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Evolution of sine-Gordon equation kinks
in the presence of spatial perturbations
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Using numerical methods, the influence of damping, external power and spatial modu-
lations of parameters on Kinks of the modified sine-Gordon equation is investigated.
Changes of the kink structure, velocity and width at the moment of intersection of
localization field of the spatial modulations of parameters have been studied.

C 1moMoIIbI0 YHMCJIEHHBIX METOJOB MCCJIEAyeTCs BIUAHUE 3aTYyXAHWUS, BHEIIHEU CUJIbI U
OPOCTPAHCTBEHHON MOIYJIAIUUA IIapaMeTPOB Ha KHUHKU MOJU(PUIIMPOBAHHOI'O YPABHEHUS
cunyc-I'oppouna. dyueHo nusMeHeHUEe CTPYKTYPhl, CKOPOCTH W IIMPUHBI KMHKA IIPU IIepeceue-
HUAU O0JIACTH JIOKAJMBAIUMHU IIPOCTPAHCTBEHHONU MOAYJIAIMU IIapaMeTPOB.

In the recent years, the dynamic of ty-
pological solitons (for example, kinks) at-
tracts more and more the attention of re-
searchers [1-4]. This is connected with the
fact that, though solitons initially were ap-
peared at the integrated system study, they
began soon to be used also for the non-inte-
grated systems that describe many physical
applications [5]. For example, equation of
sine-Gordon solitons describes in solid-state
physics the domain wall (DW) in magnetics,
dislocations in crystals, fluxions in Joseph-
son contacts and transitions, ete. [3, 5—7].
In many cases, the soliton behavior can be
described in the frame of point particle
model, and then their temporal evolution
will conform to simple differential equa-
tions. However, an account for perturbation
influence results often in considerable
change of soliton structure, and so they
must be described as deformable particles.

Excitation of the soliton inner freedom
degrees may be of great importance in some
physical processes [8]. Such inner modes
may include the translation and internal
modes. The latter are believed to be associ-
ated with long-living oscillations of the soli-
ton width [9]. It is known that the unper-
turbed sine-Gordon equation does not have
inner modes. Today, the question — what
perturbations can stimulate inner mode of
sine-Gordon equation solitons — attracts a
great attention. For instance, many works
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are devoted to the influence of time-depend-
ing heterogeneous outer force [9-11].

The spatial modulation (heterogeneity) of
the system parameters also is a case of
great interest [12]. In weakly heterogeneous
case, those perturbations can be believed to
do not change considerably the form of
modified sine-Gordon equation (MSGE) soli-
tons, influencing mainly their dynamics
[12]. In strongly heterogeneous case, the
MSGE solitons form must undergo strong
changes, excitation of soliton modes and
emission of excitations disengaging as free
waves should be expected. The most inter-
esting case is when the size of kink and the
size characterizing the heterogeneity of the
parameters are of the same order of magni-
tude, so the kink form must undergo strong
changes when crossing the heterogeneous
area [1]. The large perturbation influence
on MSGE solution in general case can be
studied as a rule only using numerical
method. In this work, influence of damping,
external force and space modulation of pa-
rameters on the MSGE kinks is investi-

gated.
Let the kinks of the following MSGE be

considered:
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where 6 is a function of the dimensionless
coordinate ¥ and dimensionless time Z;
K= I}(Bc) is a certain function characterizing
a local heterogeneity of system parameters,
h is a dimensionless parameter charac-
terizing the external force magnitude; o, a
parameter characterizing dissipation in the
system. It is to note that there are real
physical systems that satisfy the selected
equation (1). For example, domain walls in
real ferro- and antiferromagnetics, that
move under the influence of external mag-
netic field [7, 18]. Then, K has a physical
sense of uniaxial magnetic anisotropy and
can take both positive and negative values.

Let the function K be modeled by a step
having the height or depth K, when con-
structing the perturbation theory for this
equation [12]. For the cases of large K and
W values considered in this work, the nu-
merical method of iterations for the explicit
scheme [14] will be used. The scheme of the
realized numerical experiment is as follows.
At the initial time moment, there is a static
kink that is a solution of non-perturbated
equation (1):

By(%) = 2arctg(e) (2)

for which boundary conditions are 6(zx) = 0, =.

The presence of an external force results in
the acceleration of the kink during some
finite time to the stationary speed confirm-
ing at a high accuracy to the well-known
formula [13]:

(3)

limit \/1+X2’

where ¥y = h/a. Then the kink accelerated to
the stationary speed crosses the area of pa-
rameter K heterogeneity and its evolution
can be observed. The evolution study of the
kink moving in a coasting manner at a con-
stant speed in non-dissipative environment
is also possible. All the results presented in
this work were investigated for the cases of
small dissipation (a = 1072) and outer force.

Let us specify the function K(x) in the
form of a step:

- {1,% <X 4)

The case |1 - K| <<1, o = h = 0 is inves-
tigated using perturbation theory for the
solitons in [12]. Let us consider from here
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Fig. 1. Time dependence_ of the kink center
speed (I — K =0.5; 2 - K =1.5), at the pas-
sage of the step region.

on that K can take arbitrary wvalues both
more and less than one.

The calculation results show that at the
moment when kink passes the step region,
low amplitude waves appear spreading to the
left and to the right therefrom. At the mo-
ment of passing the step localization area, the
kink speed drops or rises abruptly, and
then the speed goes to some other stationary
speed (Fig. 1) corresponding the equation (3)
(v (K =0.5)=0.71, v (K = 1.5) = 0.49). As
the initial crossing speed of the step area
increases, the kink speed change decreases.
An increase of |1 — K|, in contract, causes
an increased change of the speed.

In Fig. 2, the time dependences of the
kink width are presented. The analytical
kink width was calculated using the well-
known formula:

§=+1-V2. (5)

It is seen in the Figure that at the sta-
tionary motion up to the step area, numeri-
cal and analytically calculated values coin-
cide, but after the crossing of this area
boundary, the difference is considerable.
This is connected with the change of not
only the motion speed but also of the kink
structure. The presence of oscillations in
kink width after the step area crossing indi-
cates the excitation of inner oscillation
modes, which can be referred to the "inter-
nal shape mode” in terms of modern non-in-
tegrated MSGE [9].

Comparison of Figs. 2a and 2b shows
that in case K = 0.5, the internal shape
mode amplitude is larger and the frequency
is lower than in case K = 1.5. It is to note
also that when passing the step localization
area, 8o(K # 1) in equation (5), generally
speaking, differs from §yp(X = 1). We do not
take account of this fact while plotting the
curve 2 in Fig. 2.
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Fig. 2. Time dependences of kink width at
the passage of the step region determined
numerically (I) and analytically from equa-
tion (5) (2) at K = 0.5 (a) and K = 1.5 (b).

The coasting passing of the kink through
the step localization area was also investi-
gated. In this case, the numerical experi-
ment scheme is as follows: when the kink
was accelerated to the stationary speed, the
outer force action was over and the damp-
ing was zeroed, then, after time A7 = 20,
the step area appeared on the considerable
distance from it. Comparing the results, a
conclusion can be drawn that there is a
qualitative difference from the case when
the outer force and damping are present. In
the case K = 0.5, one can state that in the
presence of damping and outer force, there
is a local maximum of kink center speed at
the crossing of the step localization area
v = 0.883, and then, the speed decreases and
goes to the stationary value. In the case of
coasting kink motion, the kink center speed
increases sharply at the crossing moment of
the step area and changes no more because
of damping absence. For the case K = 1.5,
the same is observed, but now the kink
speed decreases after crossing the step lo-
calization area. It is to note that at the
coasting DW motion, after the crossing the
NCMA area, the speeds of the DW center
take values v, (K = 0.5) = 0.83 and v, (K =
1.5) = 0.22 close to those defined by the
analytical formula

- - 1 ~ 1 -
Vafter = Vbefore ~ & - 1) = ~ Vbhefore |’
2 Vbefore

Functional materials, 13, 3, 2006

Vmin

06

0.4

02F

0

1
1 1.5 2K

Fig. 3. Dependences of the minimum kink
speed C’min required to overcome the step re-
gion determined numerically for coasting mo-
tion (1) and for A # 0 (2) and analytically from
equation (6) (3).

found in [12] using perturbation theory.

In this~ case, there is a minimal speed
Vpin for K > 1 which is necessary to over-
come the step area. Physically, this is con-
nected with the fact that at the "barrier”
crossing, a fraction of the kink kinetic en-
ergy should be spent for the potential en-
ergy increase, because of parameter
changes. This minimal speed for the cases
of motion under the influence of outer force
and coasting was calculated (Fig. 4) com-
pared with the analytical equation [12] cor-

rect for small values (K — 1):

. (k-1 (6)
Vimin = 2 .

In is seen from the Figure that the
speeds (curves I and 2) necessary to over-
come the "barrier” area, differ very little in
both cases; this evidences a weak depend-
ence on external force and damping in our
case. _

In case v<v,; , K>1 at coasting mo-
tion of the kink, it is reflected elastically
from the step area and, as a result, it
changes its motion direction to the opposite.
At R 20, a #0, the damping oscillations in
the step area (or kink pinning) are possible.
In addition, an emission in the form of low-
amplitude waves is observed.

From the time dependences of kink cen-
ter coordinate and speed for the investi-
gated case, we got that the kink center
reaches the step area border only at the
initial time moment, all the following oscil-
lations appear close to that area. The ob-
served oscillations can be regarded as near
to harmonic only after time A7 ~ 200.
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Fig. 4. Dependence of translation mode fre-
quency of the kink oscillation on the step
height K.

In Fig. 4, presented is the translation
mode frequency (:’1 of the kink fluctuation
as a function of the step height I~{, calcu-
lated from the dependence x(?). It is seen
from the Figure, first, that the dependence is
close to wl(f{) ~I~{1/2, second, with the in-
crease of K , the oscillation frequency increases
and in the limiting value K > o it approaches
o = 0.25. After the stop, the kinks with a
structure "fixed" to the defect are observed,
what is similar to the results of work.
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EBouaronia KiHKiB piBHAHHA cunyc-I'opmona
Yy HPHUCYTHOCTI IPOCTOPOBOTO 30ypeHHS

€.I'. Exomacoe, M.II. Illabanin,
IHI.A. A3amamoé, A.D. Byxapmemoé

3a [I0IIOMOr'0I0 YHCJIOBUX METOIIB JOCIiIKYETHCS BILIUB 3aTyXaHHS, 30BHIIIHLOI CHUJIH Ta
IPOCTOPOBOI MOAyaAMil mapamerpiB Ha Kimkm mommdikoBaHOro piBHaAHHS cuHyc-I'opgona.
HocaigskeHo BMiHM CTPYKTYPHM, HIBUAKOCTI Ta IIMPUHM KiHKa IIpU HepeTMHaHHI obJsacti

JoKaJsizarfii mpocTopoBoi MOmyJsAIlil mapaMmerpis.
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