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The impurity diffusion problem in a melt being crystallized at small distortions of the
phase interface has been solved within a bidimensional model for steady-state mode. The
cellule width so calculated has been shown to correspond to the crystallization rates
several times lower than those obtained by other authors in experiment. The cellular
structure of the phase interface observed by those authors after the melt was decanted is
supposed to be formed during a transition process consisting of two steps. In the first one,
a periodic structure with insignificant bulges was formed. In the second step, the bulge
height but not width was changed right to the crystallization process was attained the
steady state.

B gByM™MepHOil Momesn B YCTAaHOBUBIIEMCS PEKUMe pellleHa 3ajada mo fuddysuu mpumMmecu
B pacIjiaBe, KOTOPBIHI KPUCTANIUIYETCA IPU MAaJbIX MCKPUBJIEHUAX IPaHUILI pasdfena (has.
IToxasaHO, UTO paccUMTaHHAdg IPU STOM IINPUHA AUeeK COOTBETCTBYET CKOPOCTAM KPUCTAJI-
JIN3aIlUY, KOTOPLIe B HECKOJbKO Pa3 MeEHBbIIe, YeM IOJIyUeHHLIe B SKCIEPUMEHTE APYTUMU
aBTOopamMu. BrickasaHo mpeAmnoJioiKeHUE, UTO HabJioZaeMas STUMU aBTOPaMU IIOCJe JeKaHTa-
Y pacIjiaBa SUYeNcTas CTPYKTypa MIOBEPXHOCTHU pasdfesia o0pasoBaach BO BpPeMs IIEPEXO[-
HOTO IIPOIlecca, COCTOAIEero M3 ABYX osTamoB. Ha mepBoM m3 HUX BOSHUKJA IlepuoguyecKas
CTPYKTypa ¢ HebGOJbIIMMU BEICTyIlaMu. Ha BTOpOM »sTame, BILJIOTH JO BBIXOJA IIpollecca
KPUCTAJJIN3AINYN Ha CTAIlMOHAPHBLIM pPEeKUM, H3MeHAJAach BBICOTA BEBICTYIIOB, HO He UX
mIupuHa.

The periodicity is a remarkable cellular structure property of a binary melt crystallization front
arising under certain conditions. The crystals grown in such conditions (Fig. 1a [1]) find not any
applications in the meantime, in contrast to, e.g., similar nanostructured materials (Fig. 1b [2]),
it is of some interest to study the nature of cell formation at the crystallization front. In fact, the
formation of any periodical structure is based on a self-organization process in a non-equilibrium
system, and the knowledge obtained for one of such systems will be no doubt useful in obtaining
other periodic structures.

In [3, 4], the transition from a flat phase interface to its periodical defect structure was studied
using the variation method. The criterion we have obtained for such a transition agrees with condi-
tions determined by another technique [5]. Nevertheless, we have not considered to date the agree-
ment of the calculated cellular structure period values with literature data on the cell width. This
work 1s intended to fill that gap.
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Fig. 1. a) Phase interface structure after decanta-
tion of Pb + 0.15% Sn melt [1]. The average bulge

spacing in 58.8 pm. b) Plan view of mesoporous
aluminum oxide film [2]

We shall use in this study mainly the results
by Tiller and Rutter [1] who have collected a
comprehensive experimental data set on for-
mation of various phase interface morphologies
at crystallization of lead with tin admixture. In
particular, according to those data, the width of
linearly elongated cells exceeds the hexagonal
cell dimensions by 20 to 30% only. Therefore,
the conclusions drawn within the frame of bidi-
mensional solidification model can be expected
to be applicable to the tridimensional case.

Let the bidimensional solidification model
for a binary melt be considered where the tem-
perature field is specified as a linear function of
the coordinate x directed towards the crystal-
lization front movement at a constant speed V
[6]. Let the impurity concentration in the melt
C(x,y) be laid off in C (1-k)/k units from the C,

level where C; is the impurity concentration in the melt at infinite distance from the crystallization
front (CF) and k, the impurity distribution coefficient. The coordinate x will be laid off in L units
where L is the cell half-width or the half-period of CF line defined by equation x=¢(y).

Let the following dimensionless coefficients be introduced:

D
- = 1
K= (1)
B = kGiD , 2)
kT, VT
=——m - 3
1Tk —1UmDC, ©

where G is the temperature gradient, K/em; m, the liquidus line slope in the phase diagram of the
binary system, K/%; Tm, the solidification point of the pure melt; I, the capillary constant, cm.
Then the problem of the impurity bidimensional diffusion in the melt being crystallized at a

constant rate can be formulated as

C+C +xC, =0, @)
C.@0) — 0,0C,0) + 1~ Clpm) + k=0, ®)
Clow) =1 - Bo®) + yi%, (1 + k%9 ) = 0, ©)
Ceo, ) =0, C,(x,00= C,(x,1) = 0. 0

Here, the indices is used to denote partial derivatives of C(x,y) with respect to x and y as well
as that of @(y) with respect to y. Eq. (5) is the condition of impurity conservation at the CF. Eq. (6)
relates the impurity concentration at the phase interface to thermodynamic characteristics of the
latter. It follows from the phase diagram and the Gibbs-Thomson condition. The second and third
conditions from (7) reflects the experimental fact that the cell is symmetrical with respect to its
middle.

When being restricted to small amplitudes & of the cell bulges, the solution of the problem in the
second approximation with respect to £ can be presented [3] as

®)
C)

Clx,y) = e + A Lexp(—q,x)cosy + &A™ + A exp(—qx)cos2ny],
P(y) = Eeosmy + &4(a, + a,cos2Ty),
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Fig. 2. (a) Dependence of the phase interface half-period L on the crystallization speed V at different values of
capillary constant I' (cm): ['=7.43-108 (1), '=1-10¢ (2), '=10"° (3). The separated points are experimental ones
taken from [1]; (b) the image (a) in enlarged vertical scale.

where

qn:05+J025+me? (10)

Let the solutions (8), (9) be substituted into each of (5), (6), the exponents be expanded into
Taylor series, the items with common factors {cosiry, &2, §2cos2iry be grouped together and the sums
thereof be set to zero. Thus, a system of six equations is obtained from which we get

B + m2ly = ‘717_1 (11)
q1 +k—1
1 1
Al =1 —B—’]T2K2’Y, AO = — Alql -,
2 2
kdp (A =1 +k—1
= 4 o, =0, 0= Ay 2 TE T g 12)
AVY(CZZ +k—1) —k k
where A =1-B-4r*k?.
It is easy to transform the Eq. (10) at n = 1 into the equality
™Kk*=q,(q, - D. (13)
Substituting (13) into (11), we get a cubic equation
vq,° + vk —2)q*+ [B—yk—1)—1]q, + Btk — 1) +1=10, (14)

the solution thereof, q,=q_(k, B, v), depends on the input parameters of the problem (4)-(7). Substitu-
ing that solution into (13) ant taking into account (1), we get the dependence of the defect structure
half-period at the interphase surface, L, on the crystallization speed, V, in the form

D

B Vias(gs =1

Note that the crystallization speed enters the right-hand part of Eq. (16) also via the dependence
a.(BW), y(V)).

Besides the function L(V) itself having the typical positive branches shown in Fig. 2, we shall
need further the abscissa of its boundary point V,. That point is characteristic in that at V<V, the
solution of the problem (4)-(7) can be only flat one. Each branch of L(V) has its corresponding root of

L (15)
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Eq. (14). In the boundary point, both roots are equal to one another and thus, the derivative of the
left-hand part of (14) with respect to q, is zero:

3vq*+ 2y(k—2)q, + B—y(k-1)-1=0. (16)

It is just the system of equations (14), (16) where V| is determined from.

The parameter v for metals has been estimated to be small. For example, it amounts 3.7-10* for
the curve 2 of Fig. 2. Then, eliminating the parameter g, between Eqgs. (14), (16) and rejecting in the
equation obtained the items with vy in a power exceeding 1, it is easy to get the formula

By =1-33k%, /4, (17)

where the parameters B and y are determined at the boundary value V=V,. At a further consider-
ation of Eq. (17) as an implicit dependence of V, on I'*?, at first approximation with respect to I'*®
we get

1/3
T _V,l
Vy = Vo {1+ 3k|—m 0 | (18)
4(k —1)mDC,
where
kGD
Vg=—o 19
07 (k= DmC, (19)

is the critical crystallization speed in the classic solidification theory determined from the condition
of erystallization overcooling (C.0O.) of the melt [7].

The formulas (17) and (18) in another notation are presented in [6], [8], respectively, where
those have been obtained using the linear analysis of the flat crystallization front disturbances.
Thus, according to (18), the transition to non-planar phase interface must occur at higher criti-
cal crystallization speeds (V) than those predicted by the C.O. criterion. Nevertheless, numerous
experiments, including the data from [1], have shown an agreement with the formula [19] but not
with (18). The problem of that discrepancy requires a special consideration and falls outside the
limits of this study. It is to note only that there is nothing that might hinder us to use the relation-
ship C, ~ G/V_ as an experimental fact.

Let the calculation results to be considered with the data by Tiller and Rutter [1] on the Pb+0.15%
Sn alloy when studying the dependence of hexagonal cell width @ on the crystallization speed V. In
Table 1, the results from this study are presented by four sets of values (G, V_, L ), where L =a/2.

Fig. 2 shows the L(V) dependence plots calculated using (15) for the case G =7 K/em. It will be
seen from what follows that only lower branches of the L(V) plots are of a practical interest, that
is why those are presented in Fig. 2b at an extended vertical scale. The following parameters were
used when constructing the plots of Fig. 2: £=0.56, T =600 K, C,=0.15%, n= -3 K/%, D=7-10° cm?*/s
[1]. The only undetermined quantity was the surface tension coefficient I" that was assumed to have
the values corresponding to three cases. In the first one (curve 1), the I'=I"_ value was selected so
that the calculated curve passed the experimental point with coordinates given in the last row of
Table 1. The so calculated I', values as well as the corresponding boundary crystallization speed
values V| for all the four (G, V, L ) sets are presented in Table 1. In the second case (curve 2), the
I'=1-10* em was used that is assumed usually in theoretical studies of the phase interface morphol-
ogy [5, 9]. In Table 1, the boundary crystallization speed values V, | are presented for that case. Fi-
nally, when constructing the curve 3, a negligible value 10'° cm was ascribed to the parameter I.

In Fig. 2, experimental points are shown as well with ordinates normalized to the unique tem-
perature gradient G=7 K/cm. The small deviations thereof from the curve 1 of Fig. 2b are due to the
scatter in ', values.
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Table 1: Dependence of capillary constant I' and the boundary crystallization speed V, on the temperature
gradient G, crystallization speed V, and the cell half-width L_calculated from experimental data [1].

G, K/em V., 10 cm/s L, mkm ', 10®cm V,, 107 em/s
4.15 10.8 29.4 6.72 0. 964
4.65 14.2 25.4 6.60 1.09
4.85 16.7 24.2 7.02 1.14
7.0 23.0 21.6 7.43 1.7

Prior to consideration of the data presented in Fig. 2, the following features of the L(V) plot are
worth to be noted. The upper branches of L(V) at different I" values, other conditions being the
same, are essentially merged together starting from speeds somevhat exceeding V,. In contrast, the
lower L(V) branch approaches to the line L = 0 (curve 3 of Fig. 2b) as I" decreases and turns thereto
at I'=0.

It is seen from Fig. 2 that it is just the lower L(V) branch that corresponds to the experimental
values of the cell width that are typical of metal systems [1]. Indeed, in the upper branches of plots
in Fig. 2a the value V=0.023 cm/s corresponds to the cell half-width of L=490 pm exceeding the
experimental value by a factor more than 20. Taking this fact into account, the model with a neg-
ligible surface tension at the phase interface can be discarded at once, since the cell size obtained
within its frame will be either too large (upper branch) or near to zero (lower branch). It is to note
here that the cell size of about 10 um in metals is explained just by the fact that ['=10® cm in this
case [7]. It 1s of mterest that if the capillary constant might be reduced down to 1.84-10'2 em, the
plot of Fig. 2 would pass the point with coordinates V=0.023 ecm/s and L=100 nm (a typical size of
nanostructures [2]).

The rather high I' values (see Table 1) as compared to the value I'=1-10® cm typical of metals
are worth to attention. At the same time, the curve 2 corresponding to that value (Fig. 2) is posi-
tioned considerably below the experimental popints. However, a detailed consideration of the capil-
lary constant choice testifies to the value I'=1-10"® em.

First of all, let the boundary speed values V, (Table 1) and V|, (Table 2) be compared with the
critical crystallization speed V. For the Pb + 0.15% Sn alloy, the pox-like phase interface was
revealed at G=13 K/em and V=V =2.84-10° cm/s [1]. To determine the V for each G=G_, let the
relationship C, ~ G/V_be used (see above). It is seen from Tables 1 and 2 that the boundary speed
values V, calculated for I'=1-10® em are much more similar to the critical speeds V_ than V, ones
calculated for I'=7-10"® cm.

In addition to the above, it is to note that the transition to a regular cellular structure was ob-
served in [1] at crystallization speeds near about 2V It is seen from Tables 1 and 2 that the half-
period values L_in the cellular structure calculated at I'=1-10® cm and V=2V exceed only slightly
the experimental L values. This testifies also to the value I'=1-10® cm.

Finally, it is to take into account that the cell dimensions in [1] were measured for samples

Table 2: Dependence of boundary crystallization speed V,,, critical crystallization speed V,, and the regular cel-
lular structure half-period L on the temperature gradient G calculated for the capillary constant I'=1-10-% cm.

G, K/em V,,» 10 cm/s V., 10® em/s L, mkm VIV
4.15 0.890 0. 907 35.5 11.9
4.65 1.00 1.02 33.5 13.9
4.85 1.05 1.06 32.6 15.8
7.0 1.53 1.53 27.0 15.0
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grown at speeds exceeding the critical ones by a factor of 12-16 (see Table 2). The use of such crys-
tallization speeds exceeding considerably not only the critical one but also the speed at which the
cellular structure becomes a regular one is explained most likely by the authors’ effort to obtain
a well-defined cellular pattern that requires a rather high cell bulges. In that case, however, our
calculations at I'=7-10® em cannot be considered as correct ones, since the call bulge amplitude was
assumed to be small at all the crystallization speeds, including V=V

Taking the above into account, it is natural to make an assumption that will be formulated after
the remark that follows. It is known [10] that the approach of a binary melt erystallization process
to the stationary mode at the growth renewing (or after its onset) is preceded by a transient period
that continues until the stationary distribution of temperature and impurity is attained in the crys-
tal and melt in a mobile system of coordinates. It follows therefrom that the crystallization speed V
may differ considerably from the crystal pulling speed W, especially shortly after the pulling device
is switched on (or after the electrical scheme is switched on for the temperature field displacement
as in [1]).

The assumption mentioned consists in that the cellular structure used in [1] to measure the cell
size was formed during at least two stages of the transient crystallization period. The first initial
stage occurred at the speed increasing from zero to 2V and finished by formation of a regular struc-
ture with small bulges at the phase interface. At the second stage, the bulge spacing remained un-
changed but the bulge height increased till the crystallization speed had attained the temperature
field displacement speed W. This assumption is confirmed by the known fact of the cellular structure
stability. For example, it has been found for a Pb+Sb alloy [11] that the cell width arising at a certain
crystallization speed V| remains unchanged at the subsequent speed increase up to V,=2V.

Thus, when a certain boundary crystallization speed V=V, is exceeded, the problem (9)-(12) has
a non-planar solution ({#0). However, this does not mean at all that the crystallization front will
take a cellular structure at V>V,. This can occur only if the cellular surface of the phase interface is
more stable than the flat one. In the stationary problem corresponding to the steady state crystal-
lization mode, the conditions of transition to the cellular growth can be determined by comparing
the dissipation energy prior to and after such a transition. The temperature field being preset in
that case, only the diffusion component of the dissipation energy will change at the transition from
the flat boundary to the curved one. The latter can be associated [12] with the functional

1 =
HC@prw}:f@J}WCf+€%&ﬁm%l[fﬂk+ﬂ—kXU&@, (20)
0 (o}

where (¢) means the line ¢p=x(y) along which the line contour integral is taken. In fact, the first
integral in (20) is in proportion to the energy being dissipated as the impurity diffuses in the melt
volume [4]. This is evidenced, in particular, by the dependence of its integrand on the squared con-
centration gradient. The second part can be presented as

PR B
g R A
() )

using the boundary condition (5). It is seen that at the fixed phase interface, the curvilinear part of
the functional (20) consists of an item inessential at variation and an integral with integrand being
in proportion to the squared concentration gradient but related to the phase interface. Thus, by
analogy with double integral, the curvilinear integral in (20) can be considered to be in correspon-
dence to the energy being dissipated at the phase interface as the impurity particles pass from the
liquid phase to the solid one.

In fact, when having determined the boundary shape by Eq. (9), we go from the problem (4)-(7)
to its variational equivalent. Having calculated the second variation of the functional (20), it is easy
to establish that, at least in the case £>1, the solution of the problem (4)-(7) gived to the functional

2
C,—eo,C, [ dy. (21)
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(20) not simply stationary value but the minimum one. However, there are grounds to suppose [12]
that the stationary value of the functional (20) is equivalent to its minimum one within the whole
range of k values.

Substituting (8), (9) into (20) and taking into account (11), (12), we get at an accuracy to &

I:—k+§2%F, (22)

where

F:B-FTKZHZ’\(—%. (23)

It is seen from (22) that the functional (20) value at the phase interface distortion in the form of
a periodic function (§£0) will be smaller than the value corresponding to the planar case (§&=0) if the
factor I will be negative. It is to note that the dissipation energy for defects distributed chaotically
over the surface may differ from that for salf-organized periodic structure. We cannot say nothing
about the energy in the first case, since the solution of the problem was supposed to be periodic at
its formulation.

Fig. 3 shows the F(V) plots constructed for the same parameter values as for the curves in Fig. 2.
Comparing the Figs. 2 and 3, it is easy to understand that the upper branches of the curves in Fig.
2 correspond to the lower branches of Fig. 3 ones and vice versa. First, both upper L(V) branches
and lower F(V) ones merge together as the crystallization speed increases. Second, the almost hori-
zontal lower branch of curve 3 in Fig. 2 corresponds to the almost horizontal upper branch of curve
31in Fig. 3.

It has been shown above that it is just the lower branches of L(V) plots that correspond to the
experiment [1]. The upper branches of corresponding F(V) curves cannot be supposed to intersect
the F'= 0 line at any reasonablr crystallization speed. Thus, there is a contradiction associated most
likely with imperfection of our solidification model. This problem of great interest will be considered
in detail in a next work.

To conclude, in spite of a considerable amount of available experimental data on the problem
of binary melt solidification, it is obviously insufficient to check the validity of the corresponding
theory.

References

. W.ATiller, J W.Rutter, Can. J. Phys. 34, 96 (1956).

. The Red Book of Microstructures of Novel Functional Materials, ed. D. Tretyakov, Moscow, MGU, (2006)
[in Russian].

. V.N.Kanischev, Kriystallografiya, 49, 1151, (2004).

. V. N. Kanischev, S. V. Barannik, Kristallografiya 51, 124 (2006).

. W. W. Mullins, R. F. Sekerka, /. Appl. Phys. 35, 444 (1964).

. J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).

N —

oY Ut o= W

Functional materials, 15, 4, 2008 523



V.N.Kanischev, S.V.Barannik / On the cellular ...

7. W. A. Tiller. Crystal Growth from a Melt, in: The Art and Science of Growing Crystals, John Wiley & Sons,
Inc., New York — London (1963).
8. R. F. Sekerka, J. Appl. Phys. 86, 264 (1965).
9. D. J. Wollkind, R. Sriranganathan, D. B. Oulton, Physica D 12, 215 (1984).
10. S. V. Barannik, A. Ya. Dan’ko, V .N. Kanischev, Functional Materials, 4, 551 (1997).
11. L. R. Morris, W. C. Winegard, /. Crystal Growth, 5, 361 (1969).
12. V. N. Kanischev, S. V. Barannik, Functional Materials, 18, 558 (2006).

IIpo mepiox Komipyacroi ctpykTypu ponTy
KpHCTaJIi3aIii 6iHapHOro po3mnjaBy

B.H.Kaniwes, C.B.Bapannuk

VY nBoBUMIpHIN MO/IeJIl B yeTaJIeHOMY PEsKHMI PO3B s13aH0 3a7a4y TUQysii JOMIIIKE Y PO3ILIAaBI,
0 KPHUCTAJTI3YeThesI DM He3HAUYHUX BUKPUBJICHHSIX Meski poaaiity das. [Tokasano, mo mpu oMy
MIHIPHHA KOMIPOK BIAIIOBIAae MBUIKOCTIM KPHUCTAJI3AI], ¥ KIJIBKA PAasiB MEHIITHM BIJI olIepska-
HUX B @KCIIEPUMEHTI IHIIUME aBTOpaMHU. BUCJIOBJIGHO TIPUIYIEHHS, [0 KOMIpYacTa CTPYKTYpa
MOBEPXHI PO3JIIJIY, SIKA cIlocTepirasiacs MUMH aBTOPAMU TICJIs ICKAHTATIIl PO3ILTaBy, YTBOPHUJIA-
¢S i 9ac TmepexiIHOTo Mpoliecy, Mo CKIAAaeThes 3 ABOX eramiB. Ha mepuioMy erari BUHHEKIIA
MepiouyHa CTPYKTYPA 3 HeBeJIMKUMHK BHCTYTIAMHU. Ha Jpyromy erarl, as 10 BHXOJIY IpoIlecy
KpHCTAaJi3allii Ha cTalllOHAPHUI PesnuM, 3MIHIOBAJIacsl BUCOTA BHCTYIIB, ajle He iXHs MHUPHHA.
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