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THE CONCEPTION AND APPLICATION OF PFL : A PROCESS 
FUNCTIONAL PROGRAMMING LANGUAGE 

A new process functional programming paradigm and its application in PFL – 
a process functional programming language is introduced in the paper. This paradigm is 
based on affecting the state represented by the values of memory cells strictly by 
evaluating expressions. Process functional conception prevents the use of assignments, 
which is a good basis for reasoning about the programs and systems by direct PFL program 
profiling and transformation. This paper is oriented to essential constructs of PFL language 
and its relation to object and parallel programming paradigm. 

Introduction 

It is well known that more complex 
tasks can be solved just increasing the 
level of the abstraction. Programming the 
complex and high parallel systems 
belongs to this category since the 
requirements for the correct functionality 
as well as for the sufficient time 
responses are of high importance [2]. 

 The declarative nature of a purely 
functional approach may help to reason 
about the correctness and run-time per-
formance [28]. Unfortunately, a purely 
functional specification deals with the 
referentially transparent expressions that 
are not powerful enough to express the 
state, which is crucial in the systems [17]. 
Therefore the application of purely func-
tional languages to programs is elegant 
and conforming with mathematical 
methods of programming, but their 
application to the systems is 
cumbersome. 

Modelling and analysis of the sys-
tems are essentially based on Petri nets 
and their derivatives [5, 6]. These meth-
ods are built up on the mathematical ba-
sis of Petri net automata and they are 
applied at different level of the modelled 
and analysed systems. However, from the 
viewpoint of software engineering and 
the specification of the systems, the lan-
guage of Petri nets still remains on the 
assembler level. Therefore, it seems that 
the modelling and analysis of the systems 
on the basis of Petri nets would have be 
integrated into a high-level programming 
language, the best purely functional, tak-
ing the advantages of both approaches. 

Unfortunately, Petri nets deal with 
the stateful systems [27] while pure func-
tional languages do not consider the 
state at all. Seemingly Petri nets conform 
well just with imperative languages. On 
the other hand using mutable abstract 
types and monads [4, 31] it is possible to 
manipulate the state in a purely func-
tional manner. These approaches can be 
found in Haskell [26] or Clean [1]. The 
essential idea is to update the memory 
cells by the application of the functions 
to the arguments of mutable abstract 
types. Hence, the mapping from values to 
computation allows consider a memory 
cell like an abstract type that changes its 
definition during the run time. Compare 
with SML [3], the abstraction level has 
increased rapidly, since there are no 
assignments used in Haskell or Clean 
programs and the memory cells are 
hidden to a programmer.  

On the other hand, the work with 
just values and computations has two 
disadvantages. First, the role of the con-
trol in computation is suppressed, since it 
is not manipulated explicitly like in an 
imperative language [9, 16]. Second, and 
perhaps yet more important is, that 
memory cells are hidden to a program-
mer. Using a pure functional language, 
all the activity is well defined not how-
ever the subjects of this activity. The 
situation is almost the same like repairing 
the car knowing just how to do it, but 
omitting what and where are the compo-
nent parts. Of course, one may argue that 
it is better to manipulate them by some 
automation tool. However, the program-
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ming is still the game that is the matter 
of the people, not robots. A programming 
language would not have to restrict the 
human creativity, excluding time and the 
spatial character of real world.  

The process functional approach 
[11—15] is somewhere in the middle of 
imperative and functional approaches to 
software construction. Omitting the as-
signments, separating the concerns of the 
control and the data, considering the 
'natural' environment of current von 
Neumann computers we are streaming 
about transparent and simple concept of 
systems specification. 

In this paper we present the essen-
tial conception of PFL – an experimental 
process functional language and the op-
portunities that it provides to a program-
mer. From the viewpoint of software 
engineering, using PFL, neither rigorous 
mathematical approach, nor ad-hock 
combinatorial approach is preferred. A 
programmer may use any of them. The 
PFL script will be still in a mathematical 
form that allows, as we hope the 
reasoning about the correct functionality 
[23, 24, 25] and the run time 
characteristics via profiling support based 
on the Petri nets [7, 8].  

1. PFL Types and Values 

The values in PFL – a process 
functional programming language are 
defined in terms of concrete types of 
three kinds: 

• Data types are domains of the 
data values, including the functions and 
the processes 

• Unit type consists of just one 
control value, and 

• Spatial types define immaterial 
positions in the space. 

1.1. Data Types. The types char, 
int, and float, are primitive types, and 
they correspond to characters, integer 
and floating point numbers, respectively. 
For example, the value 'A' is of the type 
char, the value 320 is of the type int and 
2.45 is of the type float. Primitive types 
are built-in types in PFL. 

Algebraic types are new types de-
fined by a programmer. The concept of 

algebraic data types is the same like in 
Haskell or Gofer [10], except that PFL 
types are designated with identifiers 
starting by lowercase letters. Algebraic 
data types are powerful enough to define 
enumerated types, variant types, the 
structures of items of the different types 
(similar to Pascal records) and the recur-
sive types, such as lists and trees. The 
weakness of the algebraic types of purely 
functional languages is that they are not 
powerful enough to specify the efficiently 
implemented arrays. The algebraic types 
are defined using PFL data definitions. 

Since PFL functions and processes 
are higher order, they may be included in 
data types category, although they are 
defined using PFL type definitions.  

1.2. Unit Type. The unit type () 
consists of just one control value (), des-
ignated in the same way like the type. 
The control value has quite different 
meaning in computation like the data 
value. It means that control value does 
not belong to any data type. The role of 
the control is as much important as the 
role of data, hence the control is expres-
sed and manipulated in PFL like a value, 
which has no significant representation 
but it has significant meaning.  

Notice the analogous approach for 
the undefined value, which however be-
longs to each data type. The undefined 
value, usually designated by symbol ⊥ 
has no significant representation, and it is 
still well-defined value. For example,  
(1/0) = ⊥, or (False ∧ ⊥) = False. 

The control value is an argument 
or the value of PFL processes.  

1.3. Spatial Types. The spatial type 
{R1, ..., Rd}, where Rk is an enumerated 
algebraic type or a sub-range of integers, 
defines the d-dimensional space of imma-
terial positions – the spatial values. For 
example, the values of the spatial type 
{1..3, 0..1} are the spatial values {1, 0},  
{1, 1}, {2, 0}, {2, 1}, {3, 0}, and {3, 1}.  
A spatial type comprises an ordered set 
of spatial values, which is mapped to a 
subset of cardinal numbers, starting with 
0. Therefore each spatial value may be 
expressed in terms of a data value.  
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However, from the viewpoint of 
specification, it is better to separate the 
concerns of immaterial positions and 
material data values. Spatial types in PFL 
are proposed for an efficient imple-
mentation of arrays via spatial processes 
that are referentially non-transparent and 
extensionally defined mappings from 
spatial types to data types. The imple-
mentation of arrays in PFL in this way is 
as efficient like in any imperative 
language, but with considerably 
increased abstraction level. 

1.4. Abstract Types. Opposite to 
concrete types that describe values, PFL 
abstract types describe overloaded func-
tions and/or processes. User-defined 
abstract types are defined using type 
classes and their instances. Built-in 
abstract types are mutable abstract types 
allowing the update and the access of 
memory cells, instead of assignments. 

2. PFL Data Definitions 

Algebraic types are new types 
defined by a programmer using PFL data 
definition. Like examples of algebraic 
types, let us define the monomorphic 
type bool of boolean values False and 
True and three polymorphic types, tuple2, 
list and btree, as follows: 

data bool  = False |  True 
data tuple2 a b = Tuple2 a b 
data list a  = Nil | Cons a (list a) 
data btree a  = Tip a  
 | Bin (btree a) (btree a) 

The types are defined by the sum 
of applications of constructors to type 
expressions. In our example above, the 
constructors are False, True, Tuple2, Nil, 
Cons, Tip, and Bin. If a type is defined by 
single constructor, (such as it is in the 
type tuple2), then it is called a product 
type, otherwise it is called a sum type. 
The constructors are applied in 
expressions to construct the values of 
algebraic types, since they are canonical 
functions, of the types as follows: 

False  :: bool 
True  :: bool 

Tuple2 a b  :: tuple2 a b  
Nil  :: list a 
Cons  :: a -> list a -> list a 

Tip  :: a -> btree a  
Bin  :: btree a -> btree a -> btree a  

 The type definitions of construc-
tors are never introduced in PFL script, 
since they are derived in the compile 
time from the data definitions. 

The value (Tuple2 'a' 4.5) is of the 
type (tuple2 char float). The value (Tuple2 
5 50) is of the type (tuple int int). The 
polymorphic type (tuple2 a b) is the 
principal (the most general) type of all 
more specific types of pairs, such as the 
types (tuple2 char float) and (tuple2 int int). 
Since the types tuple2, list, and btree have 
type variables such as a and b, they are 
polymorphic types [18]. On the other 
hand, bool is the monomorphic type.  

The more appropriate syntactic 
forms for tuples and lists are available; 
The type (tuple2 a b) of pairs is written in 
the form (a, b), the type of triples (tuple3 
a b c) in the form (a, b, c), etc. The type 
(list a) of lists is written in the form [a]. 
The more appropriate form for tuple  
(Tuple2 'a' 4.5) is ('a', 4.5). The 
constructor Nil is written as [ ]. Instead of 
Cons, the infix operator (:) is used. 
Hence, instead of the list of characters 
(Cons 'A' (Cons 'L' (Cons 'F' Nil))) we can 
write ('A' : 'L' : 'F' :[ ]). Yet more concise 
form for this list is as follows ['A', 'L', 'F'], 
or even "ALF", since the string is a list of 
characters. 

PFL data definitions are allowed 
just at the global level of PFL script. 

3. PFL Type Definitions 

Both functions and processes in 
PFL may be built-in or user defined. In 
general, a type of function or process in 
PFL is defined by the function or process 
type definition in the form: 

f :: t1 -> ... -> tn -> t 
Depending on the form of types of 

arguments t1, ..., tn, and the type t of value, 
the f is either a function or a process. 
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The type definitions for built-in 
functions and processes (the operations) 
are obligatory, as well as the type defi-
nitions for user-defined processes. The 
type definitions for user defined functions 
are optional.  

3.1. Function Types. If all the types 
of arguments as well as the type of value 
are data types or function types, then the 
type definition defines the type of a func-
tion, for example:  

sum :: int -> int -> int 
map :: (a -> b) -> [a] -> [b] 
item :: ({1..50} -> a) -> int -> a 

The arguments and value of the 
function sum are of the type int. The first 
argument of the function map of the type 
(a -> b) is a single argument function, the 
second is a list of the type [a] and the 
value is a list of the type [b]. The first 
argument of the function item is of the 
type ({1..50} -> a) of the spatial process – 
a mapping from space of 50 points of 
array positions to values of any type. The 
second argument is of the type int. The 
value of a function item is of any type, 
but the same like the type of items of the 
array.  

The unit type () cannot be the type 
of arguments and/or the value of a 
function. 

Notice also that the spatial type 
itself is never used like the type of an 
argument or the value of user defined 
functions and processes, since they never 
work with immaterial space positions. For 
example, the types ({1..50} -> a), ({1..50} -> 
-> float), ({1..50} -> [a]), ({1..50} -> (a->b)), 
are possible types for arguments or the 
value, not however the type {1..50}.  

3.2. Process Types. The processes 
differ from functions just by their type 
definitions, not however by their 
definitions. The type definition is the 
definition of a process, not a function for 
two reasons: 

1. The type definition of a process 
comprises the unit type () for an 
argument and/or the value. 

2. The type definition comprises 
an argument or the value of the type in 
the form V t, where V is an environment 
variable and t is any data type. 

The type in the form V () cannot 
occur in a type definition of a process. 
Intuitively, an environment variable 
cannot hold the control value. 

Let us introduce some examples of 
process type definitions.  

seq2 :: () -> () -> ()  
par2 :: () -> () -> ()  

Both processes above have the 
arguments and value of unit type. 
Therefore the processes seq2 and par2 
(we omit their definitions for a while) can 
be applied to two control values (or 
expressions producing the control values) 
producing the control value.  

The second example illustrates 
mixing the types in the type definition. 

mixed :: () -> a -> ({1..40} -> a) -> () 
The first argument of process 

mixed is the control value, the second is 
a value of an expression of any type and 
the third is a spatial process of the type 
({1..40} -> a). The value of the process 
mixed is the control value. 

Preceding an argument and/or the 
value type of a function by an 
environment variable, designated by an 
identifier starting with uppercase letter, 
such a mapping is a process. In PFL the 
environment variables are not declared 
separately, just specified in the type 
definitions.  

Let us introduce the next type 
definitions of the process p and the 
process q. 

p ::  A int -> B ({1..10, 1..10} -> (a -> b)) -> 
  b -> C [a] -> float 
q ::  A a -> b -> A b 

The environment variable A is 
shared by the first argument of process p, 
by the first argument of process q and by 
the value of process q. On the other 
hand, B and C are quite different vari-
ables (which however may be shared by 
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another processes). The environment vari-
ables never occur in process definitions. 

Provided that A t is an argument or 
value type, the value residing in A is of 
the type t. 

Since the types int, a, and b can be 
unified producing the type int, the type 
definitions are correct, since they are 
specialised to: 

p ::  A int -> B ({1..10, 1..10} -> (a -> b)) ->  
 b -> C [a] -> float 
q ::  A int -> int -> A int 

On the other hand the type 
definitions, as follows: 

p :: A int -> B a -> C a 
q :: A char -> A b 

are not correct, since char does not 
unifies with int. 

In addition, in contrast to purely 
functional languages, we allow type 
definitions for both local functions and 
local processes. 

4. PFL Type Synonyms 

Each type expression not compri-
sing an environment variable in PFL can 
be substituted by a type synonym, which 
is defined using type synonym definition. 
For example, let us have the type 
definition, as follows: 

mixed :: () -> a -> ({1..40} -> a) -> () 
Let us define a new name for the 

type expression () -> a -> ({1..40} -> a) -> (), 
as follows: 

type mixedtype a = () -> a ->  
 ({1..40} -> a) -> () 

Then the type definition above 
may be written in the form as follows: 

mixed :: mixedtype a 
We may define 

type array a = {1..40} -> a 
and to write 

mixed :: () -> a -> array a -> () 
Using the type synonym in con-

trast to data definition, no new type is 

defined, just a new name for yet defined 
type is introduced to make the script 
more transparent. Hence, the type mixed-
type a as well as the type () -> a ->  
-> array a -> () are the same types like the 
type () -> a -> ({1..40} -> a) -> ().  

It is good praxis to predefine some 
algebraic types and type synonyms in the 
prelude file, which is prefixed to each 
user script, if compiled. Such the type 
synonym is string, defined as follows: 

type string = [char] 
 Clearly, strings are lists of 

characters. 
PFL type synonyms are allowed 

just on global level and they cannot be 
defined for the type expressions compri-
sing the environment variables. 

5. PFL Definitions 

The form of the definitions in PFL 
is purely functional, like in Haskell or 
Gofer. It is impossible to distinct func-
tions from processes looking just on the 
definitions. The information about their 
types is necessary. For example, the 
definition 

f x y = x+y 
is the function f, provided that the type 
definition omits, or it comprises neither 
environment variable, nor unit type (). 
For example, such a type definition could 
be as follows: 

f :: int -> int -> int 
It is good praxis to precede the 

definition by the type definition, hence 
the next two equations  

f :: int -> int -> int 
f x y = x + y 
are the type definition and the definition 
of the function f, which summarises the 
values of its arguments. For example, the 
value of expression (f 3 2) is 5. 

On the other hand, the equations, 
as follows: 

f :: Alpha int -> Alpha int -> Alpha int 
f x y = x+y 
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define the process f. The value of expres-
sion (f 3 2) is again 5, provided that the 
program is evaluated sequentially, i.e. in 
a single-threaded manner. Except that, 
the additional side effects on the variable 
Alpha are performed. First, applying (f 3), 
the value 3 is assigned to Alpha. Then, 
applying ((f 3) 2) the value 2 is assigned 
to Alpha, and finally, evaluating 3 + 2, the 
value 5 is assigned to Alpha. Hence, 
evaluating an expression, the state has 
been changed. Moreover, it is possible to 
apply the process f to control values, i.e. 
the applications (f () 2), (f 3 ()), and (f () ()) 
are legal applications of the process f (not 
however of the function f) in PFL. We 
discuss the semantics of such 
applications below, here we will 
concentrate to the forms of the function 
and process definitions.  

5.1. Simple Definition. A function 
and/or process is defined by a simple 
expression on right hand side of the 
equation, for example, as follows: 

h x y = x + y 
5.2. Pattern Matching Definition. A 

function is defined by one or more 
equations. Then the constant patterns on 
the left-hand side of each equation are 
compared with the argument values. In 
case of matching, the corresponding right 
hand side is selected for evaluation. 

An example of pattern matching 
definition is as follows: 

map f [ ] = [ ] 
map f (x:xs) = f x : map f xs 

Since h is the function of two 
arguments, hence the (h 3) is the function 
of single argument, adding the value 3 to 
this argument. The value of the 
application (map (h 3) [ ]) is [ ], applying 
the function (h 3) and matching the [ ] 
(Nil) pattern. The value of (map (f 3) [10, 
20, 30]) is [13, 23, 33], because the map is 
applied recursively until the [ ] is 
matched.  

Patterns are either variables or 
constants. 

5.3. The Definition by Guarded 
Expressions. Instead of simple expression 

on right hand side guarded expression 
may be used, either with sequential or 
with parallel semantics. 

The definition by sequential 
guarded expression is as follows: 

seqselect x = 10,  if x<5 
  = 20,  if x>0 
  = 30,  otherwise 

The definition by parallel guarded 
expression is as follows: 

parselect x | x<5  = 10 
  | x>0  = 20 
  | otherwise = 30 

The application (seqselect 3) 
evaluates to 10, the application (parselect 
3) may evaluate either to 10 or to 20, in 
an non-deterministic way. Of course, 
instead of constants, expressions on the 
right-hand side may be used.  

 In addition, in case of parallel 
guarded definition, these expressions 
may be sequentially guarded again. If the 
default True guard designated by 
otherwise keyword omits, in both cases 
the evaluation may fail.  

5.4. Local Definitions. Local 
functions and/or processes may be 
defined behind where clause on the right 
hand side of the definition. In PFL local 
type definitions are allowed and they are 
obligatory for all user-defined local 
processes. 

An example of the definition of 
local process h in a function f is as 
follows: 

f x xs = h x xs 
where  

h :: A a -> [a] -> [a] 
h x xs = x:xs  

The value of application (f 'c' 
"omputer") is "computer". In addition, the 
character 'c' resides in local environment 
variable A until the value "computer" is 
evaluated. This has no significant 
meaning in this case, since if the 
application is evaluated, the local 
variable environment consisting of just 
one variable is de-allocated immediately.  
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6. PFL Variables are Mutable  
Abstract Types 

A PFL variable is a memory cell, 
like in an imperative language. A value 
can be stored to and retrieved from this 
variable. On the other hand, there is 
much more important that the variables 
may be accessed and updated than that 
they are just containers for values.  

An abstract type is a set of 
operations, which instances are defined 
using different definitions. Therefore a 
PFL variable V may be expressed in 
terms of abstract type, like a mapping 

V :: t`~ -> t 
where t`~ is either the unit type () or it is 
a data type t. Hence, V may be applied to 
an expression of both control and data 
type. The access instance of the mapping 
V is defined as follows: 

V :: () -> t 
V () = v 

The update instance is defined as 
follows: 

V :: t -> t 
V x = x 

The access instance is a 'constant'. 
The value of the expression V () is the 
value v, residing in the memory cell V. 
This definition mutates whenever the 
update instance is applied. The update is 
the identity, which however, assigns the 
applied value to the cell V. Applying V to 
v1, the definition of the access is changed 
(it mutates) to: 

V () = v1 
By the application (V v2), the 

definition of the access mutates to: 

V () = v2 
etc. 

We may conclude that: 
1. The type of the application of 

an instance of V is a data type, because 
the cell contains a data value, by no 
means the control value or a spatial value. 

2. V is a built-in overloaded proc-
ess. A programmer never defines it. The 

concept of memory cells like overloaded 
processes conform with the PFL concept. 
No memory cell is accessed and updated, 
referencing it directly, but rather by the 
application of processes.  

3. Applying a V to the control 
value corresponds to the access of the 
value in an imperative language. 

4. Applying a V to a data 
expression in PFL produces the value of 
this expression, not the control value like 
the update by assignment statement in an 
imperative language.  

A programmer needs not to be 
familiar with mutable abstract types at 
all. It is sufficient to consider the 
variables like shared memory cells, and 
to known how the access and the update 
operates.  

The access operates as shown in 
Fig. 1. 

 

a) 

b) 

c) 

 
Fig. 1. The Access 

Let the data value, marked by 
black circle resides in a variable V, 
according to Fig.1 a). Applying V (), the 
control value marked by white circle 
arrives through the input control arc, 
according to Fig.1 b). The value of the 
application is the data value, produced to 
the output data arc, the same like having 
been stored in V before.  

The update is illustrated in the 
Fig. 2. In this case, both input and output 
arcs are the data arcs. Let the initial state 
in the Fig. 2 a) is the same like in the 
Fig. 1 a). Applying the variable V to a 
data value, marked by grey circle, ac-
cording to Fig. 2 b), this value is assigned 
to V and produced to the output arc, ac-
cording to the Fig. 2 c). Performing the 
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update, the definition of the access has 
changed. 

 

a) 

b) 

c) 

 
Fig. 2. The Update 

Let us explain the semantics of 
user defined process more precisely, 
introducing an overloaded process f. Let 
the first instance of this process is as 
follows. 

f :: a -> b -> () 
f x y = e' 
where e'::(), i.e. the value of e' is the 
control value. 

The second instance is a pure 
function, as follows: 

f:: a -> b -> c 
f x y = e 

where e::t, i.e. e is of data type. 
 

Now, let us define the PFL process 
p, as follows. 

p :: A a -> B b -> C c 
p x y = e 
where e is the same expression like in 
the second (purely functional) instance of 
the process f. Provided that A, B, and C 
are the environment variables, the defini-
tion of p, may be expressed in terms of 
application of the overloaded process f, 
as follows: 

p x y = C (f (A x) (B y)) 
The process p is implemented in 

the way of its definition above, but this 
form is not accessible to a user. The defi-
nition of p is more powerful than the 
definition of the second purely functional 
instance of f, since we allow the expres-
sion e not just of data type but also of 

unit type. The application of a process is 
however always the value of a data type. 
It may be noticed that this approach is 
inevitable to be able to apply the func-
tional instance of f to the arguments (A x) 
and (B x), that must be of data type. Also 
this fact explains the reason why the up-
date is not of the type t -> (), but of the 
type t -> t. 

If there is a need for terminating 
the data flow, it is possible to define a 
process terminate, as follows: 

terminate :: a -> () 
terminate x = () 

7. PFL Arrays are Spatial Processes 

One of the benefits of spatial 
processes is that they express the arrays 
in a natural way allowing implementing 
them as efficiently like in an imperative 
language. The idea of spatial processes 
for arrays comes from the ability to de-
fine a function extensionally, i.e. by 
pattern matching. For example it is 
possible to define the function 
constArray, in the space of 2×3 points, as 
follows: 

constArray  False  1 =  2.5 
constArray  False  2  =  1.0 
constArray  True  3  =  3.5 

The value of the application (con-
stArray False 1) is 2.5, the value of the 
application (constArray False 2) is 1.0, and 
the value of the application (constArray 
True 3) is 3.5. All the other items are 
undefined. The array constArray is a 
partial function of the type (bool -> int -> 
float), and it is the constant array. The 
items are not updatable, because the 
array was defined in the compile time. At 
the same time, there is no conceptual 
distinction between the spatial positions 
and the data. 

PFL provides the opportunity to 
define and to redefine the arrays like 
partially defined processes in the run 
time, considering the spatial values and 
the spatial processes. 

7.1. The Spatial Structure of a 
Value. The structure of the immaterial 
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points in the space corresponding to the 
array positions defined above is ex-
pressed by the spatial type {bool, 1..3}. 
This spatial type, consisting of 6 immate-
rial positions is depicted in the Fig.3. The 
spatial process in the Fig.4, of the type 
{bool, 1..3} -> float, is extensionally de-
fined mapping from spatial values to the 
values of the type float. At the same time 
the spatial process is a spatially struc-
tured value consisting of the spatially po-
sitioned values of the type float. The 
process in the Fig.4 is undefined, since 
all the positioned data are undefined.  

 
 

 
Fig. 3. The spatial values 

 
 

 
 

Fig. 4. The spatial process 

The spatially structured value 
forming a spatial process is depicted in 
the Fig.4 by surrounding grey coloured 
circle including the spatially positioned 
data cells. It would not be confused with 
a spatial value of the spatial type 
according to the Fig. 3. 

The spatial processes are retrieved 
from and stored to an environment 
variable V like data values, applying the 
built-in definitions for access and update 
as follows: 

V :: () -> ({bool,1..3} -> float) 
V () = v 
and 

V :: ({bool, 1..3} -> float) ->  
 ({bool, 1..3} -> float)  

V x = x 
So far, we are able to access the 

arrays and to update them. Below we will 
concentrate on how to access and update 
the array items. 

7.2. Accessing the Argument 
Items. Provided that f is a PFL function, 
defined as follows: 

f :: ({bool, 1..3} -> float) -> int -> float  
f x i = x{True, i} + x{False, i+1} 
the expression (f a 2) summarises the 
{True, 2}-th and the {False, 3}-th item 
values of the array given by an 
expression a.  

Notice, that x :: {bool, 1..3} -> float, 
i.e. x is a value. The same holds however, 
if the process p is defined as follows: 

p :: V ({bool, 1..3} -> float) -> int -> float  
p x i = x{True, i} + x{False, i+1} 

In this case (p () 2) is legal applica-
tion and x is a current value of the envi-
ronment variable V, of the type ({bool, 
1..3} -> float). From the implementation 
point of view, the value x is a base 
address of an array, i.e. it is the input 
address of extensionally defined spatial 
process. The input address of a spatial 
process accesses the data area of the 
memory, while that of an ordinary 
function or process accesses the code 
area. The value of an updatable array is 
referentially non-transparent while the 
value of the function is referentially 
transparent. The reasons for referential 
non-transparency of spatial processes and 
ordinary processes are different. Spatial 
processes are non-transparent for their 
internal state changes and ordinary 
processes for the external state changes. 

 7.3. Incremental Update. Provided 
that {ebool, eint}::{bool, 1..3}, let us suppose 
the mapping as follows: 

I0 :: float -> ({bool, 1..3} -> float)  
I0 (x {e0

bool, e0
int}) = x 

Clearly, this mapping may not be 
expressed in an ordinary lambda calculus 
by lambda abstraction, since instead of 
lambda variable there is an expression (x 
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{e0
bool, e0

int}) of the type float on the left 
hand side used. Furthermore, it would be 
poor effect if both e0

bool and e0
int are con-

stant expressions.  
On the other hand, provided that x 

is a spatially structured value, (on the 
basis of right hand side) the mapping I0 is 
well defined in terms of lambda 
proposition. Informally, if x is a lambda 
variable – a hole containing the value of 
the type ({bool, 1..3} -> float), then (x 
{e0

bool, e0
int}) is a sub-hole positioned in 

the space point {e0
bool, e0

int}. Then of 
course, the value of x is defined by the 
application of a mapping I0 to an 
expression e0 of the type float, in the 
form as follows: 

I0 e0 
or, in terms of the application of lambda 
proposition as follows: 

(λ (x {e0
bool, e0

int}).x) e0 
Since, according to the lambda 

expression above, the value of the array 
has been partially defined (just for the 
{e0

bool,e0
int}-th item by the value e0), but 

the array like a value remains unchang-
ed, we may use it again to define the 
next item as follows: 

 (λ((λ (x {e0
bool, e0

int}).x) e0){e1
bool, e1

int}.x) e1 
The PFL expression corresponding 

to the incremental definition of partially 
defined array is as follows: 

x {e0
bool, e0

int} -> e0 {e1
bool, e1

int} -> e1 
of the type as follows: 

({bool, 1..3} -> float) 
7.4. Updating the Argument Items. 

Clearly, since x as well as the variables 
used in all expressions must be lambda 
variables, this expression may be used on 
the right hand side of a PFL function, 
such as:  

f :: ({bool, 1..3} -> float) -> ... -> 
 {bool, 1..3} -> float 
f x ... = x {e0

bool, e0
int} -> e0  

 {e1
bool, e1

int} -> e1 
or a process, such as: 

p :: V ({bool, 1..3} -> float) -> ... -> 
 {bool, 1..3} -> float 
p x ... = x {e0

bool, e0
int} -> e0  

 {e1
bool, e1

int} -> e1 
The dots in the definitions above 

designate further patterns used in 
expressions on the right hand sides and 
the dots in the type definitions designate 
the types of these patterns. 

Applying the function f or the 
process p, the array like a value remains 
unchanged, not however to the value of 
this array. It has changed defining the 
two items. The array arguments are 
updated, after they are applied. In the 
second case, the application (p () ...) 
updates the current array retrieved from 
V.  

The same holds if the terminate 
process is applied to the right hand side 
expressions, according to the definitions, 
as follows: 

f :: ({bool, 1..3} -> float) -> ... -> () 
f x ... = terminate (x  {e0

bool, e0
int} -> e0  

  {e1
bool,e1

int} -> e1) 
p :: V ({bool, 1..3} -> float) -> ... -> () 
p x ... = terminate (x {e0

bool, e0
int} -> e0  

 {e1
bool, e1

int} -> e1) 
In this case the value of both f and 

p is the control value, not the array. 
7.5. Updating the Value Items. Let 

us suppose the process p, such that x is 
not a lambda variable of the process p, 
defined as follows: 

p :: ... -> {bool, 1..3} -> float 
p ... = x {e0

bool, e0
int} -> e0  

{e1
bool, e1

int} -> e1 
Clearly, since x is free variable, the 

definition above is wrong. A possible 
solution to this problem is to construct 
the new array and to develop a 
mechanism how to update it in place. Or, 
like it is in PFL, not to construct the 
arrays at all, just to define them. The 
correct PFL definition for updating the 
array by the value is as follows: 

p :: ... -> V ({bool, 1..3} -> float) 
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p ... = {e0
bool, e0

int} -> e0 {e1
bool, e1

int} -> e1 
Considering the fact that the array 

like a value in contrast to data value is 
defined by initialisation and it may be 
retrieved by the application (V ()), the 
right hand side expression is just 
syntactic sugaring for the application of 
lambda proposition in the form, as 
follows: 

 (λ ((λ (V() {e0
bool, e0

int}).V()) e0) 
 {e1

bool, e1
int}.V()) e1 

Notice however, that the value of 
the application of the process p, defined 
as follows: 

p :: ... -> V ({bool, 1..3} -> float) 
p ... = terminate (x {e0

bool, e0
int} -> e0  

 {e1
bool, e1

int} -> e1) 
is not of the unit type, but it is of the 
type ({bool, 1..3} -> float). 

Concluding, we may define the 
values of the items of our array accessed 
via an argument of a process, as follows: 

array :: Array ({bool, 1..3} -> float) -> ()  
array  x = x {False, 1}  -> 2.5 
  {False, 2}  -> 1.0 
  {True, 3} -> 3.5 

Evaluating (array ()) we obtain ().  
Or, we may define the values of 

the items of an array accessed by a value 
of the process array, as follows: 

array :: Array ({bool, 1..3} -> float) 
array  = {False,1}  -> 2.5 
  {False, 2}  -> 1.0 
  {True, 3} -> 3.5 

Then, evaluating the 'constant' 
array the (partially defined) array is 
obtained.  

7.6. Accessing the Value Items. 
Considering the lambda proposition 
application for updating the value items, 
we have 

V () {e0
bool, e0

int} :: float 
Using the same syntactic sugaring 

like for the update, the PFL syntactic 
construct for accessing the value (the 

target array) item is derived, in the form 
as follows: 

{e0
bool, e0

int} 
Like an example, let us define 

incr :: ({1..5} -> int) -> int ->  
 A ({1..5} -> int)  
incr x i = {i} -> {i} + x{i}  

Then the application (incr a 3) 
increments the 3-rd item of the array A 
by the value of the array given by an 
expression a.  

On the other hand, defining  

incr :: ({1..5} -> int) -> int ->  
 A ({1..5} -> int)  
incr x i = x{i} -> {i} + x{i}  
the 3-rd item of the array a is incremen-
ted leaving the array A unchanged. 

We may conclude that: 
1. A programmer must decide 

which (argument or value) array is 
updated, mixing is not allowed in an 
incremental update. 

2. The items of an array may 
accumulate the values easily. 

3. The use of the arrays is 
symmetrical; the items of both argument 
and value arrays are accessible and 
updatable. 

4. The side effects on arrays are 
local to the processes of the array 
arguments an/or values.  

5. The arrays are not constructed, 
but rather defined like the spatial 
processes with the internal state. 

8. Comprehensive Expressions 

8.1. List Iterations. Provided that 
e1, e2, e3:t, where t is int, char, float or an 
enumerated type, list iterations of the 
type [t] are in the following forms: 

[e1 .. e3] 
[e1, e2 .. e3] 
[e1 ..] 
[e1, e2 ..] 

The first two list iterations produce 
finite lists. For example, the value of [2 .. 5] 
is the list [2, 3, 4, 5], the value of [5 .. 2] is 
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the list [ ], the value of [5, 3 .. 2] is the list 
[5, 3] , the value of ['a', 'c' .. 'h'] is the list 
"aceg". The second two list iterations 
produce the infinite lists. For example, 
the value of [2.0 ..] is the list [2.0, 3.0, 4.0, 
etc. and the value of [2.0, 1.9 ..] is the list 
[2.0, 1.9, 1.8, , etc. 

Clearly, PFL recursive data values, 
are constructed lazily. 

8.2. List Comprehensions. Provided 
that e::t, where t is any data type, list 
comprehension is an expression of the 
type [t] as follows 

[e | Q1, ... , Qn] 
where Qk is either the filter – a boolean 
expression or the list generator in the 
form, as follows: 

pk <- ek 

Provided that ek::[tk], the pattern 
pk::tk. 

The expression [e | ] with the 
empty list of qualifiers evaluates to [e | ].  

For example, the list 
comprehension, as follows: 

[(x, y) | x <- [3..5], y <- [1,2]] evaluates to  
[(3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)].  

The list comprehension  

[(x, y) | x <- [3..5], y <- [1, 2], even (x+y)] 
evaluates to [(3, 1), (4, 2), (5, 1)], and the 
list comprehension [x+y | (x, y) <- [(1, 2), 
(10, 20)]]  

evaluates to [11, 22].  
8.3. Loop Comprehensions. Provi-

ded that e::(), loop comprehension is an 
expression of the type (), as follows: 

(e | Q1, ..., Qn) 
where Qk is either the filter – a boolean 
expression or the loop range generator.  

Provided that v, e1, e2, e3::t, where t 
is int, char, float or an enumerated type, 
loop range generator is in one of the next 
forms: 

v <- {e1 .. e3} 
v <- {e1, e2 .. e3} 
where v is a variable and e1, e2, and e3 
are expressions. 

The expression (e | ) with the emp-
ty list of loop qualifiers evaluates to (e)., 
of the value (). 

The variable v is local to a loop 
comprehension and may be implemented 
using local variable environment. Since 
the value of the expression e must be the 
control value, the expression e may be 
evaluated in an iterative way using the 
generated value v for each iteration step. 
The next value is assigned to v safely, 
since the expression e is a process, hence 
it is evaluated eagerly. 

8.4. Array Aggregates. Provided 
that the argument x of a PFL 
function/process is an array, it is updated 
using the construct, in the forms: 

x{e0
1, ..., e0

n} -> e0  
x{e0

1, ..., e0
n} -> e0{e1

1, e1
n} -> e1 

x{e0
1, ..., e0

n} -> e0{e1
1, e1

n} -> e1{e2
1, e2

n} -> e2 
etc. The value array of a PFL function or 
process is updated using the construct, as 
follows: 

{e0
1, ..., e0

n} -> e0  
{e0

1, ..., e0
n} -> e0 {e1

1, e1
n} -> e1 

{e0
1, ..., e0

n} -> e0 {e1
1, e1

n} -> e1 {e2
1, e2

n} -> e2 
etc. As it has been shown already above, 
these expressions are lambda proposition 
applications and may be used in PFL 
definitions producing the arrays of the 
type 

{R1, ..., Rn} -> t  
provided that {ek

1, ..., ek
n}::{R1, ..., Rn} 

and ek::t. 
On the other hand we have 

defined the process terminate, which 
terminates the data flow, mapping a data 
value to the control value. 

Therefore the expressions, such as 

terminate(x {e0
1, ..., e0

n} -> e0) 
terminate( {e0

1, ..., e0
n} -> e0) 

updates the argument or value arrays 
producing the control value and would 
be used in loop comprehensions in the 
form, for example, as follows: 

(terminate( x {e0
1, ..., e0

n} -> e0) | Q1, ..., Qn) 
(terminate( {e0

1, ..., e0
n} -> e0) | Q1, ..., Qn) 
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If the terminate is applied to 
lambda proposition application in the 
loop comprehension implicitly, we obtain 
the form for array aggregates, such as 
follows: 

(x{e0
1, ..., e0

n} -> e0 | Q1, ..., Qn) 
(x{e0

1, ..., e0
n} -> e0{e1

1, e1
n} -> e1 | Q1, ..., Qn) 

.......... 
({e0

1, ..., e0
n} -> e0 | Q1, ..., Qn) 

({e0
1, ..., e0

n} -> e0 {e1
1,e1

n} -> e1 | Q1, ..., Qn) 
.......... 

The value of array aggregate is the 
control value. Hence, if a process is 
defined by array aggregate which 
updates the argument array, the type of 
the value of this process is either () or V 
t, where t is any data type. However, if 
the array aggregate updates the value 
array, the type of the value of the process 
in the type definition must be V ({R1, ..., 
Rn} -> t, where t is any data type. 

9 . Abstract Types and Objects 

The PFL abstract type is a set of 
functions and/or processes called 
member functions and/or processes, that 
are defined by a class definition and at 
least one instance definition. 

A general rule is that the class 
definition consists of just type definitions, 
called type signatures and an instance 
definition consists of the definitions. 
However, if all the definitions of a 
member function are the same, instead of 
including them into each instance, it is 
possible to introduce just one definition 
in the class. For example, we may define 
the class Stack and its two instances, as 
follows: 

class Stack a where 
 push  :: a -> [a] -> [a] 
 pop  :: [a] -> [a] 
 top  :: [a] -> a 
 empty :: [a] -> bool 
 empty [ ]  = True 
 empty (x:xs) = False  
instance Stack int where 
 push x xs  = x : xs 

 pop  (x:xs)  = x 
 top  (x:xs) = True 
instance Stack [a] where 
 push x xs  = xs ++ [x] 
 pop  xs  = init xs 
 top  xs  = last xs 

We have defined three pure 
overloaded functions, namely push, pop 
and top. Defining two instances for push 
(the same holds for pop and top) the 
same name designates two different 
definitions.  

Applying push to an integer, this 
integer is pushed like the first element, 
which applying push to a list this list is 
appended. For example, the value of 
(push 3 [4, 2]) is [3, 4, 2], whilst the value 
of (push "alpha" ["delta", "gamma"]) is 
["delta", "gamma", "alpha"].  

On the other hand, the predicate 
empty is defined for all defined instances, 
since it is defined in the class definition. 
The member functions of a class, such as 
push, pop, top and empty are accessible 
to global functions and vice versa. Since 
the functions last and init such that 

init (xs++[x]) = xs 
last (xs++[x]) = x 
are defined on the global level, they are 
automatically inherited by a member 
functions. 

The function empty must be 
defined for all instances that are defined, 
otherwise it is impossible to recognise 
which its instance is applied in the 
expression (empty [ ]). On the other hand, 
if we decided for the same definition of a 
member function for all instances, such 
as for Stack int for example, this member 
function may be defined in class 
definition. If all instances of member 
functions have the same definitions, then 
we may define a class: 

class Stack a where 
 push  :: a -> [a] -> [a] 
 push  x xs  = x : xs 

 pop  :: [a] -> [a] 
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 pop  (x:xs)  = x 

 top  :: [a] -> a 
 top  (x:xs) = True 

 empty :: [a] -> bool 
 empty [ ]  = True 
 empty (x:xs) = False  

followed by 

instance Stack int  
instance Stack [a] 

Then the value of (push 3 [4, 2]) is 
[3, 4, 2], and the value of (push "alpha" 
["delta", "gamma"]) is ["alpha", "delta", 
"gamma"]. It is easy to see, that this 
approach may be used for all 
monomorphic classes, since each 
monomorphic class has just one instance. 

9.1. The Inheritance. If a member 
function of a class is applied in another 
instance definition (or a default definition 
introduced in another class definition, it 
is inherited using context in correspond-
ding instance or class definition. 

The context is given by a list of 
type expressions in the form 

(C1 t11 ... tn1
1, ... , Cm tmm ... tnm

m) => 
where Ck t1k ... tnk

k is an instance of the  
k-th class Ck. It is possible to specify one 
or more instances of one or more classes. 
It is also possible to specify all the 
instances of one class. Then, the type 
expressions t1k ... tnk

k are in the form of 
type variables a1

k ... ank
k. 

For inherited monomorphic classes 
Ck the type expressions omit, since nk = 0. 

Like an example, provided that any 
instances push, pop, etc. are required to 
be applied in any instance of the class C 
we may write a class header for C as 
follows: 

class (Stack a) => C a where 
If we require the overloaded 

functions defined in an instance of Stack 
class, for all member defined in the class 
C, we may write 

class (Stack int) => C a where 

or 

class (Stack [a]) => C a where 
If all the members of the class 

Stack are inherited by just one instance 
of a class C then we may write the 
instance header for an instance of class 
C, such as follows: 

instance (Stack a) => C char where 
Finally, it is possible to inherit the 

instance of the class Stack by an instance 
of a class C, by the headers, such as: 

instance (Stack int) => C [a] where 
instance (Stack [a]) => C char where 

In PFL the context just specify the 
accessibility of inherited instances of 
classes. The concrete overloaded 
definition is recognized on the basis of 
the types of arguments. That is why we 
may require to inherit the polymorphic 
classes or instances in a monomorphic 
classes one, such as: 

class (Stack a) => D where 
class (Stack [a]) => D where 

The purely functional approach 
above may be extended to member 
processes of the unit types in type 
signatures. The approach becomes 
different when there is an effort to define 
the processes working with the variable 
environments. 

9.2. Objects. The ability to access 
and update the variable environment for 
global and local processes has been 
shown above. Here we will concentrate to 
the dynamically allocated variable 
environments for the member processes 
forming the objects. PFL provides 
opportunity for object oriented 
programming. 

Let us define the polymorphic class 
Buffer, as follows: 

class Buffer a where 
 init :: N int -> H int -> T int -> () 
 init n h t = () 

 sendItem :: N int -> T int ->  
   B({0..99}->a)-> a -> () 

 sendItem n t b v  
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   = b{newNT (n+1)  
((t+1) `mod` 100)} -> v  

 receiveItem :: N int -> H int -> 
 B({0..99} -> a) -> a 

 receiveItem n h b  
  = newVN (b{newH  
   ((h + 1) `mod` 100)}) (n – 1) 

 empty :: N int -> bool 
 empty n = n = 0 

 full :: N int -> bool 
 full n = n = 100 

 newNT :: N int -> T int -> int 
 newNT n t = t 

 newH :: H int -> int 
 newH h = h 

 newVN :: a ->N int -> a 
 newVN v n = v 

To be able to use buffer for 
integers and and floating point numbers, 
let us define the instances, as follows: 

instance Buffer int 
instance Buffer float 

Class members init, empty, full, 
newNT and newH are monomorphic 
processes. Therefore the same code is 
generated for them. On the other hand, 
for each polymorphic process, such as 
sendItem, receiveItem and newVN it is 
necessary to generate two different target 
codes, one for integer instance and one 
for floating point instance. However, this 
is still not sufficient enough, since the 
processes work with the variable 
environment which consists of the 
variables N, H, T and B. For example, if 
there is a need to work with two integer 
buffers at the same time, then two copies 
of variable environment are needed. 

A new copy of variable environ-
ment for an instance of the PFL class is 
allocated using type expression in an ex-
pression. A PFL object is a copy of this 
variable environment, together with the 
instances of class members which access 
it. Provided that b1 is an object variable 

environment allocated by a type expres-
sion (Buffer int), we may initialize the in-
teger buffer by the application 

b1=>init 0 0 0  
If b2 is an object variable 

environment allocated by the application 
(Buffer int) again, then 

b2=>init 0 0 0  
initialises the different integer buffer, 
using the same code for init. The two 
objects differ just by their environments, 
not by the processes that access them. 
On the other hand, allocating the object 
variable environment b3 by (Buffer float), 
a new buffer of floating point numbers is 
initialized using  

b3=>init 0 0 0  
by the same init process like for integer 
buffers, but the item is sent by the 
different code of sendItem. 

The life-time of an object variable 
environment is determined just by its use, 
like the life time of data cells constructed 
by constructors of algebraic types. The 
only difference is that the values of data 
cells are evaluated immediately, but the 
values of variable environment are 
undefined, when the variable 
environment is allocated. 

Hence, the update of an object 
variable environment sharing it by two or 
more processes may be performed 
extending the types of arguments and/or 
values to abstract types. An example of 
processes with the arguments of abstract 
type Buffer a is introduced below. 

10. Parallelism 

In this section we will concentrate 
more on the PFL ability to express 
parallel programs, than on the exhaustive 
description of potential power of parallel 
process functional approach. At the same 
time, the following example explains how 
the objects are used. 

Let us consider simple producer 
consumer problem that is to be solved in 
the time-sharing system. Let we have 
three producers and three consumers; the 
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first producer produces the values for the 
first consumer, the second producer for 
the second consumer and the third pro-
ducer for the third consumer. Therefore 
we need three buffers. Let us suppose the 
first two buffers contain integers and the 
third one contains floating point num-
bers. 

Let the values, which will be 
produced, are evaluated by applying the 
next processes: 

data1 :: () -> int 
data2 :: () -> int 
data3 :: () -> float 

We omit the definitions, which 
may be quite different, according to the 
purposed application. 

In general, the potential definitions 
of data1, data2, and data3 are not 
referentially transparent. It means that 
repeated application of data1 (), (as well 
as data2 (), and data3 ()) may produce the 
different values, although no free 
variables occur in the definitions. 

Let the consumed values are used 
by the next processes: 

use1 :: int -> () 
use2 :: int -> () 
use3 :: float -> () 

Again, the omitting definitions are 
highly dependent on the application. 

A synchronous message passing by 
one item may be expressed by the 
definition of main program, as follows: 

#main = ( use1(data1()) ||  
 use2(data2()) || 
 use3(data3()) ) 
i.e. the three expressions are executed in 
parallel. 

However, we require each use(data()) 
be evaluated repeatedly and both the use 
and the data be evaluated 
asynchronously, using a buffer for 
message passing. 

First, let us produce and consume 
the items in an infinite loop, as follows: 

producer :: Buffer a -> (() -> a) -> () 

producer b d = loop (prodItem b d) 
where 

loop::()->()  
loop () = loop (proditem b d)  

consumer :: Buffer a -> (a -> ()) -> () 
consumer b u = loop (consItem b u) 
where 

loop::() -> ()  
loop () = loop (consItem b u)  

The definitions above use the 
object of an abstract type Buffer, and the 
process, which either evaluates or uses 
the single item data.  

The processes that produce a 
single item and consume the single item 
are as follows: 

prodItem :: Buffer a -> (()->a) -> () 
prodItem b d = ( b => sendItem () () () (d()) 

| not (b => full() ) ) 

consItem :: Buffer a -> (a -> ()) -> () 
consItem b u = (u(b => receiveItem () () ()) 

| if not (b => empty() ) ) 

The aim of these processes is 
either to send just evaluated item to the 
buffer, if the buffer is not full, or to use 
just received value from the buffer. 

Let the representation of the buffer 
is a ring queue of items, accessed by 
head and tail respectively. Since of its 
finite representation the actual number of 
the items must be checked. Hence, the 
buffer is initialized by process initbuffer, 
which is defined as follows: 

initbuffer :: Buffer a -> () 
initbuffer b = b => init 0 0 0 

The parallel work with three 
buffers is expressed by the process 
parWith, as follows: 

parWith :: Buffer a -> Buffer a -> Buffer a 
 -> () 

parWith b1 b2 b3  
= ((initbuffer b1;  

(producer b1 data1 ||  
consumer b1 use1) ) || 

 (initbuffer b2;  
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(producer b2 data2 ||  
consumer b2 use2) ) || 

 (initbuffer b3;  
(producer b3 data3 ||  

consumer b3 use3) ) ) 
Finally, the main is defined by the 

application of parWith to three buffers. 

#main = parWith (Buffer int) (Buffer int) 
(Buffer float)  

In the example above we have 
used the built-in parallel application 
operation, defined as follows: 

(par2) :: () -> () -> () 
(par3) :: () -> () -> () -> () 
(par4) :: () -> () -> () -> () -> () 

Instead of (par3 e1 e2 e3) we may 
write (e1 || e2 || e3). 

Analogously, the sequential 
application is defined as follows: 

(seq2) :: () -> () -> () 
(seq3) :: () -> () -> () -> () 
(seq4) :: () -> () -> () -> () -> () 

Again, instead of (seq3 e1 e2 e3) 
we may write (e1; e2; e3). 

Conclusion 

In this paper we have presented: 
• The essential conception of PFL 

– a process functional programming 
language 

• The style in which process 
functional programs are constructed 

• The principle of updating the 
memory cells using mutable abstract 
types 

• The application of spatial types 
in spatial processes. 

• PFL ability for object oriented 
and parallel programming. 

PFL is a general-purpose experi-
mental language aimed for reliable 
specification and efficient implementation 
of complex software systems. Many of 
ideas come from purely functional 
languages as well as from the concepts of 
mutable abstract types and monads that 
were implemented in Haskell or Gofer.  

Like pure functional languages, 
PFL prevents the use of assignments in 
programming, however, it does not 
suppress the role of the control. Instead 
of that, the control is expressed in a 
rigorous way via the control value. It 
means that the specification of the 
control is not based upon an ad-hock 
sequencing of the statements, but rather 
on the application of processes. Actually, 
the PFL functions view the data values 
directly. The processes are eager 
functions such that they view either the 
control values directly, or they view the 
data values indirectly – via the 
environment variables. The concept of 
spatial types allows us to manipulate 
arrays in a natural way and implement 
them efficiently. 

From the viewpoint of 
programming methodology, PFL is not 
restricted to strictly mathematical 
specification in a purely functional 
manner, since a programmer deals with 
the state manipulation. In this sense, a 
programmer has to take into account the 
importance of the timing and its role to 
updating the state. From one point of 
view, this task may be performed in an 
intuitive way, but once a PFL script is 
specified, it expresses the software design 
process in the mathematical form, which 
may be reasoned about and profiled. For 
example, we may reason about the order, 
in which the contents of variables may 
change, about what grains of the 
specified script are purely functional, 
about the response times when a process 
or function is applied, etc. At the same 
time, this mathematical form is strongly 
related to the implementation. Hence, the 
profiling is not the deal of some post-
mortem analysis, but the activity, which 
may help to specify a system satisfying 
the requirements in the design phase 
already.  

Seemingly the PFL specification is 
non-transparent, especially considering 
"too much" control values like argu-
ments. However, if an imperative pro-
gram is expressed in PFL, we would see 
the enormous amount of control values 
arising, that are manipulated using an 
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imperative language in an undisciplined 
and a very dangerous manner. In fact, the 
number of control values decreases rap-
idly, when the same problem is specified 
in PFL. Moreover, at this stage of the re-
search, we are using just textual form of 
PFL language, like a basis for further de-
velopment. A PFL compiler is under the 
construction, and we think about it like a 
basis for further research experiments.  

Although we have illustrated the 
PFL ability for parallelism just for time 
sharing system, a heterogeneous network 
of computers, in role of the 
supercomputer seems to be good 
environment for proving the strength of a 
process functional approach in praxis. At 
the first stage, the aim is to bind a 
sequential version of PFL language to 
MPI – a message passing interface 
standard [19, 20]. At the second stage, we 
will support MPI in PFL directly, 
similarly like it is in mpC [21, 22].  

The further development of spatial 
types is necessary, not to be restricted 
just to arrays, allowing an efficient 
specification of the problems, such as 
having been dealt in computer graphics 
and virtual reality [29, 30], like an 
interesting application in our department.  

Since each imperative program 
may be expressed in terms of PFL 
expressions, PFL may contribute to 
software standardisation. Once the 
methods of program transformation on 
the basis of PFL are available, and a 
cross-compiler from an imperative 
language to PFL is developed, there is an 
opportunity to maintain an existing 
software systems, having been developed 
on an ad-hock combinatorial imperative 
basis in an exact mathematical manner. 
Therefore, like a starting point, the 
development of profiling tool for PFL 
language in the future is crucial.  

Currently the work goes on the 
detailed specification and implementation 
of the concepts having been presented in 
this paper. 
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