УДК 536.42: 661.657.5

Т. О. Гарбуз, асп.¹; **О. В. Кріштова**, інж.¹; **М. П. Беженар**, докт. техн. наук¹; **С. А. Божко**, канд. техн. наук¹; **Н. М. Білявина**, канд. фіз.-мат. наук²

¹Інститут надтвердих матеріалів ім. В. Н. Бакуля НАН України, м. Київ, Україна ²Київський національний університет ім. Тараса Шевченка, м. Київ, Україна

ФІЗИКО-ХІМІЧНА ВЗАЄМОДІЯ В СИСТЕМАХ *с*ВN–TiB₂–Al, cBN–ZrN–Al під час спікання під високим тиском і властивості одержаних композитів

The phase composition of the samples gained at a high pressure from an intermixture of two compositions ($cBN-TiB_2-Al$ and cBN-ZrN-Al) is explored at change of temperature (1300–2300 K) and durations (5–300 s) sintering. Properties of samples (density, hardness, electroresistance) in connection with modes of a sintering are studied.

Вступ

В ІНМ НАН України створено науково-технологічні основи отримання надтвердих полікристалічних матеріалів кубічного нітриду бору, розроблені композити інструментального і конструкційного призначення, серед яких відомі в світі марки киборит-1, -2, -3, остання розробка – двошаровий електропровідний композит КНБ на твердосплавній підкладці для складнопрофільного інструменту. Для отримання майже всіх згаданих матеріалів використовують спосіб двостадійного реакційного спікання з алюмінієм [1]. Параметри спікання кибориту-2 (cBN-Al) і кибориту-3 (cBN-TiC-Al) нами детально досліджені, оптимізовані і адаптовані для апаратів високого тиску (ABT) різного типу. Для отримання композитів КНБ інструментального призначення (PCBN) провідні світові фірми використовують в складі шихти з *c*BN метали Al, Co, а серед тугоплавких сполук практично обмежуються порошками TiC, TiN, TiCN [2].

Останнім часом наші дослідження спрямовані на отримання композитів КНБ, зміцнених боридами тугоплавких металів. Використання в складі шихти cBN–Al добавок TiB₂ [3] і ZrN [4] показало, що вони впливають на реакційну взаємодію між cBN і Al, а також на функціональні властивості отриманих композитів. Присутність у шихті TiB₂ – фази, ізоструктурної з AlB₂, – сприяло зсуву реакційної взаємодії між cBN і Al вбік утворення дибориду замість вищих боридів алюмінію за рахунок епітаксіальної кристалізації зародків, що дає перспективу завершення реакційної взаємодії за нижчих р,Т-параметрів спікання. Присутність у шихті ZrN ініціювало реакційної взаємодії за нижчих р,Т-параметрів спікання. Присутність у шихті ZrN ініціювало реакцію, яку можна уявити як наслідок одночасної взаємодії: Al+BN=AlN+B; Al+ZrN=AlN+Zr; Zr +2B=ZrB2; при цьому ZrB2 кристалізується з розплаву і за певних умов може забезпечити ефект дисперсійного зміцнення фази AlN. Подібний ефект ми спостерігали в процесі спікання кибориту-3, коли TiC у складі шихти cBN–TiC–Al брав участь у реакціях з утворенням TiB2 [5]. В [3, 4] ми варіювали в складі шихти (співвідношення cBN і тугоплавкої сполуки), а спікання всіх зразків виконували за одним режимом (7,7 ГПа, 2300 К). У цій роботі склад шихти був обмежений 10 % (за масою) TiB2 або 13 % (за масою) ZrN, варіювали температуру і тривалість процесу спікання.

Метою роботи було вивчення кінетики реакційної взаємодії в системах cBN–TiB2–Al і cBN– ZrN–Al, її впливу на формування фазового складу і властивостей композитів для вибо-ру оптимальних режимів їх спікання.

Методики дослідження

У складі шихти використовували порошки кубічного нітриду бору марки КМ 14/10, алюмінію марки АП і тугоплавких сполук – дибориду титану [3], нітриду цирконію [4]. Спікання виконували в АВТ тороїд з робочим об'ємом 1 см³. Всі зразки просочували алюмінієм з шихти (p=2,5 ГПа, T=1300 K, 20 с), далі спікали під тиском 7,7 ГПа протягом 60 с за температур 1300, 1750, 2100 і 2300 K, а за T=1750 K тривалість спікання становила від 5 до 300 с. В кожному варіанті експериментів отримували 3–6 зразків.

Після спікання поверхню зразків піддавали механічній обробці, потрібній для структурних і фізико-механічних досліджень. Фазовий склад визначали за методом рентгендифрактометричного (XRD) аналізу з використанням автоматизованого дифрактометра ДРОН-3 і комплексу програм, укомплектованого базою даних дифрактограм еталонних сполук. Густину зразків визначали методом гідростатичного зважування в ацетоні з інструментальною похибкою 1,1 % та вимірюванням геометричних розмірів з інструментальною похибкою 0,7 %, середня статистична похибка вимірювань становила 0,3 %. Для розрахунку густини безпористих композитів викорис-товували баланс маси в реакціях і табличні дані (г/см³): 3,49 (*c*BN); 2,7 (Al); 3,12 (AlN); 4,53 (TiB₂); 7,35 (ZrN); 6,09 (ZrB₂). Твердість зразків вимірювали індентором Кнупа за навантаження 9,8 Н. Електричний опір вимірювали з використанням цифрового омметра Щ34, відносна ін-струментальна похибка в досліджуваному діапазоні вимірювань становила 5 %.

Результати

Фазовий склад зразків системи сВN–ТіВ₂–Аl. Еволюцію зміни фазового складу зразків показано на рис. 1, *a*.

Вміст фаз в % (*) оцінювали за інтенсивністю відповідних відбиттів; тут і далі вміст *c*BN не показаний. Після просочення вміст фаз *c*BN, TiB₂ і Al у зразках відповідав їх вмісту в шихті, а продукти реакційної взаємодії ідентифіковані не були. Деяке зростання періоду кристалічної гратки алюмінію (рис. 1, δ) можна пояснити утворенням на її основі твердого розчину (бору і/або титану). Після спікання за 7,7 ГПа і 1300 К протягом 60 с фазовий склад практично не змінився, проте період гратки алюмінію продовжував зростати.

Рис. 1. Еволюція фазового складу (а), періодів кристалічних траток Al (б) і cBN (в) під час спікання в ABT шихти cBN–10 % Al–10 % TiB₂.

Реакційна взаємодія в шихті починалася і майже цілком завершувалася за температури 1750 К. В результаті взаємодії утворювалися нітрид алюмінію та, найвірогідніше, твердий розчин на основі дибориду титану $Ti_xAl_{1-x}B_2$ [3] (близькі значення періодів кристалічних граток TiB_2 та AlB_2 (табл. 1) не дозволяють підтвердити або спростувати це припущення).

Еволюція періоду кристалічної гратки Al в процесі спікання за 1750 *К* є наслідком кристалізації боридних фаз із розплаву. Повне завершення реакційної взаємодії спостерігалося в зразках, що спікали за 2100 і 2300 *К*.

Окремо слід сказати про еволюцію періоду гратки *c*BN (рис. 1, *в*). Його зростання в процессі спікання за умов високого тиску ми спостерігали і раніше:

в інтервалі температур 2100–2300 К у зв'язку з процесами термічної деструкції кристалічної гратки під час спікання порошків *c*BN без добавок у шихті [9];

в інтервалі температур 1000–1600 К в зв'язку з утворенням твердого розчину Al в кристалічній гратці *c*BN при реакційному спіканні з Al, особливо в режимі з попереднім просоченням [10];

нарешті, в зв'язку з дифузією вуглецю в кристалічну ґратку cBN [11].

У цій роботі максимальні значення періодів граток *c*BN і Al в перші секунди ізотермічного (1750 *K*) спікання можуть бути пов'язані з розчиненням титану в розплаві алюмінію і його переносом з розплавом та дифузією в кристалічну гратку *c*BN. Це може спричиняти також можливість кристалізації з розплаву фази $Ti_xAl_{1-x}B_2$.

Фа- за	Характеристика зразку	<i>а=b</i> , нм	С, НМ	c/a	<i>V</i> , нм ³	$\Delta V/V$, %
AlB ₂	-[6]	0,30050	0,32537	1,0828	0,02543	-1,17
AlB ₂	Al–cBN, 7,7 ГПа, 1750 К [7]	0,3016(3)	0,3268(2)	1,0835	0,02573(8)	0
TiB ₂	-[8]	0,3028	0,3228	1,066	0,02563	-0,39
TiB ₂	Вихідний порошок	0,30298(1)	0,32277(2)	1,065	0,02566(1)	-0,27
TiB ₂	Ця робота	0,3031(1)	0,3231(1)	1,066	0,02571(3)	-0,07
ZrB ₂	-[8]	0,3168	0,3528	1,114	0,03066	19,16
ZrB ₂	Ця робота	0,3162 (1)	0,3519(1)	1,113	0,03047	18,42

Таблиця 1. Періоди кристалічної ґратки фаз зі структурою типу AlB₂*

* В дужках дисперсія значень в останній цифрі.

Фазовий склад зразків системи cBN-ZrN-Al. Перш за все слід відзначити, що реакційна взаємодія в системі cBN-ZrN-Al починається дещо раніше, ніж у системі $cBN-TiB_2-Al$, але пізніше, ніж у системі cBN-Al. Це підтверджує ідентифікація продуктів взаємодії і ступінь завершеності реакцій з алюмінієм у зразках після просочення (табл. 2).

Таблиця 2. Реакційна взаємодія при спіканні композитів КНБ на стадії просочення алюмінієм (*p*=2,5 ГПа, *T*=1300 K, 20 с)

IIIuwaa	Вміс	Підородура			
шихта	Al	AlN	ZrN	ZrB ₂	лпература
<i>c</i> BN+10 % TiB ₂ +10 % Al	1	0	—	—	Ця робота
<i>c</i> BN+13 % ZrN+10 % Al	0,99	0,01	0,99	0,01	Ця робота
<i>c</i> BN+10 % Al	0,5	0,5	_	—	[10]

Тиск 7,7 ГПа активує утворення продуктів реакційної взаємодії в системі cBN-ZrN-Al, в першу чергу AlN, реакційна взаємодія з алюмінієм тут практично завершується за 60 с за температури 2100 *К* або за тривалого (180–300 с) ізотермічного спікання за 1750 *К* (рис. 2,*a*). Реакції з утворенням ZrB₂ йдуть повільніше і не до кінця (рис. 2,*b*).

Середнє значення періоду кристалічної гратки *c*BN після спікання в шихті з ZrN за температур 1300–1700 *K* становило 0,36142 (3) нм. Воно зростало до 0,36150–0,36155 нм тільки після спікання за 2100–2300 *K* у зв'язку з температурною деструкцією гратки. Середнє значення періоду кристалічної гратки залишкового алюмінію в зразках становило 0,40539 (4) нм, тобто залишалося стабільно вищим ніж у вихідному порошку Al (0,40470 нм). Можна припустити, що механізм реакційної взаємодії в системі *c*BN–ZrN–Al включає дисоціацію *c*BN і ZrN, розчинення та дифузію цирконію і бору в розплаві Al з одночасною кристалізацією ZrB₂ і AlN. Азот як продукт дисоціації *c*BN і ZrN взаємодії з боридами та нітридом цирконію кількість AlN по завершенні спікання була більшою в зразках саме з ZrN (див. рис. 1,*a* і 2,*a*). На відміну від системи *c*BN–TiB₂–Al, де високі значення періоду гратки *c*BN (див. рис. 1,*e*) ми пов'язували з дифузією титану з розплаву, в системі *c*BN–ZrN–Al за таких самих *p*,*T*-умов перенос цирконію до кристалічної гратки *c*BN не відбувався. В цілому періоди гратки *c*BN у зразках, отриманих у двох системах, істотно відрізнялися.

Рис. 2. Продукти реакційної взаємодії — AlN (a) і ZrB_2 (б) під час спікання в ABT шихти cBN-13 % ZrN-10 % Al

Період кристалічної гратки ZrN в усіх експериментах не змінювався, а його середнє значення (0,45714(4) нм) збігалося з таким у вихідному порошку (0,45715 нм). Зазначимо також, що в полікристалах ZrN, отриманих за таких самих p, T-умов, але без Al, який зв'язує адсорбований в шихті кисень, період гратки зростав до 0,45750 нм у зв'язку з утворенням оксинітридів цирконію.

Фазу AlB₂ в цих експериментах ідентифіковано не було, натомість об'єм елементарної ячейки фази ZrB₂ в порівнянні з [8] (див. табл. 1) був істотно меншим. Тому можливо припустити утворення твердих розчинів $Zr_XAl_{1-X}B_2$ під час спікання за умов високого тиску сплавів у системі *c*BN–ZrN–Al.

Припускаючи лінійну залежність періодів гратки взаємного твердого розчину Zr_XAl_1 . _XB₂, можна оцінити склад цієї фази в синтезованих зразках (табл. 3) (нестехіометрію складу дибориду алюмінію (Al_{0,9}B₂) [6, 7] не враховували).

Таблиця 3. Склад фази Zr_XAl_{1-X}B₂ у зразках після різної тривалості спікання за *p*=7,7 ГПа, *T*=1750 К

Зразок	а, нм	С, НМ	<i>x</i> (за <i>a</i>)	<i>x</i> (за <i>c</i>)	x	Формула
$ZrB_2[8]$	0,3168	0,3528	1	1	1	ZrB_2
30 c	0,3157(2)	0,3517(4)	0,928	0,958	0,943	Zr _{0,94} Al _{0,06} B ₂
60 c	0,31662(7)	0,35216(6)	0,988	0,975	0,981	Zr _{0,98} Al _{0,02} B ₂
90 c	0,31639(7)	0,3512(1)	0,973	0,938	0,956	Zr _{0,96} Al _{0,04} B ₂
$AlB_2[7]$	0,3016(3)	0,3268(2)	0	0	0	AlB ₂

Властивості зразків системи cBN–TiB₂–Al і cBN–ZrN–Al. У табл. 4 за даними довідників наведені мікротвердість і питомий електричний опір окремих фаз, в табл. 5 і 6 – властивості експериментальних зразків залежно від складу шихти, температури і тривалості спікання.

Фаза	Al	TiB ₂	ZrB ₂	ZrN	AlB ₂	TiC	cBN	AlN
ρ, 10 ⁻⁷ Ом∙м	0,29	0,9	0,97	2,0	3–8	6,0	10^{13}	10^{13}
Ни, ГПа	_	33,7	22,5	16,7	9,6	31,7	42	12

Таблиця 4. Мікротвердість і питомий електричний опір деяких фаз [12]

Таблиця 5. В	Властивості зразі	ків після спіка	ння за <i>р</i> =7,7 ГПа	ı, τ=60 c

Температура, К	Просочення	1300	1750	2100	2300				
cBN–TiB ₂ –Al									
ρ, г/см ³	3,14	3,42	3,45	3,46	3,47				
ρ, %	0,902	0,983	0,991	0,994	0,997				
% Al (мас)	5,5	4,1	1,4	0	0				
ρ, Ом∙м	$3 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$2,3\cdot10^{-3}$	8,0	75,0				
<i>НК</i> , ГПа	15±1,5	23±1	31±1	34±1,5	35±1,5				
	cBN–ZrN–Al								
ρ, г/см ³	3,31	3,55	3,59	3,61	3,62				
ρ, %	0,905	0,970	0,981	0,986	0,989				
% Al (мас)	5,3	4,5	2,2	0,4	0				
ρ, Ом∙м	$4 \cdot 10^{-4}$	1,1.10-3	7,1.10-3	$0,9.10^{5}$	$1,6.10^5$				
<i>НК</i> , ГПа	10,6±0,5	12,1±0,2	23,5±0,2	23,8±0,5	24,3±0,5				

Таблиця 6. Властивості зразків після спікання за p=7,7 ГПа, T=1750 K

Тривалість, с	5	15	30	60	90	180	300			
cBN-TiB ₂ -Al										
ρ, %	0,983	0,986	0,989	0,991	0,994	0,994	0,999			
% Al (мас)	3,4	2,7	2,4	1,4	0,3	0,4	0,7			
ρ, Ом∙м	$4 \cdot 10^{-4}$	1,6·10 ⁻³	$2,1\cdot10^{-3}$	$2,4\cdot10^{-3}$	$5 \cdot 10^{-3}$	$7 \cdot 10^{-3}$	$1,9.10^{-3}$			
<i>НК</i> , ГПа	24±1	27±1	29±1	31±1	33±1,5	33±1,5	32±1,5			
	cBN–ZrN–Al									
ρ, %	0,945	0,964	0,973	0,981	0,986	0,992	0,970			
% Al (мас)	5,0	4,9	4,8	2,2	2,1	0	0			
ρ, Ом∙м	$5 \cdot 10^{-4}$	1,6·10 ⁻³	$1,7.10^{-3}$	$7,1\cdot10^{-3}$	1,3·10 ⁻¹	$2,1\cdot10^{3}$	$5 \cdot 10^2$			
<i>НК</i> , ГПа	12±1	12±0,4	15,9±1	$23,5 \pm 0,5$	25±1	23±0,5	21±0,5			

У зразках із шихти $cBN-TiB_2-Al$ максимальних значень твердості 34–35 ГПа досягали за температури спікання 2100–2300 К. Тривале спікання за T=1750 К дозволяло отримати дещо нижчі значення (33 ГПа) за майже однакової відносної густини зразків 0,994–0,997. Цьому могли сприяти сліди Al у структурі. За незначної різниці в твердості важливою перевагою режиму спікання за T=1750 К стає невисокий електричний опір зразків (5–7)·10⁻³ Ом·м. За порядком величини це наближається до рівня електропровідного композита кубічного нітриду бору системи cBN-TiC-Al (~10⁻⁴ Ом·м) за твердості останнього *HKN*=25 ГПа [12].

У зразках із шихти *c*BN–ZrN–Al твердості 24 ГПа і електричного опору $\sim 10^{-3}$ Ом·м досягали спіканням за 1750 *К* тривалістю 60 с. Подальше спікання за 1750 *К* призводило до нестабільності електричного опору в зразках, а з підвищенням температури спікання до 2100– 2300 *К* він зростав на декілька порядків. Твердість у цьому разі зберігала досягнуті значення. Електропровідність композитів кубічного нітриду бору є важливою характеристикою, певний її рівень дозволяє під час виготовлення інструменту застосовувати методи електроіскрового різання, менш затратні в порівнянні з алмазним різанням. Отримані результати доводять перспективність використання добавок TiB₂ і ZrN у шихті в процесі реакційного спікання *c*BN з Al.

Висновки

1. Фізико-хімічна взаємодія під час спікання в АВТ шихти cBN-10 % TiB₂-10 % Аl починалася і завершувалася за p=7,7 ГПа, T=1750 K з утворенням нітриду алюмінію та диборидів титану і алюмінію, найвірогідніше, складу Ti_xAl_{1-x}B₂. Фізико-хімічна взаємодія в шихті cBN - 13 % ZrN – 10 % Al починалася раніше, як і в шихті cBN-10 % Al, на стадії просочення за p=2,5 ГПа, T=1300 К. Але на відміну від систем cBN-Al і $cBN-TiB_2-Al$, де утворення нітриду алюмінію передувало кристалізації з розплаву боридних фаз, в системі cBN- ZrN-Al утворення фаз AlN і Zr_xAl_{1-x}B₂ відбувалося синхронно, а по завершенні спікання за p=7,7 ГПа, T=1750 K кількість AlN була більшою саме в зразках цієї системи.

2. Після спікання за p=7,7 ГПа, T=1750 К протягом 60–90 с у зразках залишався Al (0,3–2,0 %). За його участю разом з електропровідними тугоплавкими сполуками утворювалася структура, що забезпечувала питомий електричний опір ~10⁻³ Ом·м і твердість 33 та 24 ГПа в системах cBN–TiB₂–Al і cBN–ZrN–Al відповідно.

Література

- 1. Патент25281, Україна, МКИ С04В35/5831. Спосіб спікання композиційного матеріалу на основі кубічного нітриду бору / М. В. Новіков, О. О. Шульженко, М. П. Беженар, С. А. Божко. Заявл. 21.07.97, Опубл. 25.12.98, Бюл. № 6.
- Беженар М. П., Лошак М. Г., Шульженко О. О., Александрова Л. І., Божко С. А., Білявина Н. М., Заіка М. І. Фізико-механічні властивості та структура полікристалічних матеріалів, отриманих з порошків *c*BN різної дисперсності // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения / Сб. научн. тр. – Вып. 9. – К.: ИСМ им. В. Н. Бакуля, 2006. – С. 168–174.
- Гарбуз Т. О., Беженар Н. П., Божко С. А., Білявина Н. М. Спікання при високому тиску порошків *c*BN з добавками TiB₂ і Al та властивості одержаних полікристалів // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения / Сб. научн. тр. – Вып. 9. – К.: ИСМ им. В. Н. Бакуля, 2006. – С. 271–277.
- Кріштова О. В., Беженар Н. П., Божко С. А., Білявина Н. М. Структура та властивості полікристалів, одержаних при спіканні порошків *c*BN з добавками ZrN і Al в умовах високого тиску // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения / Сб. научн. тр. – Вып. 9. – К.: ИСМ им. В. Н. Бакуля, 2006. – С. 263–270.
- Шульженко А. А., Беженар М. П., Божко С. А., Боримский А. И., Нагорный П. А., Ващенко А. Н. Новый композит КНБ для использования в сложнопрофильном лезвийном инструменте // Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения / Сб. научн. тр. Вып. 7. К.: ИСМ им. В. Н. Бакуля, 2004. С. 173–176.
- Burkhard U., Gurin V., Haarmann F., Borrmann H., Schelle W., Yaresko A., Grin Yu. On the electronic and structural properties of aluminium diboride Al_{0.9}B₂//Solid State Chemistry. – 2004. –177. P. –389 –394.
- 7. Беженар Н. П., Божко С. А., Белявина Н. Н., Маркив В. Я., Шульженко А. А. Кристаллическая структура диборида алюминия в композитах КНБ, полученных реакционным спеканием при высоких давлениях // Доповіді НАН України. – 2007.– № 9. – С. 112–118.
- 8. Серебрякова Т. И., Неронов В. А., Пешев П. Д. Высокотемпературные бориды. М.: Металлургия, 1991. 368 с.

- 9. Беженар Н. П., Божко С. А., Белявина Н. Н., Маркив В. Я. Период решетки и дефекты кристаллической структуры сфалеритного нитрида бора. Сообщение 1 // Сверхтв. материалы. 1999. № 4. С. 15–25.
- Новіков М. В., Беженар М. П., Божко С. А. Еволюція кристалічної структури сфалеритного нітриду бору при спіканні композитів BN_{сф}–AlN і BN_{сф}–TiC та її вплив на твердість // Доповіді НАН України. – 1997. – № 6. – С. 118–122.
- 11. Беженар М. П., Божко С. А., Нагорний П. А., Білявина Н. М., Марків В. Я. Взаємодія кубічного нітриду бору з алюмінієм в присутності вуглецю // Сверхтв. материалы. – 2000. – № 4. – С. 36–40.
- 12. Беженар Н. П., Божко С. А., Романко Л. А., Белявина Н. Н. Твердость и электрическое сопротивление композитов системы *c*BN–Al–TiC (TiN), полученных реакционным спеканием при высоком давлении // Сверхтв. материалы. 2006. № 3. –С. 34–43.

Поступила 12.07.07.