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Intermittency without chaotic phases
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A simple map is proposed where the intermitting regime without chaotic phases is
appeared. The main characteristics of that intermittent regime have been studied. The
distribution function of laminar phase length, Lyapunov exponent and topologic entropy
have been derived analytically. The main characteristics have been compared with the
computer simulation results.

ITpemmoxxeno mpocroe oroOpaskeHme, B KOTOPOM BO3HHMKAET IepeMe:KaeMblil pexxum 0e3
xaoruueckux (as. M3yueHbl OCHOBHBIE XAPAKTEPHUCTHKU TAKOrO IIEPEMEKAeMOro pPerKmma.
AHanuTHUYeCKN NHOJydYeHbl (DYHKIMS paclpenesieHus AJUH JaMUHAPHBIX (a3, II0KasaTejb
JlanyHoBa M TOmoOJOrMuYecKas sHTpomus. IIpoBeseHO cpaBHEHNE OCHOBHBIX XaPAKTEPHUCTHUK C
pesyabTaTaMU YKMCJIEHHOI'O MOJEeJINPOBAHUS.

Intermittent regimes are well known to arise in numerous physical systems [1]. For low-dimensionality
systems, such regimes were studied in classical works [2, 3]. The intermittency origin is believed to
be associated with the inverse tangent bifurcation and appearing of a local narrow "corridor", or the
lamirization region. The intermittent regime arises just when a region of return or re-injection to that
“corridor". The classification of intermittent regimes is based on the multiplicator transition across the
unit circle, as, for example, in the case of inverse tangent bifurcation (see, e.g., [4]). The bifurcation
point is supposed to be inside the system phase space. Recently, new mechanisms were proposed for
intermittency arising based on a distortion in smoothness or continuity of maps in the bifurcation point
[5, 6]. In this work, a new intermittent regime is considered that has other specific features. In the dynamic
system shown below, the lamirization region is not local and is at the system phase space boundary. The
intermittent regimes in such a system have some unusual properties. The laminar phase length distribution
has been shown to belong to stable distributions and has anomalous properties. One of those is that the
Lyapunov exponent is zeroed and that a weak chaos is realized in the system. The topologic entropy in
this case is positive ant it is calculated exactly in the work.

1. Dynamic system and trajectories

Let us consider the properties of maps z,41 = f(x,) set as

l‘n-l-l:{ I (1)

T, — 1 Tp > 1
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Fig. 1. Plot of f(x,), function at a fixed value «. Fig. 2. A typical trajectory of the map (1).
The evolution character of a certain initial state
is also shown.

This single-parameter property of continuous maps has a number of specific features (see Fig. 1). The
z > 1 region is the lamirization one that forms laminar phases. The 0 < & < 1 region is the re-injection one
that provides return to the lamirization region. From the physical viewpoint, it is the chaotic distribution
region.

The intermittency arise is believed usually to be associated with the reverse tangent bifurcation [2, 4]
in the phase space of the dynamic system and the appearance of a narrow "corridor". The bifurcation
point is assumed to be not at the phase space boundary. Note that the intermittency are classified basing
on the same assumption. In the map under consideration, such a "corridor"is situated at the phase space
boundary and is not local (occupies an infinite region in the phase space x > 1), thus, the intermittency
character is essentially changed.

Let us consider the dynamic properties of map family (1) . A typical trajectory of that dynamic system
is shown in Fig. 2 and it has a saw-like shape. Laminar increase sections and are sharp transitions to new
laminar sections are seen. The sharp transitions between the laminar phases are due to short duration
of chaotic phases. This is due to instability of the stationary point z* = (\/3— 1)/2. The trajectory
goes from the neighborhood of that point to the lamirization region # > 1 during few iterations. Let the
chaotic phases be considered in more detail.

As is noted above, the map (o = 1) has an unstable stationary point with coordinate satisfying the
equation

1
r=——1
x

with the solution z* = (v/5 — 1)/2 where is the golden section. The closer is the chaotic phase onset
coordinate to z*, the more iterations are required to hit the 1 < x interval and to onset the new laminar
phase. This fact is caused by the exponential departure of the trajectory away from the neighborhood of
the unstable stationary point. It is possible to introduce a sequence of intervals from which the chaotic
phase exits to laminar one exactly in n steps. The condition for exit from the chaotic phase can be written
easily as @, = f"(x) > 1, where 0 < z < 1 and z,_1 < 1. For a n-multiple composition of the map f in
the chaotic phase region x < 1, a simple relationship follows:

n _ Nn L — Nn—l
xn_f (x)_ Nn—l'x_Nn—Z
where N, are Fobinacci numbers meeting the relationship N, = Np_1 + Np_g (N1 = 1, N2 = 2 see,

e.g., [11]). Using the composition obtained, it is easy to find the intervals In from where the exit to
laminar region occurs exactly in n time steps. For example, Iy = [0,1/2], I = [2/3,1], Is = [1/2,3/5] u
I, = [5/8,2/3]. For those interval lengths, the general relation is valid:

1
Nn+1Nn—1

I =

552 Functional materials, 13, 4, 2006



S.V.Slipushenko et al. /| Intermittency without chaotic...

Using the known relationship for Fibonacci numbers N, 1 /N,_1 = Nﬁ — (—1)”"’1 and the Bine formula
11l N, = = (v» — L), it is easy to obtain the asymptotic law of the interval length decrease for n >> 1:
V5 g &

ln P 56—2nln7’

Taking into account that the probability of falling into that interval is in proportion to its length,
it is easy to estimate the provability of a chaotic phase with length n. Using the invariant distribution
function described below, the average chaotic phase length {n.,} ~ 1.8 can be estimated. In other words,
the chaotic phases of unit length must be observed predominantly in the map.

Thus, all the trajectories can be assumed to consist of a set of long laminar phases of random length,
chaotic splashes between those being absent essentially (see Fig. 2). The laminar phase length is defined
by the system dynamics in the lamirization region. At z > 1, the dynamics is regular and is reduced to
sequential subtraction of 1 from the instantaneous coordinate value till « > 1 (see Fig. 1). The number
of those operations defines the laminar phase length (or better duration). Thus, if the n-th phase initial
coordinate is Z,, the laminar phase length is l,, = [#,]. Here, [¢] is an integral part of 2. After an evolution
within the lamirization region, the point falls into the re-injection region 0 < z < 1. The map (1) transfers
the 0 < « < 1 segment into the laminar motion region and a new laminar phase arises with the length
defined by the scattering distance. The initial data uncertainty increases at each scattering act with a
factor k = |a/z**| exceeding 1 (1 < k < 00).

Thus, the behavior of the system as a whole can be interpreted as chaotic scattering. The 0 < z < 1
segment is the scattering region while the rest of the phase space, the return region. Since the system
dynamics at the return is regular, the x>1 region can be referred to as "a corridor". However, in contrast
to classical intermittency types, this corridor is substantially non-local, therefore, the properties of the
regimes observed will depend considerably on the re-injection manner. No such dependence is observed
for usual intermittency types. For example, in the 1st kind intermittency, the coordinate values at the
"corridorinlet are assumed to be distributed homogeneously [4]. That approximation is justified only
if the whole "corridor"is local and the invariant distribution function has no singularities. In the map
under consideration, the parameter varies the re-injection properties, the lamirization region remaining
unchanged. It is easy to see that in this case, all the statistical characteristics of the system become
changed, beginning with the asymptotics of the laminar phase distribution function and including the
Lyapunov exponent. The intermittency example being considered here shows that the properties of
intermittent regimes are defined often not only by local characteristics of the system near the tangent
bifurcation point. In this case, the intermittent regime characteristics may lose the universal properties
and take a dependence on the re-injection region type. In what follows, considered will be the main
characteristics of the intermittency for the map (1) at o = 1.

2. Distribution function of laminar phases

Now let us discuss the laminar phase distribution function for the map (1) trajectories at o = 1. That
function will be calculated using the reduced description method. In other words, we shall transit from
the consideration of the map iteration sequence to the laminar phase lengths themselves. To that end,
specific properties of the map (1) will be used(1). Let be taken into account that if the initial coordinate
of the laminar phase is &,, its end coordinate is {#,} = &, — [&,] and falls into the scattering region.
After the re-injection, the initial coordinate of the new laminar phase will coincide with f({#,}). Thus,
the system dynamics is defined completely by its behavior within the re-injection region. Therefore, it
is convenient to study the iteration statistics on the 0 < = < 1 segment and determine therefrom the
laminar phase length statistics. In this case, it is easy to determine the law for the system behavior on
the segment 0 < # < 1 (pn, = {Z,}) along a certain trajectory or orbit of the map.

That map has the form

Pn+1:P(pn)={i—1} (2)

Pn
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Fig. 3. Numerical simulation results (crosses) Fig. 4. The laminar phase distribution function
for invariant distribution function of end points P(l/) obtained by numerical experiments
of laminar phases and analytically calculated (crosses) and analytically found function

function m (solid). 1/In2(l4+1) (14 1) - solid line.

The invariant distribution function for that map is localized naturally on the segment (0,1). The
numerical simulation results for that function are shown in Fig. 3. Let the function be calculated
analytically basing on the Frobenius-Perron equation ([8]) for the invariant distribution function of the
map eqrefpm. The map (2) is similar in form to the Farey map that defines the chain fractions; the
invariant distribution function for that map is [7]. Let the Frobenius-Perron equation be written as (3)

ol ()
2= 2 e ) )

where the summation is carried out over all the roots of equation x = {% — 1}, that are defined by the

map (2). Those roots are easy to find as

1
&(x)—iHHk k=0,1,2,..

After substituting of those roots in Eq. (3), the Frobenius-Perron equation takes the form

oQ

o=y g
It is easy to check that the function p(x) = T4 is the exact solution of Eq. (4).
a =P (m) - 1 a
x—l—lzkz::(x—l—l—i-k z::x—l—l—l—k)( ) wtl

Let the constant a be determined from the normalization condition:

1
1
/ a de=1—a=—
0

142 In2

Now the distribution function of the laminar phase lengths P(l) is to be determined from the known
distribution function p(p). To that end, let us go from the variable p to the laminar phase length [ = Zl)— 1.
Then the probability of a laminar phase length [ for the map (1) has the form

dp 1
doll) =pe) G = 5T 09

dl = P(l)dl
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It is to note that at such a transformation, the laminar phase length is determined formally from 0 to
the laminar phase initial point. It can be determined in principle from its initial point to the end one.
That determination, however, does not influence the most interesting statistics of long phases, because
the length differences in those determinations are small ( Al < 1).

Note that P(l) decreases rather slowly as [ increases:

Such a behavior is typical of stable distributions or the Levy ones [9] with the exponent o = 1. Fig. 4
presents the P(/) numerical simulation results compared to the function derived analytically.

3. Chaotic properties of the map

Universal dependences of the average laminar phase length on the supercriticality parameter are
revealed often in intermittent regimes (see, e.g., [4]). Such dependences are used sometimes to detect
the intermittency type, too. There is no such dependence in the intermittency example under discussion
free of chaotic phases. The cause is the power-law decrease of the laminar phase length distribution
function. It is obvious that the average laminar phase length as calculated using that function diverges
logarithmically at large lengths and goes to infinity. The attempts to calculate it numerically result in
unrestricted increase of its average length as the number of iterations rises. This follows immediately from
the fact that P () belongs to stable distributions [9]. In such cases, a length that is determined by lower
existing moments of the distribution function as I = (I*)/¢ (in the case under discussion, 0 < a < 1).
can be introduced as the laminar phase average length. The average length so determined is finite and is

easy to calculate:
1= (%)% = / ep@a)” = (2= )
0 In2-sin(ra)

It is easy to see the divergence of that expression at @ — 1. At other 0 < « < 1 values, the average length
is finite. It is of interest that at o < 1 , that average length loses its dependence on and takes the order
of ,and 1 —a =6 <11~ 1/(m5In2).

Now let the chaotic state degree of an intermittent regime be considered. Let us start from the
Lyapunov exponent. To calculate it, let the following definition be used:

1 N
A= lim = > In|f/(z,)] (5)
n=1

N—oco N

Since the derivative f'(x,) = 1 in the laminar phase, all such items do not contribute to the sum
(6). In other words, only the items associated with scattering in the 0 < # < 1 contribute to that sum.
Let the number of such items be designated as N. Moreover, let the map (2) be used to determine the
derivative values at the scattering. Then the relationship (6) can be written for convenience as

Ae fim VOV L

- In —
N=eo N {nen) N (N)

o
> In— = lim :
o Pi N—oo N p

{nen) N (N) <—1>

1

where (n¢y) is the chaotic phase average length.
The physical sense of this relationship is simple. It can be noticed by introducing the Lyapunov

N(N)
exponent A\;e = lim —= Y In-L for chaotic scattering. Then the Lyapunov exponent A takes the
N—ooo N(N) = rk
form
N (N
A=A Jim 2 VIN)
N—o00 N
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Thus, the Lyapunov exponent differs from that for chaotic scattering by the ratio of the scattering
acts N (N) to the number of iterations N in the limit N — oo. To calculate the average In(1/p?) or
the Lyapunov exponent for chaotic scattering using ergodicity, let us go from the time average to the

ensemble average:
1 1 e 1 dp
dse=In|{ =) =(In—=) = In|{—=)———= ~ 2.37313
<p2> < p2> LA (p2>ln2(p4-U

This Lyapunov exponent is positive, thus, the scattering is chaotic.
The quantity N/N can be treated as the ratio of the total length of laminar phases to the number
thereof. Then the limit of that quantity coincides with the laminar phase average length (I}. We obtain

finally

Asc <nch>

It follows from the expression that the Lyapunov exponent is equal to zero due to anomalous statistics
of laminar phases resulting in (/) = oo. Thus, a weak chaotic regime is realized in the system being
studied that is very atypical of one-dimensional systems on the whole and, in particular, of intermittent
ones. This fact is confirmed by direct numerical experiments with the map (1). In those experiments,

A=

the Lyapunov exponent drops slowly as the number of iterations increases and depends heavily on the
initial conditions. These effects are explained by logarithmic decrease of the quantity being studied as
the number of iterations grows.

In order to demonstrate the presence of chaos in the system at a weak irregularity of its dynamics,
tools such as correlation function and topologic entropy can be used. The correlation function shows a
slow dropping in the numerical simulation, thus evidencing the presence of long correlations and weak
chaotization of the system. That behavior of the correlation function agrees well in a certain sense with
the zeroing Lyapunov exponent. It is to note that a similar behavior of statistical characteristics is known
also for another intermittency type [10].

Now let the topologic entropy of the system be calculated. The topologic entropy positiveness means
a complex behavior of the system. This is meant as the presence of an infinite number of various periodic
and aperiodic trajectories. Such systems show an exponential sensitivity to external noises [12].

To determine the topologic entropy, let the needing series Q4 (¢) and @_ (¢) be used in the neighborhood
of the minimum x = 1 [13] (see also [14]). The first needing series has the form Q4 (t) = 1—t—t2—3—*+....
In the initial map, £ = 1 is a minimum, therefore, the first item of the needing sequence is positive. At
further iterations, f*(1) — oo, , that is, a 2nd kind break is observed in the point x = 1, therefore, all
other items of the needing series are negative. Accordingly, @_(t) = —Q+ (). The equation for topologic

entropy has the form [13]
dtk-1=0
k=1

It is to = 1/2. that is the root of that equation nearest to zero. Thus, topologic entropy for all the
maps of that type is
hiop = —In(tp) = 1In2 ~ 0.693

The topologic entropy value for the map being studied does not coincide with Lyapunov exponent that
is 0 in this case. Thus, the conclusion on coincidence of the Lyapunov exponent with the topologic entropy
for one-dimensional maps that is cited often (see, e.g., [4]) is invalid for the considered intermittency
regime.

4. Conclusion

To conclude, let us discuss the main originating elements of the intermittency regime of the considered
type. Such regimes can be observed for a wide class of maps. It is to note first of all that the map
laminar zone may be of a more complex character. The only important circumstance is the asymptotic
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closeness of the function defining the map to the diagonal on the laminar segment. The relationship (6)
defines the Lyapunov exponent in all such cases as well as at variations in the chaotic scattering region
characteristics. The physical sense of that dependence is associated with the fact that the Lyapunov
exponent is not invariant as the time variable is changed. Moreover, some specific phase transitions of the
Lyapunov exponent considered as the ordering parameter can be observed as the distribution function
is re-built when the chaotic scattering region changes. Such transitions are connected with transitions in
the laminar phase average length from finite to infinite values.
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Ilepemixkunit pexxum 6e3 xaorudnux ¢as

C.B.Cainywenxo, A.B.Typ, B.B.dnoscoxut

BampomoHoBaHo TpocTe BiMoGpaKeHHA, B AKOMY BHHUKAE TMEPEMIKHIN PEXUM 6e3 XaoTHIHUX
da3. Bupueno rosioBai xapakTepUCTHKH TAKOIO IIEPEMIXKHOIO pesKHMY. AHAJNITHYHO BU3HAUEHO (DYHK-
10 POSMOITY JOBIKWH JaMiHapHuX ¢as, mokasuuk JlamyHoBa Ta Tomonoriuny entpomito. [IpoBeneno
MOPIBHAHHS TOJOBHUX XapaKTEPUCTHK 3 PE3yIbTATAMH KOMITIOTEPHOTO MOJIEIOBAHHS.

Functional materials, 13, 4, 2006 557



