УДК 539.375:681.7

ВИЗНАЧЕННЯ ЕНЕРГІЇ РУЙНУВАННЯ КОМПОЗИТУ З ВИКОРИСТАННЯМ МЕТОДУ ЦИФРОВОЇ СПЕКЛ-КОРЕЛЯЦІЇ

Я. Л. ІВАНИЦЬКИЙ, Л. І. МУРАВСЬКИЙ, О. В. ГЕМБАРА, М. М. ГВОЗДЮК, Т. І. ПОЛОВИНКО

Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів

Розроблено розрахунково-експериментальну методику оцінювання енергії руйнування композиційних матеріалів, яка полягає у визначенні методом цифрової спеклкореляції переміщень поверхні в околі вершини концентратора напружень за статичного розтягу. За розподілом переміщень розраховано деформації в зоні передруйнування, розкритя та зсув берегів тріщини для заданого зусилля навантаження і бази вимірювання. Із діаграми статичного розтягу зразка для встановленої деформації отримали напруження в зоні передруйнування. На основі цих даних визначено енергію руйнування композиту. Наведено результати досліджень для тришарового композиційного матеріалу на основі епоксиднофенольного пластика хаотично армованого дисперсними частинками.

Ключові слова: композити, енергія руйнування, розподіл переміщень, деформації, спекл-зображення поверхні.

Рівень розвитку сучасної науки і техніки суттєво залежить від впровадження нових конструкційних матеріалів. Тому особливо актуальні дослідження міцності та надійності композиційних матеріалів, які є кращими або повноцінними замінниками традиційних у багатьох сучасних галузях промисловості. Їх перевага проявляється у конструкціях, для яких визначальними є мала вага за високої питомої міцності та жорсткості, низька теплопровідність, тривкість до впливу агресивних середовищ, підвищена живучість [1].

Широке використання полімерних композитних матеріалів стало причиною інтенсивного дослідження їх фізико-механічних властивостей, розробок методів обчислень напружено-деформованого стану, розрахунку процесів довготривалого їх деформування та руйнування з залученням різноманітних феноменологічних теорій механіки деформівного твердого тіла. Однією із найважливіших задач механіки композитних матеріалів є прогноз деформаційних та міцнісних характеристик композиту залежно від властивостей матриці та армувальних елементів, їх об'ємного вмісту, схеми армування тощо [2, 3].

Розрахунково-експериментальна методика визначення енергії руйнування. Використавши метод суперпозиції, енергію руйнування подамо як суму двох складників: енергії руйнування за нормального відриву та поперечного зсуву [4]

$$W_C = W_{\rm I}^* + W_{\rm II}^*,$$
 (1)

які визначимо згідно зі співвідношеннями

$$W_{\rm I}^* = \sigma_0 L_P \delta_{\rm I}^*(0) \int_0^1 \psi_{\rm I}(\xi) d\xi, \quad W_{\rm II}^* = \tau_0 L_P \delta_{\rm II}^*(0) \int_0^1 \psi_{\rm II}(\xi) d\xi, \tag{2}$$

Контактна особа: О. В. ГЕМБАРА, e-mail: <u>hembara@ipm.lviv.ua</u>

де δ_{I}^{*} , δ_{II}^{*} – критичні значення розкриття та зсуву у вершині тріщини за мішаного руйнування; σ_{0} та τ_{0} – середні значення напружень розтягу та зсуву в зоні передруйнування біля вершини тріщини згідно з δ_{c} -моделлю; L_{P} – довжина зони передруйнування; $\psi_{i}(\xi)$ – функції розподілу переміщень у зоні передруйнування згідно з механізмом руйнування [5].

Підставивши значення W_{I}^{*} і W_{II}^{*} у формулу (1), отримаємо:

$$W_{C} = \sigma_{0} L_{P} \delta_{\mathrm{I}}^{*}(0) \int_{0}^{1} \psi_{\mathrm{I}}(\xi) d\xi + \tau_{0} L_{P} \delta_{\mathrm{II}}^{*}(0) \int_{0}^{1} \psi_{\mathrm{II}}(\xi) d\xi .$$
(3)

Щоб встановити величини у формулі (3), виконували експериментальні дослідження за силовою схемою одновісного розтягу плоского зразка з центральним надрізом [6]. Внаслідок розтягу зразка з нахиленою тріщиною біля її вершини виникає складний напружений стан, який визначають коефіцієнти інтенсивності напружень (КІН) $K_{\rm I}$ і $K_{\rm II}$ або $\delta_{\rm I}$ і $\delta_{\rm II}$ [7].

Далі методом цифрової кореляції спекл-зображень [8] встановлювали поле пружно-пластичних переміщень деформованої поверхні зразка, і за відомою базою деформування, яка дорівнювала віддалі між сусідніми кореляційними піками у двох взаємно перпендикулярних напрямках, знаходили значення деформації вздовж лінії початкового надрізу ε_x та в перпендикулярному напрямку ε_y . За значеннями ε_x і ε_y , використовуючи формулу, наведену на рис. 1*а*, будували розподіл еквівалентної деформації ε_i .

За довжину умовної зони передруйнування L_p на продовженні лінії надрізу приймаємо довжину відрізка від вершини до точки, у якій сумарна деформація становить 0,2% (рис. 1*a*). Визначивши еквівалентну деформацію ε_i у вершині надрізу, знаходимо напруження зчеплення σ_0 за діаграмою розтягу $\sigma - \varepsilon$ плоского зразка без концентратора напружень (рис. 1*b*).

Рис. 1. Розподіл деформацій біля вершини надрізу (*a*) та діаграма розтягу композитного зразка (*b*).

Fig. 1. Distribution of deformations at the notch tip (*a*) and a stress-strain curve of a composite specimen (*b*).

Напруження зчеплення за зсуву приймаємо рівним

$$\tau_0 = \frac{\sigma_0}{2} \,. \tag{4}$$

Далі визначимо критичні значення δ_{lc} з експерименту за силовою схемою розтягу плоского зразка з центральним надрізом, а критичне значення δ_{Ilc} – за силовою схемою консольного згину спеціального балкового зразка двотаврового профілю [6]. Граничні значення розкриву та зсуву надрізу для мішаного механізму руйнування δ_{I}^* і δ_{II}^* за різних кутів α (30°; 45°; 60°) знаходили за полями переміщень, побудованими методом цифрової спекл-кореляції (рис. 2).

Рис. 2. Схема (*a*) та загальний вигляд (*b*) оптико-цифрової експериментальної установки для моніторингу деформації поверхні за статичного навантаження: 1 – зразок композитного матеріалу; 2 – лазерний модуль ЛМР-630-25; 3 – відеокамера; 4 – персональний комп'ютер.

Fig. 2. A chart (a) and a general view (b) of optical-digital experimental equipment for monitoring deformations of the surface under static loading: 1 – composite material specimen; 2 – laser modulus JIMP-63025; 3 – video camera; 4 – personal computer.

Рис. 3. Діаграма граничних розкриву та зсуву тріщини для макромеханізму руйнування І+ІІ.

Fig. 3. Curve of limiting crack opening and shear for I+II mode macrofracture.

Результати досліджень подані у вигляді діаграми тріщиностійкості (рис. 3). Отримані експериментальні дані використано для обчислення енергії руйнування W_c за формулою (3).

Визначення енергії руйнування

тришарового композиту, армованого дисперсними частинками. Шаруваті композиційні матеріали використовують у сучасних конструкторських проектах хімічна, аерокосмічна промисловості та суднобудування. Типова шарувата структура – сукупність пов'язаних між собою шарів з різними фізико-механічними властивостями. Шар – це основний елемент аналізу таких структур. Розрізняють несучі та зв'язуючі шари. Останні забезпечують передачу та розподіл напружень між несучими шарами. На практиці найчастіше застосовують тришарові конструкції, міцність яких в основному залежить від властивостей наповнювачів, а зовнішні шари мають декоративно-захисну функцію [3].

Для апробації запропонованої теоретико-експериментальної методики контролювали деформування поверхні шаруватого композиту в околі вершини концентратора напружень, реєструючи спекл-зображення ділянки поверхні зразка [9]. У захоплювачах універсальної розривної машини FPZ-10/1 закріплювали плоский зразок, який навантажували одновісним розтягом. Зразок (70×210 mm) вирізали із листового тришарового композитного матеріалу^{*}, в якому зовнішні шари – алюмінієві пластини завтовшки 1 mm. Як заповнювач, що забезпечує спільну роботу зовнішніх шарів, використовували епоксидно-фенольний пластик типу ЕФ-32, армований дисперсними частинками (скляні кульки діаметром 0,2 mm). Об'ємний вміст арматури 30%. Товщина тришарового пакета 4,0 mm. По центру зразка наносили тонкий надріз шириною 0,25 mm і довжиною 20 mm під кутом $\alpha = 30^\circ$; 45°; 60° до осі *ОХ*. Ефективний модуль пружності, який визначали за правилом сумішей для шаруватих композитів, $E_{ef} = 44500$ MPa.

Під час навантаження, яке змінювали від 0 до 540 kg з кроком 20 kg, за допомогою цифрової камери "PixeLINK", що входить до складу цифрового спекл-корелятора, реєстрували спекл-зображення ділянки поверхні зразка і отримані дані в режимі реального часу заносили у комп'ютер з подальшою їх обробкою. Спекл-зображення поверхні зразка розбивали на $M \times N$ прямокутних фрагментів однакових розмірів (64×64 піксела, розмір одного піксела 18 µm), після цього здійснювали взаємну кореляцію фрагментів $s_{m,n}$ і $r_{m,n}$ за розробленою програмою та формували ґратку крос-кореляційних піків (рис. 4), положення яких відповідало розташуванню центрів зміщених фрагментів $s_{m,n}$ [10].

Рис. 4. Спекл-зображення досліджуваної ділянки *А* зразка (*a*) та гратка кореляційних піків (*b*) зі схемою вимірювання розкриття і зсуву берегів тріщини.

Fig. 4. Speckl-image of the investigated area *A* of the specimen (*a*) and a lattice of correlation peaks (*b*) with the chart of measuring the crack edges opening and shear.

На цій основі визначали вектор переміщення $\overline{d}_{m,n}$ кожного фрагмента $s_{m,n}$ відносно фрагмента $r_{m,n}$ з тією ж нумерацією. Процедуру повторювали для кожного наступного спекл-зображення деформованої поверхні. Знаючи переміщення сусідніх фрагментів, визначали розкриття тріщини $\delta_{I}(x)$ і зсув її берегів $\delta_{II}(x)$ для бази b = 1,2 mm та їх граничні значення δ_{I}^{*} і δ_{II}^{*} (рис. 5).

^{*} Композиційний матеріал наданий ТзОВ "Пластікс Україна".

Далі за допомогою спеціально розробленої програми будували поле деформацій поверхні зразка [8, 10] та встановлювали її розподіл на поверхні зразка і розмір пластичної зони *L_P* (рис. 6) на продовженні тріщини.

За значенням деформації $\varepsilon_i = \varepsilon(0)$ (рис. 6) біля вершини надрізу із діаграми розтягу (рис. 7) гладкого плоского зразка композиту визначали напруження, яке вважали рівним σ_0 .

Рис. 7. Фото зразків (*a*) та діаграма деформування розтягом (*b*). Fig. 7. Photos of specimens (*a*) and the diagram of tensile deformation (*b*).

Енергію руйнування композитного матеріалу визначали, підставляючи отримані дані у формули (2) і (3), а також прямим методом вимірювали приріст тріщини і незворотну роботу, затрачену зовнішніми силами на утворення одиниці нової поверхні (рис. 8).

Одночасно визначали енергію руйнування прямим методом, який полягає у вимірюванні приросту тріщини і незворотної роботи, затраченої зовнішніми силами на утворення одиниці нової поверхні (рис. 8).

ВИСНОВКИ

Розроблено методику визначення характеристик опірності композитних матеріалів руйнуванню за статичного розтягу на основі побудованих методом цифрової кореляції спекл-зображень полів переміщень та деформацій у зоні передруйнування. Виконано теоретико-експериментальні дослідження гранично-рівноважного стану зразків з косим надрізом, виготовлених із тришарового композиту, армованого дисперсними частинками. Встановлено залежність енергії руйнування від кута нахилу тріщини для такого композиту і порівняно результати з отриманими методом прямого визначення енергії руйнування, який базується на вимірюванні приросту тріщини і незворотної роботи, затраченої зовнішніми силами на утворення одиниці нової поверхні. Виявлено задовільну збіжність значень енергії руйнування, одержаних цими способами.

РЕЗЮМЕ. Разработана расчетно-экспериментальная методика оценки энергии разрушения композиционных материалов, которая заключается в определении методом цифровой корреляции спекла перемещений поверхности в зоне вершины концентратора напряжений при статическом растяжении. По распределению перемещений рассчитаны деформации в зоне предразрушения, а также раскрытие и сдвиг берегов трещины для заданного усилия нагрузки и базы измерения. Из диаграммы статического растяжения образца для установленной деформации определено напряжение в зоне предразрушения. На основе этих данных рассчина энергия разрушения композита. Приведены результаты исследований для трехслойного композиционного материала на основе эпоксиднофенольного пластика типа ЕФ-32, армированного дисперсными частицами.

SUMMARY. A calculation-experimental method for evaluation of fracture energy of composite materials, that consists in evaluation of surface displacement in the crack tip vicinity under static tension by the speckl-correlation method, is developed. Deformations in the process zone, crack edges opening and shear for the given loading and measuring base are calculated by displacement distribution. From the static strain-stress curve tension for the given deformation the stresses in the process zone were obtained. Using this data the fracture energy of a composite

material was evaluated. Investigation results for a three-component composite material, based on epoxy-phenol plastic material $E\Phi$ -32, reinforced chaotically with disperse particles are presented.

- 1. *Механика* композитов: в 12-ти т. / Под общ. ред. А. Н. Гузя. Т. 1. Статика материалов / Под ред. В. Т. Головчана. К.: Наук. думка, 1993. 455 с.
- 2. *Фудзии Т., Дзако М.* Механика разрушения композиционных материалов: Пер. с яп. М.: Мир, 1982. 232 с.
- 3. Божидарник В. В., Андрейків О. Є., Сулим Г. Т. Механіка руйнування, міцність і довговічність неперервно армованих композитів. – Луцьк: Надстир'я, 2007. – **1**. – 397 с.
- 4. *Гвоздюк М. М., Гембара О. В.* Енергетичний підхід до оцінки гранично рівноважного стану ортотропних тіл з тріщинами // Фіз.-хім. механіка матеріалів. 2004. **40**, № 5. С. 53–56.

(*Hvozdyuk M. M. and Hemhara O. V.* Energy Approach to the Evaluation of the Limiting Equilibrium State of Orthotropic Cracked Bodies // Materials Science. -2004. -40, No 5. -P. 629-634.)

- Іваницький Я. Л., Андрейків А. О. Гранично-рівноважний стан тіл з тріщинами за змішаних макромеханізмів руйнування // Там же. 2003. 39, № 4. С. 12–18. (Ivanyts'kyi Ya. L., and Andreikiv A. O. State of Limiting Equilibrium of Cracked Bodies for Mixed Macromechanisms of Fracture // Materials Science. – 2003. – 39, № 4. – Р. 472–480.)
- Методические рекомендации. Расчеты и испытания на прочность. Методы механических испытаний композиционных материалов с полимерной матрицей. Определение характеристик трещиностойкости полимерных композиционных материалов при статическом нагружении. – Львов: Изд. ФМИ, 1984 – 78 с.
- 7. *Ярема С. Я., Иваницкая Г. С.* Предельное равновесие и развитие косых трещин. Обзор критериев // Фіз.-хім. механіка матеріалів. 1986. № 1. С. 45–57.
- Панасюк В. В., Іваницький Я. Л., Максименко О. П. Аналіз пружно-пластичного деформування матеріалу зони передруйнування // Там же. – 2004. – 40, № 5. – С. 1–6. (Pokhmurs'kyi V. I., Kopylets' V. I., and Kornii S. A. Modeling of the Interaction of an Aqueous Electrolyte with Metals: Molecular-Dynamic Approach // Materials Science. – 2004. – 40, № 5. – Р. 579–584.)
- 9. Муравський Л. І., Гвоздюк М. М., Половинко Т. І. Визначення поверхневих деформацій композитів методами цифрової спекл-кореляції // Там же. 2007. № 4. С. 103–107. (Muravs'kyi L. I., Hvozdyuk M. M., and Polovynko T. I. Evaluation of the Surface Strains

(*Muravs kyl L. 1., Hyozayuk M. M., and Polovynko T. 1.* Evaluation of the Surface Strains in the Composites by the Methods of Digital Speckle Correlation // Materials Science. -2004. -43, $N_{2}5. -P.568-573.$)

 Hand held optical-digital speckle correlator for non-destructive control of material surfaces / L. I. Muravsky, O. P. Maksymenko, O. M. Sakharuk et al. // SENSOR Conference 2007 Proceedings. – Nurenberg, Germany, 22–24 May 2007. – 1. – P. 489–494.

Одержано 14.01.2010