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We analyzed the emission of the conduction electrons in metals
caused by any nuclear decay. The refraction of the electron wave
at the crystal surface, as well as its attenuation due to scattering
by phonons, are taken into account. It is shown that the en-
ergy distribution of ejected shake-off electrons contains a peak at
the energy of the order of 1 eV, whose intensity falls down with
growing temperature. The dependence of the yield of conduction
electrons on the thickness of a radioactive source is studied as well.

1. Introduction

For a long time, the problem of the emission of low-
energy electrons from targets, following any nuclear
transmutation, attracts a great attention [1-18]. The
electrons around the nucleus apprehend its charge al-
teration as a sudden perturbation of the Coulomb field,
which gives rise to their emission from the target. The
energy of emitted shake-off electrons equals a few eV.
Previously, all theorists have been concentrating on the
shake-off effect for electrons initially bound on deep K
and L levels of an isolated atom. The emission proba-
bility of these electrons is too small as compared with
that from experimental data. In particular, the estima-
tions in [3] show that the probability for the emission of
a K electron after the beta-decay only is 3/4Z2, where Z
stands for the atomic number. At the same time, exper-
iments [12] indicate that the average yield of low-energy
electrons after the 3 decay of a single nucleus **Eu in a
thin source is ng = 0.5. Such a discrepancy can be easily
understood, by applying standard formulas of the sud-
den perturbation theory [19] which predict a quick de-
crease of the electron emission probability with increase
in their binding energy. Therefore, it can be stated that
experimentalists mainly observe the shake-off electrons
initially bound on the upper levels. In metals, such levels
belong to the conduction band.

In our previous paper [18], the shake-off effect was first
analyzed for valent electrons in metal crystals within the
simplest model. The electrons were treated as noninter-
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acting particles moving in a rectangular potential well

| =Uy, inside the crystal,
Ulr) = { 0, outside it (1)

with wave vectors q. The depth of the potential well
equals

UO = EF +A, (2)

where ep = h?¢2/2m is the Fermi energy, and A is the
work function.

When a nucleus decays at some distance zg from the
surface of the crystal slab, it suddenly perturbs the
Coulomb field at this point and gives rise to a spher-
ical outgoing electron wave with the origin at the nu-
cleus. Such spherical wave may be decomposed into the
plane waves e’5* which are refracted at the surface, bear-
ing the waves e’** in vacuum. If the shake-off electron
has the energy E = h%k?/2m, then the obvious equality
holds:

E=¢—U,. (3)

Here, € = h? K2 /2m represents the kinetic energy of the
electron inside the crystal.

Due to the inelastic scattering of an electron wave
by vibrating ions of the crystal, the wave vector K at-
tributes the imaginary part. As a result, the intensity
of the electron beam which passed the distance z in the
medium exponentially decreases:

I(z) = I(0)e " (4)

Here, the attenuation coeflicient depending mainly on
the scattering by phonons is

o= Uin/”O: (5)

where oy, is the inelastic scattering cross section of elec-
trons by phonons referred to one atom, and vg is the
volume of the elementary cell (we assume that it con-
tains one atom).

In this article, we will study the role of the attenuation
of a shake-off electron wave in the crystal. For this aim,
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we calculate the inelastic cross section oy, for the scatter-
ing of electrons with absorption or emission of phonons
which depends significantly on the temperature. Ear-
lier, oy, was calculated in the long-wave approximation
for low-energy conduction electrons, regarding the crys-
tal as a continuous medium (see, e.g., [20]). But, in our
case, the electrons inside the crystal have kinetic energy
€ of the order of 10 eV and higher, which forces us to
give a more refined derivation. Having found formulas
for oy, we are able then to analyze the effects related to
the attenuation of shake-off electrons in the medium.

It is worth to note that a similar picture arises when
fast ions flying through microstrip metal detectors pro-
vide the emission of a great number of low-energy elec-
trons [21]. Therefore, the investigation of various aspects
of low-energy electron emission from metal films become
today the most actual.

2. Attenuation of an Electron Wave

In this section, we will calculate the inelastic scattering
cross section oj, of electrons by phonons in a perfect
crystal which enters the attenuation coefficient (5). We
recall that we consider the crystal with one atom per
unit cell, whose position is defined by the vector

Ri=14u, (6)

where 1 is the lattice vector, and u; is a displacement of
the ion from its equilibrium position.
The perturbation operator is given by

V(r) = [ve(lr = Ra) = vel(|r = 1)), (7)

1

where v.(r) is the Coulomb interaction energy of the
electron with an ion,

Ze?
T

ve(r) = — e~/ (8)

depending on the screening length rg.
The initial state of the system (crystal lattice + elec-
tron) is described by the function

ja) = v} ) ™, (9)

where v,;; denotes the number of phonons specified by
a quasiwave vector &, branch number j, and frequency
w;(k). The final wave function will be
) = [{vi;} ) ™" (10)

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4

The cross section for the transition from |a) to |b) is
given by

(11)

where v = AK /M is the velocity of incident electrons,
and the matrix element in the Born approximation is
determined by the expression

2
Oq—b = %|%a|26(Eb - Ea)7

drZe*rd ;

_ iQ(+ _

Voo = T, O (Was e o }) (12)
1

with the scattering vector

Q=K-K" (13)

In the single-phonon approximation, the inelastic scat-
tering cross section of electrons by a crystal is given by

9 ! 2,2\ 2
SV _ 27 dK( Z AnZe*r
n h | (27)3 = \1 + Q?rd

we—w@___ P
2N M, (x)
d

2
Z H(Q+r)1 (Vj(zﬁ>> § (€ — e+ hwj(k)) +
1
2
+ Zei(Q—n)l
1

_ 1

(252 ) 6@ - e~ nastep | 19
where € = i2K?2/2m and ¢ = h2K’?/2m are the initial
and final values of the electron kinetic energy inside the
crystal formed by N atoms, exp(—2W (Q)) is the Debye—

Waller factor, and 7; (&) is the mean number of phonons.
It is determined by the Bose—Einstein distribution

0 oo (22 1]

Since the minimum electron kinetic energy ¢ ~ 10 eV,
while the maximum phonon energy iw ~ 0.1 €V, one can
neglect fiw in the 0 functions. Following Ziman [20], we
consider only the so-called normal scattering of electrons
without any diffraction. In addition, we approximate the
phonon spectrum by the Debye model and believe that
the sound velocity s is the same for all three branches of
the acoustic vibrations. So that, we have

Q e;(r)[* x

(15)

wj(K) = w(k) = sk, (16)

where the wave vector x varies from 0 to the bound value
KD, given by [20]

1/3

rkp = (67%/vg) (17)
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The corresponding maximum frequency is

wp = kBHD/iL (18)

where 0p is the Debye temperature. These quantities

determine the sound velocity:

$ = wp/Kp. (19)

In what follows, the average number of phonons 7;(k)

depending only on |k| will be designated by (k).
Moreover, the Debye model yields

49]3/2

1 1
/ LZ 1 + 2} zdz.
0

In (14), we first integrated over x and after that over
the spherical coordinates K', 1, ¢ of the vector K’, using
the equality

3h2 Q2T2
2W(Q) =
D= ket

(20)

Q*=2K?%, t=1—cos?. (21)
Here, ¥ represents the angle between the wave vectors
K’ and K.

Then the inelastic scattering cross section of electrons

referred to one atom of the crystal,

Oin = Ui(riV)/Na (22>
becomes
6272 2
tmax

\/ﬂe—QW(K\/ﬂ)

(14 2K2r3t)? [V(K\/E) + ﬂ » (23)

(3r:)
X —_—
Ms

0
where tyay = k3 /2K2.

3. Energy Spectrum

Let a crystal film be formed by N, crystal planes spaced
by distance d. They are numerated by the number n =
0,1,2,..., N, — 1, where the number n = 0 is associated
with the plane on the face surface. The thickness of such
a film equals D = N,d.

The energy and angular distribution of shake-off elec-
trons emitted from the crystal after the decay of a nu-
cleus embedded in the n-th plane is described by a func-
tion wy,(F, ), so that the average number of electrons
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emitted in the energy interval AFE at a solid angle AQ
after the decay of one nucleus in the n-th plane is

AN = / dE / dQuw,, (E, 0). (24)
AE  AQ
This distribution is defined by the expression [18]
wn(E,0) = wo(E,0) exp{—p(E)nd/cosby}, (25)

where wo(E,0) is the distribution of electrons ejected
after the decay of a nucleus lying on the surface, 6y or
0 is, respectively, the angle between the electron wave
vector K or k and the z axis which is perpendicular to
the surface of the crystal film. They are connected by
the relation [18]

1/2
sin’ e) : (26)

The distribution wy(E, ) written in terms of the di-
mensionless parameters

= 1 —
cos by ( 0,

K = Kry, 4= qro, (27)

has the form [18]

ro\° 1 2F 8
wo(E,0) =T(E) (f) Eiovfoﬁx

. "/ (@) dd o8)
[K2 = @I +2(K? + @) + (K2 = )]

0
where a = h%/me? and Ey = e?/a are the Bohr radius
and the atomic unit of energy, respectively,
4(1 4 Uy/E cos® §)1/?

TB) = § 3 0+ Us B cos? )1 772

(29)

is the transmission coefficient of an electron wave
through the surface, and

a(q) = {exp {C“’;B_T‘SF} + 1] - (30)
with
o = h?/2mr? (31)

represents the Fermi distribution for conduction elec-
trons depending on the dimensionless parameter q.

The integration in (28) is performed over all bound
states |q) of the conduction electrons in the potential
well with the depth Uy. Therefore, the upper limit of
integration Gmax in (28) should be taken a bit less than

vV 2mU0r0/h.
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Fig. 1. Average yield of shake-off electrons N, from a copper crys-
tal after the single decay of a radioactive nucleus as a function of
the crystal thickness D. Our calculations are drawn by the solid
line, while the data of [16] are presented by dots. The dashed line
indicates the experimental background

4. Yield of Electrons

By averaging (25) over all crystal planes, we get a distri-
bution of shake-off electrons emitted from the slab after
the single nuclear decay at any point of the crystal:

- 11— efp,(E)D/ cos 0o

w(E, 9) = wO(E7 o)ﬁp 1 — e—#(E)d/cos o

(32)

For a thick crystal, when puD > 1, this expression is
reduced to
—_— 1 1

’LU(E7 0) = 'LUO(E, G)Fp 1— e—//,(E)d/ cos b’

(33)

The energy distribution of all electrons emitted from
the metal is determined by the integral over the angles:

w/2
W(E) =2x / w(E, 0)sin 6d6.
0

(34)

The average number of low-energy electrons ejected
from the crystal following the decay of one nucleus lo-
cated at an arbitrary point of the crystal is given by the
integral

N, = [ W(E)dE + B, (35)
/

where B denotes any experimental background.
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Fig. 2. Energy distribution of shake-off electrons emitted from a
copper film at various temperatures
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Fig. 3. Energy dependence of the free path length for electrons in
a copper crystal at various temperatures

The number N, of low-energy electrons emitted from
a copper film as a function of the film thickness D has
been recently measured in [16]. Such electrons escape
mainly from the conduction band, since they are most
weakly bound as compared with inner electrons of ions.
We calculated the function N.(D), by using the follow-
ing parameters for the copper film: vy = 1.2 x 10723
em3, ep =706V, A=44¢eV,0p =315K, Uy =114
eV, and 7o = 0.55 A. From Eqgs. (32)—(35), one sees
that the number of emitted shake-off electrons per one
nuclear decay falls down with increase in IV, due to the
attenuation of the electron wave inside the crystal. The
attenuation coefficient has been calculated with the aid
of Egs. (5) and (23). Our results are compared with the
experimental data in [16] in Fig. 1.

In addition, the energy distribution W(E) for elec-
trons emitted from a copper film is presented in Fig. 2
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Fig. 4. Temperature dependence of the integral electron yield from
a copper film

at the temperatures T' = 0, 300, and 600 K. For defi-
niteness, we took the number of crystal planes N, = 40.
We see that, as T grows, the shape of the curve W(E)
changes due to the strong dependence of i on the energy
E.

The energy dependence of the free path length A =
pu~t for low-energy electrons in copper is displaced in
Fig. 3 at the same temperatures. It is seen that A de-
creases with increase in the temperature due to growing
the average number of phonons and, respectively, the
amplitude of vibrations.

The total yield of electrons N, from the same copper
film, as is shown in Fig. 4, decreases with increase in the
temperature due to raising the attenuation p of electron
waves.

We thank Profs. V.M. Pugatch and V.I. Sugakov for
the helpful discussion of the results.
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TEMIIEPATYPHA 3AJIE2KHICTH EQEKTY CTPYCY
EJIEKTPOHIB ITPOBIZIHOCTI B METAJIAX

0.4. Hszrwbauk, B.IO. Cnisax
Peszowme

IIpoanasizoBano emiciio i3 MeTasly esleKTPOHIB IpoBigHOCTI, CIIpu-
YUHEHY fAJIEPHUM pO31a10M. BpaxoBaHO 3aI0MJIEHHS €JIEKTPOHHOI
XBUJI Ha IOBEPXHI KPHUCTAJIa Ta 3aTYXaHHs, BUK/IUKAHE PO3CisH-
HaAM Ha donoHax. [lokazaHo, II0 €HEPreTUIHUN PO3IOMIIT BUIIPO-
MiHEHUX €JIEKTPOHIB CTPyCy Ma€ IiK NpH eHepril nopsaky 1 eB, in-
TEHCHUBHICTb SIKOTO CIaJa€ 3i 3pOoCTaHHAM TeMmieparypu. Busueno
TAaKOXK 3aJI€?KHICTh BUXOJLY €JIEKTPOHIB IIPOBIAHOCTI BiJ| TOBIIMHA
3pasKa.
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