УДК 621.762.242: 669.27

В. П. Бондаренко, член.-кор. НАН Украины; И. В. Андреев, асп.; А. Е. Бабенко, инж.

Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, г. Киев, Украина

КИНЕТИКА ПРОЦЕССА ВОССТАНОВЛЕНИЯ ВОЛЬФРАМА ИЗ ВОЛЬФРАМОВОЙ КИСЛОТЫ H₂WO₄ В ЗАКРЫТОМ РЕАКТОРЕ

The kinetic analysis of process of reduction of tungsten from H_2WO_4 in the closed reactor is carried out. It is shown, that application H_2WO_4 allows to raise homogeneity of process that speaks reduction *E*-activation.

В современной практике производства порошков вольфрама наряду с оксидом вольфрама WO₃, использующимся в качестве исходного сырья для восстановления порошка вольфрама, также широко применяется и вольфрамовая кислота H₂WO₄. Причем порошок вольфрама, получаемый восстановлением из H₂WO₄, является более мелкозернистым по-

рошком и используется преимущественно для производства мелкозернистых вольфрамовых твердых сплавов [1]. Для получения более крупнозернистых порошков W (размер частиц порядка 5–10 мкм) применяют оксид вольфрама WO3, получаемый прокалкой паравольфра-мата аммония. В то же время получить более крупнозернистый порошок вольфрама в печах с непрерывным потоком водорода весьма затруднительно.

Для получения особокрупнозернистых порошков вольфрама авторами работ [2–4] была применена установка, работающая в режиме закрытого по водороду реактора, благода-ря чему удалось повысить концентрацию паров воды в рабочей зоне реактора и интенсифицировать процессы переноса через газовую фазу летучего вольфрамсодержащего вещества, образующегося в результате реакций восстановления вольфрама. Это позволило получить порошки W с размером частиц до 1000 мкм.

Следует отметить, что в работах [2, 4] для исследования особенностей получения осо-бокрупнозернистых порошков вольфрама и кинетических аспектов восстановления вольф-рама в качестве исходного сырья применялся оксид вольфрама WO3, полученный прокалкой паравольфрамата аммония. Использование этого сырья приводило к получению порошков вольфрама достаточно неравновесной полиэдрической формы с множеством ступенек роста. В вольфрамовой кислоте связанного кислорода значительно больше, чем в порошке WO3, поэтому можно было ожидать, что при восстановлении вольфрама из H2WO4 процесс вос-становления будет претерпевать существенные изменения.

Эта гипотеза была подтверждена в работе [3]. Применение в качестве исходного сырья вольфрамовой кислоты позволило получить в закрытом реакторе весьма крупные частицы вольфрама, но с гладкими гранями без ступенек роста, что, вероятно, обусловлено повышени-ем уровня гомогенности процесса восстановления W из H2WO4 по сравнению с восстановле-нием W из WO3. Для проверки этого предположения нами был проведен кинетический анализ процесса восстановления W из H2WO4 по методике, аналогичной описанной в работе [4].

Для изучения механизма восстановления вольфрама из H_2WO_4 проводили серию экспериментов восстановления W при температурах 800 – 1100 °C и выдержках от 0 до 8 ч. Навеска порошка H_2WO_4 составляла 7 г.

Результаты экспериментов приведены в табл. 1. По этим результатам построены кинетические зависимости восстановления W при различных температурах (рис. 1).

	Время выдержки τ, ч							
T, ℃	0	0,25	0,5	1	2	4	6	8
800	10,05	11,47	12,86	14,23	14,90	15,00	17,93	21,55
900	10,33	12,79	14,33	15,19	16,00	17,20	20,60	24,80
1000	11,00	13,78	14,99	16,00	16,90	21,97	25,36	26,30
1100	12,50	14,70	15,47	16,36	18,07	24,50	29,18	29,27

Таблица 1. Потеря массы образца *∆т* (%) при восстановлении W из H₂WO₄ в закрытом реакторе

Рис. 1. Кинетические кривые восстановления вольфрама из H_2WO_4 в зависимости от времени выдержки и температуры: 800 (♦); 900 (\blacksquare); 1000 (\blacktriangle); 1100 (×) °C.

Известно, что в процессе восстановления W из H₂WO₄ при температурах выше 200 °C вольфрамовая кислота разлагается на WO₃ и H₂O по реакции

$$H_2WO_4 = WO_3 + H_2O_.$$
 (1)

При этом потеря массы навеской теоретически должна составлять 7,2 %, а прокалка H_2WO_4 в нейтральной среде составила 8,6 %. Далее процесс восстановления должен проходить по суммарной реакции

$$WO_3 + 3H_2 = W + 3H_2O$$
 (2)

через образование промежуточных оксидов WO_{2,90}; WO_{2,72}; WO₂.

В связи с этим анализ кинетических параметров восстановления W из H₂WO₄ целесообразно проводить с учетом реакции разложения вольфрамовой кислоты по формуле (1), т.е. практически процесс восстановления идет от WO₃ до W при повышенной влажности газовой среды (H₂ + H₂O_{пар}) в результате дегидратации вольфрамовой кислоты.

Из рис. 1 достаточно четко видна стадийность процесса восстановления W из H_2WO_4 . На первой стадии происходит стремительная дегидратация H_2WO_4 и восстановление WO_3 до коричневого оксида WO_2 . Это подтверждается соответствующей потерей массы образца.

Уже при нулевой выдержке при 800 °C потеря массы за счет дегидратации составляет 10,05 %. С повышением температуры восстановления до 1100 °C потеря массы увеличивается до 12, 5 %. Суммарная потеря массы за счет дегидратации и восстановления WO₃ до WO₂ составляет 15,5 %. Поэтому можно считать, что первый этап процесса, состоящий из стадий дегидратации и восстановления WO₃ \rightarrow WO_{2,90} \rightarrow WO_{2,72} \rightarrow WO₂ полностью заканчивается при 800 °C за 4 – 5 ч; 900 °C за 1,5 ч; 1000 °C за 0,45 ч; 1100 °C за 0,5 ч. Это подтверждается исследованием на РЭМ продукта восстановления, полученного при разных температурах и выдержках. Различие имеется только в размере частиц получаемого WO₂ (рис. 2).

Выпуск 10. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ

Рис. 2. Порошок WO₂, полученный при 800 °С, выдержке 4 ч (а) и 900 °С, 2 ч (б).

Второй этап характеризуется небольшой скоростью и протекает до тех пор, пока не появятся первые кристаллы вольфрама. Такое замедление реакции практически не наблюдалось при использовании в качестве сырья WO_3 . Уменьшение скорости восстановления на этом этапе можно пояснить следующим образом. После завершения первого этапа в системе находятся WO_2 и H_2 , обогащенный паром H_2O . Молекулы H_2O , взаимодействуя с WO_2 , образуют гидрооксид $WO_2(OH)_2$. Образование гидрооксида идет до тех пор, пока не установится равновесная концентрация его над WO_2 . Поэтому скорость восстановления W из WO_2 уменьшается, и мы видим на рис. 1 замедление восстановления при всех исследуемых температурах на втором этапе. При достижении концентрации $WO_2(OH)_2$ достаточной для протекания реакции

WO
$$_{2}(OH) _{2} + 3H _{2} = W + 4H _{2}O$$
, (3)

в системе начинается выделение кристалликов W. Это приводит к уменьшению концентрации $WO_2(OH)_2$ над WO_2 , и реакция образования гидрооксида возобновляется. Постепенно весь WO_2 будет восстановлен до W (рис. 3).

Из рис. 3 следует, что процесс восстановления W из H_2WO_4 в закрытом реакторе за 8 ч завершается полностью только при температурах 1000 и 1100 °С. Дальнейшая перекристаллизация частиц вольфрама, которая проявляется при этих температурах, в увеличении их размеров обусловлена тем, что равновесное давление над маленькими частицами W больше чем над большими. Поэтому после завершения восстановления WO_2 процесс роста частиц W идет практически без потери массы.

Рис. 3. Образование первых кристаллов W, $\tau - 2$ ч (а) и практически полное восстановление WO₂ до W, $\tau - 6$ ч (б) при T – 1000 °C.

Обработка приведенных выше экспериментальных данных показала, что кинетика восстановления W из H_2WO_4 , как и в работе [4], хорошо описывается уравнением первого порядка (рис. 4), но в данном случае процесс восстановления имеет четко выраженную стадийность. При всех температурах восстановления, использованных в настоящей работе, четко видно замедление процесса восстановления на стадии образования WO_2 .

Рис. 4. Зависимость логарифма текущей концентрации кислорода в образце от времени выдержки при температурах 800 (\blacklozenge), 900 (\blacksquare), 1000 (\blacktriangle), 1100 (\times) °C. (Экспериментальные данные обработаны по методу наименьших квадратов).

Этого при прочих равных условиях практически не наблюдалось в случае использования в качестве исходного сырья WO₃. Анализируя кинетические кривые восстановления W из H₂WO₄, можно определить интервалы прохождения этапов реакции при всех исследуемых температурах восстановления (табл. 2), а также определить порядок реакции для каждого этапа. Первый и второй этапы подчиняются преимущественно первому порядку реакции (размерность мин⁻¹), третья стадия относится к нулевому порядку (размерность $\frac{MOЛЬ}{M^3 \cdot MUH}$). Значения константы скорости К для суммарной реакции определили из рис. 2, а для отдельных этапов – путем выделения и обработки соответствующих частей кривых восстановления (рис. 1), учитывая при этом порядок реакции. Значения К для разных стадий приведены в табл. 3.

T °C	Интервал этапов реакции, ч				
Ι, Ό	1-й	2-й	3-й		
800	0–1	1–4	4–8		
900	0–0,5	0,5–4	4–8		
1000	0–0,5	0,5–2	2–8		
1100	0–0,25	0,25–2	2–6		

Таблица 2. Интервалы прохождения этапов реакций восстановления W из H₂WO₄

	<i>T</i> , °C			
1	2			
$4,54 \cdot 10^{-03}$	$2,94 \cdot 10^{-04}$	$2,99 \cdot 10^{-04}$	$1,82 \cdot 10^{-03}$	800
8,84·10 ⁻⁰³	$1,11 \cdot 10^{-03}$	3,46.10-04	$3,11\cdot10^{-03}$	900
9,23·10 ⁻⁰³	$1,77 \cdot 10^{-03}$	$2,88 \cdot 10^{-04}$	$5,35 \cdot 10^{-03}$	1000
$1,06 \cdot 10^{-02}$	$2,84 \cdot 10^{-03}$	5,86·10 ⁻⁰⁴	$6,29 \cdot 10^{-03}$	1100

Таблица 3.	Константы	скорости	реакции	восстановления	W	ИЗ	H_2W	/O ₄
------------	-----------	----------	---------	----------------	---	----	--------	-----------------

Графическим методом (рис. 5) из зависимости $\ln K = f(\frac{1}{T})$ определили эффективную энергию активации *E* для каждого этапа реакции восстановления, а также суммарную эффективную энергию активации процесса восстановления W из H₂WO₄. Значения соответствующих энергий активации приведены в табл. 4.

Рис. 5. Зависимость логарифма константы скорости реакции от обратной величины температуры.

Таблица 4.	Энергия активации	этапов процесса	восстановления	W из	H ₂ WO ₄ B	закры-
	том реакторе					

Е, кДж/моль (ккал/моль)							
	4 (Суммарная реак-						
1	2	3	ция)				
32,5 (7,8)	90,4 (21,6)	21,3 (5,1)	52,8 (12,6)				

Примечание. 1-4 – кривые на рис. 5.

Из табл. 4 видно, что при восстановлении W из H_2WO_4 имеет место еще большее уменьшение суммарной энергии активации процесса восстановления по сравнению с данными работы [4], полученными при восстановлении W из WO₃.

Это может быть обусловлено повышением уровня гомогенности процесса восстановления, что объясняет также изменения и в морфологии кристаллов вольфрама при восстановлении W из H_2WO_4 в закрытом реакторе, наблюдавшихся в работе [3]. Особенно низкое значение *E* наблюдается для этапа восстановления W из WO₂. Это указывает на то, что увеличение концентрации паров H_2O в H_2 , обусловленное дегидратацией H_2WO_4 , действительно повышает степень гомогенности реакции восстановления W из WO₂. Относительно небольшое значение *E* для первого этапа вероятно обусловлено небольшой теплотой образования оксидов WO_{2,90} и WO_{2,72}.

Высокая энергия активации для второго этапа, близкая к Е процесса восстановления в проточном реакторе, свидетельствует о том, что процесс образования $WO_2(OH)_2$ за счет реакции $WO_2 + 2H_2O = WO_2(OH)_2 + H_2$ лимитируется какой-то стадией (диффузия H_2O к поверхности, абсорбция H_2O на поверхности WO_2 , образование соединения $WO_2(OH)_2$ с выделением H_2 , десорбция H_2 и $WO_2(OH)_2$ и т.п.).

В целом же *Е* для всего процесса ниже, чем при восстановлении W из WO₃.

Выводы

Кинетика реакции восстановления W из H_2WO_4 в закрытом реакторе существенно отличается от кинетики восстановления W из WO_3 .

Торможение реакции на втором этапе является лимитирующей стадией в данном процессе.

Повышение температуры восстановления от 800 до 1100 °С существенно (в несколько раз) уменьшает продолжительность лимитирующей стадии.

Уменьшение продолжительности лимитирующей стадии не приводит к изменению морфологии кристаллов W, т.к. рост кристаллов W идет за счет гомогенного процесса на третьей стадии.

Литература

- 1. Третьяков В. И. Основы металловедения и технологии производства спеченных твёрдых сплавов. М.: Металлургия, 1976. 528 с.
- 2. Бондаренко В. П., Андреев И. В., Савчук И. В. и др. Особенности восстановления вольфрама из его оксида WO₃ в закрытом реакторе // Сверхтв. материалы. 2005. № 2. С. 35–44.
- Бондаренко В. П., Андреев И. В., Ващенко А. Н. Влияние состава исходных вольфрамсодержащих соединений на процесс восстановления вольфрама в реакторах разных типов // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. научн. тр. – Вып. 8. – К.: ИСМ им. В. Н. Бакуля НАН Украины, 2005. – С. 226–230.
- 4. Бондаренко В. П., Андреев И. В. Кинетический анализ реакций восстановления WO₃ водородом в закрытом реакторе // Сверхтв. материалы. – 2006. – № 2. – С. 43–51.

Поступила 19.07.07.