УДК 666.233

В. В. Корольков, асп.; А. В. Карпец, студ.; И. И. Кулакова, канд. хим. наук; Г. В. Лисичкин, докт. хим. наук

МГУ им. М. В. Ломоносова, химический факультет, г. Москва, Россия

ХИМИЧЕСКОЕ МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ НАНОСТРУКТУРИРОВАННОГО ПОРИСТОГО АЛМАЗА

Surface chemistry of modified nanostructured porous diamond (PDD) was investigated. TEM investigations revealed that atomic structure of original diamond particles, which are 5 nm in size, wasn't affected neither by sintering nor by hydrogen treatment at 800 °C. For the first time the possibility of formation of graft layer of hexadecyl groups was shown.

Введение

Наноалмаз (НА) представляет собой особый тип алмазного материала [1, 2]: в нем сочетаются механическая, термическая, радиационная и химическая стойкость алмаза, а также лабильность функционального покрова поверхности. Поскольку все атомы на поверхности НА (18 ат/нм²) могут быть связаны с функциональными группами, его свойства в наибольшей степени, по сравнению с другими углеродными материалами, определяются химическим состоянием поверхности [3, 4].

Разрозненные данные о высокой сорбционной способности НА детонационного синтеза имеются в литературе, см. например [1, 5]. Несмотря на привлекательность его для использования в качестве сорбента, в хроматографии описаны лишь единичные попытки изучения их хроматографических свойств [6, 7]. Из-за наличия в порошках НА разных по размерам и механической прочности агрегатов, малых размеров первичных кристаллитов и зависимости природы функционального покрова алмазной поверхности от условий детонационного синтеза и очистки НА малопригодны в качестве сорбента для ВЭЖХ.

Компанией «АЛИТ» (г. Житомир, Украина) разработана методика получения наноструктурированного пористого алмаза (PDD) [8]. Путём спекания чистого порошка НА в условиях термодинамической стабильности алмаза и последующего дробления компактов могут быть получены микропорошки PDD различной зернистости, которые обладают всеми положительными свойствами классического алмаза и в то же время имеют развитую поверхность, узкое распределение частиц по размерам и нанопор по радиусам. Такие порошки представляют собой перспективный сорбент для ВЭЖХ. Их сорбционные и хроматографические свойства обсуждаются в [9–16].

Химическое модифицирование поверхности твердых тел позволяет направленно изменять физико-химию их поверхности и представляет интерес как метод унифицирования химического состояния их поверхности [17]. Разработка способов и нахождение условий для создания монофункционального покрова на поверхности порошков НА и PDD, с одной стороны, позволит наиболее эффективно использовать их в уже известных областях, поскольку применение НА часто сдерживается невоспроизводимостью и нестабильностью их физико-химических характеристик. С другой стороны, это может привести к созданию принципиально новых материалов с требуемыми функциональными свойствами (хроматографических сорбентов для ВЭЖХ, материалов для биомедицинского применения и др).

Химическое модифицирование поверхности алмазных микропорошков усиленно исследуется в последние 10 лет, тогда как подобных работ по НА мало, а по PDD совсем нет. Поэтому целью настоящей работы явилось выявление возможности модифицирования PDD методом ковалентной прививки.

Объекты и методы исследования

В работе использовали порошок PDD с размером частиц 4–6 мкм, производства компании «АЛИТ». По данным производителя, содержание в нем (без учета летучих) алмазного, трудноокисляемого углерода $C_{aлм} - 98,3$ %, неалмазного, легко окисляемого $C_{неалм} - 0,8$ %, несгораемый остаток составлял 0,9%. Функциональный покров алмазных частиц был сформирован в процессе очистки его разбавленной азотной кислотой.

Изучение структуры и свойств PDD проводили с помощью следующих физикохимических методов:

для установления атомной структуры использовали просвечивающую электронную микроскопию в режиме фазового контраста и микродифракции (электронный микроскоп JEM100C);

структурные характеристики PDD определяли по низкотемпературной адсорбции азота на установке ASAP 2010 V2;

состав исследуемых образцов определяли методом рентгеноспектральной флуоресценции (РФл) в качественном и количественном режимах на приборе СПЕКТРОСКАН-V;

функциональные группы на поверхности PDD идентифицировали по ИКспектрспектрам, зарегистрированным в режиме поглощения (на спектрометре FTIRS IR200 Thermonicolet с разрешением 4 см⁻¹) или в режиме диффузного отражения (на спектрометре PHILIPS ANALYTICAL PU9800 FTIR SPECTROMETER с разрешением 2 см⁻¹).

Результаты и их обсуждение

Структурные характеристики PDD

Структурные характеристики PDD определены объёмным методом по низкотемпературной адсорбции азота. Изотерма адсорбции азота на исходном образце PDD при –196 °C представлена на рис. 1.

Рис. 1. Изотерма адсорбции азота на исходном образце PDD (а) и распределение объема пор по радиусам (б).

Рассчитанная из нее по уравнению БЭТ удельная поверхность оказалась равной 217±5 ${\rm m}^2/{\rm r}$. Судя по виду изотермы, наличию сорбционного гистерезиса и его форме, в образце есть поры различных размеров: микро- и мезопоры. Объем микропор (диаметр <17 Å) равен 0,00422 см³/г, площадь их поверхности – 3,0417 м²/г; объем мезопор (диаметр 17-3000 Å) равен 0,133±7 см³/г, площадь их поверхности – 155±13 м²/г. Эффективный диаметр пор 3 нм.

Химическое модифицирование поверхности PDD

Для создания того или иного функционального покрова на поверхности PDD его подвергали последовательному модифицированию, схема которого приведена на рис. 2. Выпуск 10. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ

Рис. 2. Схема модифицирования поверхности PDD.

Модифицированный образец PDD-H получали при обработке исходного PDD в потоке водорода (марки A, объемное содержание H₂ >99,99 %; O₂+N₂<0,01 %; H₂O<0,02 %) в течение 5 ч при 800 °C. В результате этой обработки на алмазной поверхности формируется слой гидридных групп, что приводит к уменьшению реакционной способности поверхности алмаза.

Для активации поверхности и создания на ней электрофильных центров ее галогенировали. Для получения образца PDD-Cl мы использовали метод фотохимического хлорирования молекулярным хлором. Хлор, полученный по реакции бихромата калия с соляной кислотой, растворяли в четыреххлористом углероде до насыщения (~5,6 % (по массе)). Хлорирование проводили в четыреххлористом углероде в атмосфере аргона в течение 10 ч при комнатной температуре и постоянном перемешивании. Для инициирования фотохимической реакции использовали облучение светом в видимом или УФ диапазоне.

Для ковалентной прививки C_{16} -радикала предварительно было получено соответствующее литийорганическое соединение и проведена реакция PDD-Cl с гексадециллитием (получен образец PDD- C_{16}) по методике, описанной в [18].

Химический состав и атомная структура PDD

К сожалению, получить данные по плотности прививки и строению привитых слоев на алмазе достаточно сложно, поскольку к углеродному материалу прививаются органические молекулы. Можно получать лишь полуколичественные данные по результатам ИК-спектроскопии.

Для исходного образца PDD был зарегистрирован обзорный спектр рентгеновской флуоресценции, что позволило на полуколичественном уровне оценить содержание химических элементов в образце. По данным PФA в образце присутствуют следующие элементы P, Si, Cl, S, Cu, Ni, Fe, Cr, Ti. Наличие металлов обусловлено условиями синтеза как исходного HA, так самого PDD. Наличие P, Cl, S может быть отнесено за счет различных солей (фосфатов, хлоридов, сульфатов), которые попадают в образец в процессе его очистки водой. Но содержание всех этих элементов в образце не превышало 0,1 % (по массе). Для выяснения вопроса о том, влияет ли обработка водородом (800 °C, 5 ч) на фазовый состав углерода, мы изучили дифракцию электронов на PDD-H. Микроэлектронограмма образца PDD-H представлена на рис. 3, a. На микроэлектронограмме PDD-H виден широкий фон неупруго рассеянных электронов, на который наложены пики дифракций.

Рис 3. Микроэлектронограмма образца PDD-Н исходная (а) и после вычитания фона (б). На вставке показана исходная дифракционная картина, наблюдавшаяся в просвечивающем микроскопе.

Индексы Мил- лера	Межплоскостные рас- стояния, Å	
(h k l)	$d_{ m _{ эксп}}$	$d_{a \pi M a 3}$
111	2,055	2,057
220	1,250	1,258
311	1,076	1,073

Таблица. Сравнение	межплоскостных
расстояний	порошка PDD-H
и алмаза	

Мы вычли этот фон в автоматическом режиме и полученная микроэлектронограмма приведена на рис. 3, б. На нём по оси абсцисс отложен радиус дифракционных рефлексов картины, выраженный в обратных ангстремах, а по оси ординат – интенсивность дифракции. На вставке показана исходная дифракционная картина, наблюдавшаяся в просвечивающем микроскопе. Рассчитанные на основании данных электронной дифракции межплоскостные расстояния приведены в таблице.

Из приведенных в таблице данных видно, что имеется хорошее совпадение экспериментальных значений меж-плоскостных расстояний с таковыми в алмазе, т.е. PDD-H представлен только алмазной фазой.

Анализ химии поверхности образцов PDD

На рис. 4 приведены ИК-спектры исходного и модифицированных образцов PDD. В спектре исходного образца PDD (рис. 4, сп. 1) наблюдается поглощение в высокочастотной области – интенсивная полоса поверхностных гидроксильных групп и адсорбированной воды с широким максимумом при 3400 см⁻¹. Полоса поглощения с максимумом при 1723 см⁻¹ обусловлена присутствием на поверхности PDD карбонильных групп, а при 1623 см⁻¹ – деформационными колебаниями адсорбированных молекул воды. В интервале 1500–1000 см⁻¹ имеется ряд перекрывающихся плохо разрешенных полос, что затрудняет их детальное отнесение.

После восстановления в ИК-спектре образца PDD-H (рис. 4, сп. 2) наблюдается исчезновение полос поглощения с максимумами при 1723 и 1623 см⁻¹. Это связано с тем, что произошло разложение карбонильных групп. Также появляются полосы поглощения в области валентных колебаний связей С-H (максимумы при 2943 и 2878 см⁻¹). В высокочастотной области уменьшается поглощение гидроксильных групп (3377 см⁻¹), наблюдается поглощение неассоциированных HO-групп (узкий пик при 3691 см⁻¹).

Рис. 4. ИК-спектры модифицированных образцов ПДД.

Таким образом, основным результатом восстановительной обработки PDD является радикальное уменьшение количества кислородсодержащих групп на поверхности. В химическом отношении получается алмазная поверхность, на которой присутствуют преимущественно гидридные и гидроксильные группы, т.е. эту поверхность можно считать бифункциональной (рис. 5).

Рис. 5. Поверхность PDD после высокотемпературной обработки водородом.

В ИК-спектре поглощения PDD после хлорирования (рис. 4, сп. 3) наблюдается заметное уменьшение интенсивности полос поглощения С-Н групп, однако полного исчезновения этих полос не происходит. Это может быть обусловлено тем, что не все поверхностные С-Н связи могут вступать во взаимодействие с хлором из-за стерических затруднений. Методом РФл установлено, что в образце PDD-Cl содержится 3 % (по массе) хлора, т.е. 2 атома на 1 нм².

После привития гексадецильного радикала в ИК-спектре (рис. 4, сп. 4) появляются полосы поглощения, соответствующие валентным (2950–2860 см⁻¹) и деформационным (1461 см⁻¹) колебаниям связей С-Н в алкильных группах и на поверхности. Кроме того, сохраняется сильное поглощение в области валентных и деформационных колебаний НОгрупп, а также не вступивших в реакцию хлорирования гидридных групп. Таким образом, поверхность PDD-C₁₆ является полифункциональной – на ней присутствуют функциональные группы: алкильные группы, гидридные и различной природы гидроксильные.

Выводы

Таким образом, в настоящей работе впервые проведено химическое модифицирование поверхности пористого дисперсного алмаза (PDD) путем высокотемпературной обработки водородом (образец PDD-H), хлорирования (образец PDD-Cl) и последующей ковалентной прививки гексадецильного радикала (образец PDD-C₁₆). Впервые методом просвечивающей электронной микроскопии (в режиме дифракции) показано, что ни спекание, ни

высокотемпертатурная обработка водородом не нарушают атомной структуры первичных алмазных частиц, размер которых в PDD-H остается равным 5 нм. С помощью метода ИКспектроскопии установлено, что поверхность PDD-H бифункциональна, т.е. покрыта группами С-H и O-H, а поверхность образца PDD-C₁₆ полифункциональна. В последнем случае прививка гексадецильных групп к поверхности HA осуществляется за счет связей С-С, которые являются гидролитически стабильными. Поэтому следует ожидать, что PDD-C₁₆ может быть перспективным сорбентом для ВЭЖХ.

Литература

- 1. Долматов В. Ю. Ультрадисперсные алмазы детонационного синтеза. С-Пб.: Издательство СпбГУ. 2003. 344 с.
- 2. Долматов В. Ю. Ультрадисперсные алмазы детонационного синтеза: свойства и применение // Успехи химии. 2001. Т. 20. № 7. С. 687–708.
- 3. Кулакова И. И. Модифицирование детонационного наноалмаза: влияние на его физикохимические свойства // Российский Химический журнал. – 2004. – 48. – № 5. – С. 97–106.
- 4. Kulakova I. I. Surface chemistry of Nanodiamond // Physics of the Solid State. 2004. –46. N 4. P. 636–643.
- 5. Bogatyreva G. P., Marinich M. A., Gvyazdovskaya V. L. Diamond an adsorbent of a new type // Diamond Relat. Mater. Diamond. 2000. 9. N 12. P. 2002–2005.
- 6. Емелина С. А., Ларионов О. Г., Спицын Б. В. Использование хроматографии для изучения химии поверхности наноалмаза // Тезисы Х Межд. конф. Теоретические проблемы химии поверхности, адсорбции и хроматографии. Москва, 2006. С. 125.
- 7. Белякова Л. Д., Ларионова А. О., Ларионов О. Г. и др. Адсорбционные свойства ультрадисперсного алмаза по данным газовой хроматографи // Тезисы XI Межд. конф. Теоретические проблемы химии поверхности, адсорбции и хроматографии. – Москва, 2007. – С. 53.
- 8. Патент 39541А Україна, МПК7 С01 31/06. Алмазний порошок і спосіб його отримания / К. В. Кірілін, В. И. Падалко. Пріор. 21.07.01. –Опубл. 15.05.01, Бюл. № 4.
- 9. Patel B. A., Rutt K.J., Padalko V.I. et al. Use of industrial diamonds in HLPC // Сверхтв. материалы. –2 002. № 6. С. 51–54.
- 10. Новиков Н. В., Богатырева Г. П., Волошин М. Н. и др. Наноструктурные пористые алмазные порошки и их поверхностные свойства // Сверхтв. материалы. –2002. –№ 6. –С. 4–9.
- 11. Patel B. A., Rutt K.J., Padalko V. I. et al. Nanoporous diamonds as stationery phase for HLPC. Pittcon 2005, Orlando, Florida, Ferbruary 2005. P. 1 11.
- 12. Корольков В. В., Кочетова М. В., Ларионов О. Г. и др. Сорбционные свойства пористого дисперсного алмаза // Тезисы Х Межд. конф. Теоретические проблемы химии поверхности, адсорбции и хроматографии. М.-Клязьма, 25–29 апреля. 2006. – С. 263.
- Нестеренко П. Н., Федянина О. Н. Адсорбционные и хроматографические свойства мелкодисперсного синтетического алмаза // Тезисы Х Межд. конф Теоретические проблемы химии поверхности, адсорбции и хроматографии. М М.-Клязьма, 25 –29 апреля. 2006. – С. 264.
- 14. Карпец А.В., Ларионов О.Г., Корольков В.В и др. Исследование сорбционных и хроматографических свойств модифицированного пористого дисперсного алмаза // Всероосийский симпозиум: Хроматография в химическом анализе и физико-химических исследованиях (тезисы). М.-Клязьма, 23 – 27 апреля 2007. – С. 50.
- Nesterenko P. N., Fedyanina O. N., Volgin Yu. V., P. Jones. Ion chromatographic investigation of the ion-exchange properties of microdisperse sintered nanodiamonds // J. Chromatogr. A. – 2007. – 1155. – P. 2–7.
- 16. Nesterenko P.N., Fedyanina O.N., Volgin Yu.V.. Microdispersed sintered nanodiamonds as a new stationary phase for high-performance liquid chromatography // Analyst, -2 007. -132. -P. 403-406.
- 17. Лисичкин Г. В., Фадеев А. Ю., Сердан А. А. и др. Химия привитых поверхностных соединений. М.: Физматлит, 2003. 592 с.

Выпуск 10. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ

18. Лисичкин Г. В., Корольков В. В., Тарасевич Б. Н. и др. Фотохимическое хлорирование наноалмаза и взаимодействие его модифицированной поверхности с С-нуклеофилами // Известия Академии наук. – 2006. – № 12. – С. 1230–1237.

Поступила 09.07.07.