

lattice) [1]. 

Dysprosium titanate Dy2TiO5 crystallizes at 800 C 

and has three polymorphs depending on temperature. At 

low temperatures it exists in orthorhombic modification, 

above 1350 °С it transforms to hexagonal one, which at 

1680 °C changes to fluorite solid solution melting at 

1870 °C. 
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The liquidus curve of the system is characterized by 

two eutectics at 15 and 40 mol.% Dy2O3, which melt at 

1650 and 1750 °С, respectively.  

Unit cell parameters of Dy2TiO5 polymorphs are 

given in Tabl. 1.  
 

Table 1 

 Unit cell parameters of Dy2TiO5 polymorphs 

Structure  
Lattice parameters, nm 

а b c 

Orthorhombic  1.049 1.126 0.370 

Hexagonal  0.3632  1.1837 

Cubic  0.5200   
 

The investigation of phase formation in Dy2O3-TiO2 

system under solid-phase synthesis carried out on two 

compositions of powder mixtures: 

 composition 1: 50 mol.% TiO2 + 50 mol.% Dy2O3 

(17.6 wt.% TiО2 + 82.4 wt.% Dy2O3);  

 composition 2: 56 mol.% TiO2 + 44 mol.% Dy2O3 

(21.4 wt.% TiО2 + 78.6 wt.% Dy2O3) (see Fig. 1). 

Titanium oxide (ОСЧ 7-3, purity 99.9%, TУ 6-09-

3811-79) and dysprosium oxide (ДиO-M, purity 99.5%, 

TУ 48-4-524-90) were used as initial powders.  

Pellets were prepared from powder mixtures accord-

ing with two schemes. The first one includes the follow-

ing steps: mixing titanium and dysprosium oxides, 

blending with a binder, compacting and sintering pel-

lets. The second one includes additional operations to 

the scheme 1 such as: grinding pellets after preliminary 

sintering, adding binding material, compacting and final 

sintering. 

Grinding and mixing of powder mixtures was per-

formed in a ball mill “Pulverisette-6” at 300 rpm for 

3 hours in ethanol at weight balls-powder ratio 3:1. Pel-

lets formingwas performed by uniaxial pressing in a 

steel press-form Ø 8.4 mm at 200 MPa. Polyethylene 

glycol was used as a binder material. Pellets were sin-

tered in air at 1250...1650 °C for 3 hours. Pre-annealing 

of pellets was carried out at 1350 °C in a case of 

scheme 2. 

Phase analysis of pellets was studied by X-ray dif-

fraction using DRON-2.0 diffractometer in Co-Kα radi-

ation. 

Microstructure investigations were performed using 

scanning electron microscope JSM-7001F (JEOL, Ja-

pan). Sample composition analysis was performed by 

energy-dispersive X-ray microanalysis (EDXMA) using  

INCA Penta FETx3 analyzer (Oxford Instruments, 

Great Britain) with a detection limit not less than 

0.3 wt.%. 

Density and open porosity of pellets were measured 

in accordance with the GOST [10]. The microhardness 

and microstructure of pellets were investigated with the 

LECO metallographic equipment. 
 

2. RESULTS  

2.1. PHASE FORMATION KINETICS 

The results of investigation of sintering effect in the 

temperature range of 1250…1650 °C on the phase con-

tent of samples with compositions 1 and 2 are presented 

in Fig. 2 and Tabl. 2. After sintering at 1250…1350 °С 

it was observed the formation of low-temperature ortho-

rhombic phase Dy2TiO5-o and pyrochlore Dy2Ti2O7-p in 

pellets for both compositions, which corresponds to the 

Dy2O3-TiO2 equilibrium phase diagram (see Fig. 1). 

Moreover, in composition 1 pellets, sintered at 1350 °C, 

fraction of these phases have similar values (38.8 and 

33.8 wt.%), and in composition 2 pellets the formation 

of Dy2TiO5-o phase run more intensively (52.8 against 

37.4 wt.%) (see Tabl. 2). 

In both cases remaining dysprosium oxide was 

found. 

  

  
а b 

Fig. 2. Phase composition of pellets, sintered for 3 hours with compositions 1 (a) and 2 (b) at temperatures in the 

range between 1250 and 1650 °С 

 

 



 

 

Table 2 

Phase composition and lattice parameters depending on sintering temperatures 
 

Sintering 

tempera-

ture, °C 

Phase  

Composition No 1 Composition No 2 

Fraction, wt.% Lattice parameters, nm Fraction, wt.%  Lattice parameters, nm 

1250 

Dy2O3 38.9 a = 1.066 18.2 a = 1.0657 

TiO2-ru 2.9 a = 0.4588; c = 0.2963   

Dy2Ti2O7-p 32.0 a = 1.0124 43.4 a = 1.0121 

Dy2TiO5-o 26.2 
a = 1.0368; b = 1.1219; 

c = 0.3720 
38.4 

a = 1.0362; b = 1.1221; 

c = 0.3717 

1350 

Dy2O3 27.4 a = 1.0664 9.8 a = 1.0659 

Dy2Ti2O7-p 38.8 a = 1.0128 37.4 a = 1.0124 

Dy2TiO5-o 33.8 
a = 1.0372; b = 1.1228; 

c = 0.3721 
52.8 

a = 1.0365; b = 1.1229; 

c = 0.3718 

1450 

Dy2O3 9.2 a = 1.0661   
Dy2Ti2O7-p 29.0 a = 1.0131 33.7 a = 1.0143 

Dy2TiO5-h 31.9 a = 0.3632; c = 1.1910 64.3 a = 0.3631; c = 1.1876; 

Dy2TiO5-f 29.9 a = 0.5211   
Dy2TiO5-р   12.9 a = 1.0418 

1550 

Dy2O3 3.8 a = 1.0661   
Dy2Ti2O7-p 20.9 a = 1.0142 33.7 a = 1.0143 

Dy2TiO5-h 42.5 a = 0.3631; c = 1.1894 64.3 a = 0.3631; c = 1.1876 

Dy2TiO5-f 32.8 a = 0.5200   
Dy2TiO5-р   2 a = 1.0410 

1650 

Dy2O3 1.2 a = 1.0669   
Dy2Ti2O7-p 17.3 a = 1.0167 26.8 a = 1.0161 

Dy2TiO5-h 44.9 a = 0.3633; c = 1.1891 73.2 a = 0.3630; c = 1.1860 

Dy2TiO5-f 36.6 a = 0.5188   
 

Increasing the sintering temperature up to 1450 C 

provides formation of high-temperature pyrochlore 

phase Dy2Ti2O7-p, hexagonal Dy2TiO5-h and fluorite 

Dy2TiO5-f polymorphs for composition 1 approximately 

in equal fractions. 

Also, it was observed ~ 9 wt.% of unreacted Dy2O3. 

In composition 2 the formation of three phases was ob-

served. The main phase of the sample was Dy2TiO5-h 

with hexagonal structure. The other two phases, 

Dy2Ti2O7-p and Dy2TiO5-p, had pyrochlore structure. 

As sintering temperature increases up to 1650 C, 

the slow decreasing of Dy2Ti2O7-p phase and increasing 

of Dy2TiO5-h phase in pellets for both compositions is 

observed. A distinguishing feature of the composition 1 

was the presence of fluorite phase Dy2TiO5-f 

(36.6 wt.%). Also, about 1 wt.% of unreacted Dy2O3 

was found too. After sintering at 1350 C the composi-

tion 2 material becomes two-phased one and consists of 

73.2 wt.% of Dy2TiO5-h phase and 26.8 wt.% of pyro-

chlore phase Dy2Ti2O7-p (see Tabl. 2). 

The application of scheme 2, which comprise pre-

sintering at 1250 C and final sintering at 1650 C for 

3 hours, provides formation of two-phase structure, 

hexagonal Dy2TiO5-h and fluorite Dy2TiO5-f ones, in 

amounts of 83 and 17 wt.%, respectively. Unreacted 

titanium and dysprosium oxides were not observed in 

these samples. 

 

2.2. DENSITY AND STRUCTURE  

Dependencies of the pellets density and open porosi-

ty on the sintering temperature in the range between 

1250 and 1650 C using two schemes of dysprosium 

titanate pellet production (composition 1) are shown in 

Fig. 3, pellet structures are shown in Fig. 4. 

These data show that the density of pellets produced 

by scheme 1 increases with the temperature increasing 

from 4.2 to 5.7 g/cm
3
 approximately in linear manner 

(see Fig. 3,a). The microstructure of pellet is character-

ized by the irregular distribution of ~ 30 µm pores with 

irregular geometric shape (see Fig. 4,a). The open po-

rosity after sintering at 1250 C was 32% and reduced 

up to 8% after sintering at 1650 C (see Fig. 3,b). The 

microhardness of pellet material was equal to 

(2380±137) MPa. 

The employment of the second scheme allows to ob-

tain pellets with higher density in comparison with the 

first one. Pellets density increased from 4.5 g/cm
3
 in the 

initial state to 7.1 g/cm
3
 after sintering for 3 hours at 

1650 C (see Fig. 3,a). The open porosity was decreased 

from 20% down to 1...2% (see Fig. 3,b). 

The microstructure of pellets with the density of 

7.1 g/cm
3
 is characterized by uniform distribution of 

pores with predominantly spherical shape. Most of these 

pores had size less than 3 µm (see Fig. 4,b).  
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Fig. 3. The density (a) and open porosity (b) of pellets (composition 1) depending on the sintering temperature:  

1  scheme 1; 2   scheme 2 
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Fig. 4. Microstructure of dysprosium titanate pellets (magn.×500):  

a  scheme 1 (ρ = 5.7 g/cm
3
); b scheme 2 (ρ = 7.1 g/cm

3
)  

 

 

Fig. 5. Microstructure of dysprosium titanate pellets 

(composition 1, scheme 2, ρ = 7.1 g/cm
3
) 

 

According to the electron microscopy results, the 

pellet structure consist of two grain types. Most of them 

had non-uniform shapes and well-defined edges. 

Pores are concentrated both on the edges and in the 

grains volume (Fig. 5). Average grain size is 5.3 µm. 

Grains of the second type have subgrain structure with 

characteristic size up to 1 µm and represented by high-

light areas. The microhardness of pellet material was 

(9015±450) MPa. 

Concentrations of major elements (Dy, Ti, and O) in 

the different parts of polished sections of pellets, pro-

duced by scheme 2, are presented in Tabl. 3. 

Table 3 

Element content in pellets, produced according to 

scheme 2 (ρ = 7.1 g/cm
3
) 

 

Element  

Element content, % by weight  

(see Fig. 5) 

Spectrum 1 Spectrum 2 

Dy 71.97 69.90 

Ti 9.15 10.42 

O 18.88 19.68 
 

3. DISCUSSION 

Sintering of composition 1 (50 mol.% TiO2  +  
+50 mol.% Dy2O3) and composition 2 (56 mol.% TiO2+ 

+ 44 mol.% Dy2O3) at temperatures ≥ 1250 °С results in 

formation of low-temperature phases: pyrochlore 

Dy2Ti2O7-p and orthorhombic Dy2TiO5-o phase, accord-

ing to the Dy2O3-TiO2 phase diagram. 

In agreement with data given in works [1, 9], at the 

first sintering stage dysprosium titanate Dy2Ti2O7 is 

forming. Its synthesis temperature and formation kinet-

ics significantly depends on crystal structure of the ini-

tial oxides. For example, the usage of TiO2 in the form 

of anatase instead of rutile modification allows to de-

crease the formation temperature down to 700…800 C 

1. The process of interaction occurs predominantly via 

one-way diffusion of titanium and oxygen ions to dys-

prosium oxide [11]. Therefore, the formation of com-



 

 

pounds with a crystal structure similar to dysprosium 

oxide is more energetically favourable. Dy2Ti2O7 and 

Dy2O3 are related to cubic crystal and have compara-

tively equal lattice parameters. It is deemed [12] that 

formation of Dy2Ti2O7 occurs in two stages: 1) chemical 

interaction of the initial oxides; 2) diffusion of titanium 

and oxygen ions into dysprosium oxide. 

At sintering temperatures ≤ 1350 ºС the speeds of 

formation of Dy2Ti2O7-p and Dy2TiO5-o phases differs 

depending on the mixture composition. For example, 

fraction of these phases in composition 1 samples, sin-

tered at 1350 ºС, have similar values (38.8 and 

33.8 wt.%). But, in composition 2, containing smaller 

amount of Dy2O3, the process of Dy2TiO5-o phase for-

mation is more intensively (52.8 compared to 

37.4 wt.%). 

Above 1450 ºС the transformation of the ortho-

rhombic Dy2TiO5-o phase into the hexagonal Dy2TiO5-h 

one occurs. The quantity of Dy2TiO5-h phase increases 

with the temperature increasing, and, accordingly, de-

creasing of the Dy2Ti2O7-p fraction is observed. This 

confirmed the fact of dysprosium titanate Dy2TiO5 for-

mation according to the reaction: Dy2Ti2O7+ Dy2O3 → 

2Dy2TiO5 [6]. The speed of this reaction slows down by 

the presence of pyrochlore Dy2Ti2O7-p layer, which is a 

barrier for diffusing titanium and oxygen ions [11, 12]. 

Therefore, to obtain a single-phase Dy2TiO5 structure 

throughout the material volume prolonged sintering 

time or higher temperatures are needed. 

Noteworthy is the fact of the radiation-resistant 

fluorite phase, Dy2TiO5-f, formation in composition 1 

samples. According to the phase diagram (see Fig. 1), 

this phase should be formed at temperatures above 

1680 °С. 

Harnessing scheme 2 provides production of dyspro-

sium titanate pellets with density about 7.1 g/cm
3
 and 

with fine-grained structure and low level of open porosi-

ty. Also, in comparison with scheme 1 (one-stage pro-

cess) a decrease in Dy2TiO5-f content took place (from 

36.6 to 17.0 wt.%) for pellets sintered at the same tem-

perature of 1650 °C. 
 

CONCLUSIONS 

1. The kinetics of phase formation in dysprosium ti-

tanate pellets having composition 1 (50 mol.% TiO2 + 

50 mol.% Dy2O3) and composition 2 (56 mol.% TiO2 + 

44 mol.% Dy2O3) after sintering in air at temperature 

range of 1250…1650 °C was investigated.  

2. The initial composition of powder mixture (TiO2-

Dy2O3 ratio) affects to the phase composition of the syn-

thesized materials. 

3. At temperatures above 1450 °C in dysprosium ti-

tanate pellets with composition 1 (50 mol.% TiO2 + 

50 mol.% Dy2O3) radiation-resistant high-temperature 

fluorite phase, Dy2TiO5-f, is formed, the amount of 

which increased with increasing sintering temperature. 

4. Harnessing scheme 2 (two-stage sintering) pro-

vides production of dysprosium titanate pellets with 

density ~ 7.1 g/cm
3
, low level of open porosity (1...2%) 

and fine-grained structure.  

5. The probable mechanisms of dysprosium titanate 

formation at solid-phase synthesis in air were consid-

ered.  
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ФАЗООБРАЗОВАНИЕ И ХАРАКТЕРИСТИКИ ТАБЛЕТОК  

НА ОСНОВЕ ТИТАНАТА ДИСПРОЗИЯ ПРИ ТВЕРДОФАЗНОМ СИНТЕЗЕ 

И.А. Чернов, Н.Н. Белаш, И.В. Колодий, Е.Б. Валежный,  

А.С. Кальченко, Е.А. Слабоспицкая
 

Разработан титанат диспрозия, который используется в качестве поглощающего материала для регули-

рующих стержней ядерных реакторов на тепловых нейтронах. Представлены результаты исследования ки-

нетики фазообразования в материале таблеток из порошковых смесей состава 1 

(50 мол.% TiO2 + 50 мол.% Dy2O3) и состава 2 (56 мол.% TiO2 + 44 мол.% Dy2O3) после спекания при темпе-

ратурах 1250…1650 C в воздушной атмосфере. Показано, что состав исходной смеси влияет на фазовый 

состав и соотношение фаз в синтезируемом материале. Зафиксировано образование радиационнo стойкой 

высокотемпературной фазы со структурой флюорита (Dy2TiO5-f) при использовании смеси состава 1. При-

менение схемы двухстадийного спекания с частичным синтезом материала на первой стадии обеспечивает 

получение таблеток из Dy2TiO5 плотностью 7,1 г/см
3
 с мелкозернистой структурой и низким значением от-

крытой пористости. 

 

 

ФАЗОУТВОРЕННЯ І ХАРАКТЕРИСТИКИ ТАБЛЕТОК НА ОСНОВІ 

ТИТАНАТУ ДИСПРОЗІЮ ПРИ ТВЕРДОФАЗОВОМУ СИНТЕЗІ 

І.О. Чернов, М.М. Бєлаш, І.В. Колодій, Є.Б. Валежний,  

О.С. Кальченко, О.О. Слабоспицька  

Розроблено титанат диспрозію, який  використовується в якості поглинаючого матеріалу для регулюю-

чих стрижнів ядерних реакторів на теплових нейтронах. Наведено результати дослідження кінетики фазоут-

ворення в матеріалі таблеток із порошкових сумішей складу 1 (50 мол.% TiO2 + 50 мол.%Dy2O3) та складу 2 

(56 мол.% TiO2 + 44 мол.% Dy2O3) після спікання за температур 1250…1650 C в повітряній атмосфері. По-

казано, що склад вихідної суміші впливає на фазовий склад і співвідношення фаз у матеріалі, який синтезу-

ється. Зафіксовано утворення радіаційно стійкої високотемпературної фази зі структурою флюориту 

(Dy2TiO5-f) при використанні суміші складу 1. Використання схеми двостадійного спікання з частковим си-

нтезом матеріалу на першій стадії забезпечує одержання таблеток із Dy2TiO5 щільністю 7,1 г/см
3
 з дрібнозе-

рнистою структурою та низьким значенням відкритої пористості. 

 


