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Tracer diffusion and ‘chemical’ (atomic) ordering processes in two face-
centred cubic (f.c.c.) binary systems mimicking Ni3Al and FePt were simu-
lated by means of the kinetic mean-field (KMF) method originally pro-
posed by G. Martin in 1990. The systems simulated within the present 
work were modelled with fixed pair-interaction parameters and saddle-
point energies adopted earlier via the comparison of Monte Carlo method 
modelling and experimental data. In a simulation of tracer migration as 
well as ordering, the focus was attracted to comparison of activation en-
ergies rather than pre-exponential factors of kinetic coefficients. Gener-
ally, the mean-field models cannot properly take into account correlation 
effect that could be important for the tracer diffusion especially for the 
B2 structures. However, at least for the f.c.c. structures, application of 
KMF to diffusion and ordering seems demonstrating very reasonable re-
sults qualitatively similar to those obtained in kinetic Monte Carlo (KMC) 
method and realistic experiments. Modelling of Ni- and Al-tracer diffu-
sion in Ni3Al system shows higher diffusivity of Ni atoms as compared 
with Al ones that is attributed to easier intrasublattice diffusion channel 
for the Ni atoms in the L12-Ni3Al superstructure. Also, the obtained acti-
vation energy for the tracer Al atoms is higher, and its value is closer to 
activation energy of ordering kinetics. Computer experiments for the or-
dering kinetics showed that, in contrast to exchange mechanism, L12-type 
ordering kinetics is described via two relaxation times in case of the va-
cancy diffusion mechanism. Modelling of the discontinuous process of the 
surface-induced re-orientation of the monatomic Fe and Pt planes in thin 
FePt film was, in turn, a good test for the stochastic variant of the KMF 
(SKMF) method. The fact that implementation of the stochastic noise was 
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needed to reproduce the process of a surface nucleation by KMF indicates 
the correctness of the method. 

В роботі розглядається моделювання дифузії значених атомів і процесу 
«хемічного» (атомового) впорядкування в двох бінарних системах з 
гранецентрованою кубічною (ГЦК) структурою Ni3Al та FePt із викори-
станням середньопольової кінетичної методи (KMF), запропонованої 
Ж. Мартаном у 1990 р. Для систем, що розглядаються в рамках даної 
роботи, використовувалися фіксовані значення парних енергій взаємо-
дій та енергій сідлової точки, підібрані раніше шляхом порівняння мо-
делювання за методою Монте-Карло й експериментальних даних. У мо-
делюванні дифузії значених атомів, а також упорядкування їх основ-
ний акцент робиться на порівнянні енергій активації, а не передекспо-
нентних множників кінетичних коефіцієнтів. В загальному випадку 
середньопольові моделі не можуть правильно враховувати кореляцій-
ний ефект, який може бути істотним для дифузії значених атомів, осо-
бливо для структур типу В2. Проте, принаймні для ГЦК-структур, за-
стосування KMF-методи до дифузії та упорядкування демонструє дос-
татньо реалістичні результати, якісно схожі на ті, що одержуються з 
кінетичної методи Монте-Карло і в реальних експериментах. Моделю-
вання дифузії значених атомів Ni і Al в системі Ni3Al показує швидшу 
дифузію атомів Ni, ніж Al, що пов’язано з легшою дифузією атомів Ni 
по власній підґратниці в надструктурі типу L12-Ni3Al. Також одержано 
вищу енергію активації для значених атомів Al та її близьке значення 
до енергії активації кінетики впорядкування. Комп’ютерні експериме-
нти з кінетики впорядкування показали, що, на відміну від обмінного 
механізму, за вакансійного механізму дифузії кінетика впорядкування 
за типом L12 описується двома часами релаксації. Моделювання пере-
ривчастого процесу приповерхневої переорієнтації моноатомових пло-
щин Fe і Pt у тонкій плівці FePt, у свою чергу, стало хорошим тестом 
для стохастичного варіянту KMF (SKMF). Той факт, що введення сто-
хастичного шуму виявилося необхідним для відтворення процесу пове-
рхневої нуклеації, може свідчити про коректність методи. 

В работе рассматривается диффузия меченых атомов и процесс «хими-
ческого» (атомного) упорядочения в двух бинарных системах с гране-
центрированной кубической (ГЦК) структурой Ni3Al и FePt с использо-
ванием среднеполевого кинетического метода (KMF), предложенного 
Ж. Мартаном в 1990 г. Для указанных систем использовались фикси-
рованные значения парных энергий взаимодействия и энергий седловой 
точки, подобранные ранее путём сравнения моделирования методом 
Монте-Карло и экспериментальных данных. В моделировании диффу-
зии меченых атомов, а также упорядочения их основной акцент на-
правлен на сравнение энергий активации, а не предэкспонентных мно-
жителей кинетических коэффициентов. В общем случае модели средне-
го поля не могут правильно учитывать корреляционный эффект, кото-
рый может быть существенным для диффузии меченых атомов, особен-
но для структур типа В2. Однако, по крайней мере, для ГЦК-структур, 
применение KMF к диффузии и упорядочению демонстрирует доста-
точно реалистичные результаты, качественно схожие с теми, которые 
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получаются из кинетического метода Монте-Карло и в реальных экспе-
риментах. Моделирование диффузии меченых атомов Ni и Al в системе 
Ni3Al демонстрирует более быструю диффузию атомов Ni, чем Al, что 
связано с более лёгкой диффузией атомов Ni по собственной подрешёт-
ке в сверхструктуре типа L12-Ni3Al. Также получены более высокая 
энергия активации для меченых атомов Al и её близкое значение к 
энергии активации кинетики упорядочения. Компьютерные экспери-
менты по кинетике упорядочения показали, что, в отличие от обменно-
го механизма, при вакансионном механизме диффузии кинетика упо-
рядочения по типу L12 описывается двумя временами релаксации. Мо-
делирование прерывистого процесса приповерхностной переориентации 
моноатомных плоскостей Fe и Pt в тонкой плёнке FePt, в свою очередь, 
стало хорошим тестом для стохастического варианта KMF (SKMF). Тот 
факт, что введение стохастического шума оказалось необходимым для 
воспроизведения процесса поверхностной нуклеации, может свидетель-
ствовать о корректности метода. 

Keywords: kinetic mean-field method, tracer diffusion, ordering kinetics, 
atomistic simulation, intermetallics. 

Ключові слова: кінетична середньопольова метода, дифузія значених 
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1. INTRODUCTION 

Simulation of ordering and atomic migration in ordered alloys was 
always the subject of Monte Carlo simulations [1–3]. Usually, such 
methods need a lot of computation time. In the present paper, the 
advantages and disadvantages of an alternative method are dis-
cussed. The method called ‘kinetic mean field’ was originally pro-
posed by George Martin in 1990 [4] as a pseudo-1D-algorithm. The 
technique was then applied to nanofilms with diffusion asymmetry 
in the series of papers by Z. Erdelyi, D. Beke et al. [5–8], extended 
to 3D [9], and recently generalized to first-order transformations by 
introducing dynamic noise of jump frequencies in the kinetic mas-
ter equations (‘stochastic KMF’ (SKMF) [10].) 
 The Martin’s version of KMF approach is not the only one [11–
14]. The mean-field approach is a very popular approximation when 
interactions between particles are approximated by interactions of 
particles with some effective field representing an averaged effect 
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of the surrounding atoms. 
 In the widely used cluster variation method (CVM) (see, e.g., 
[15]), the averaging is based on parameterizing the atomic configu-
ration by so-called cluster variables defined as probabilities for the 
finding clusters of atoms showing explicit configurations. The larg-
est cluster taken into account determines the order of approxima-
tion. 
 In the present paper, we discuss the simplest mean-field ap-
proach—so called point (Bragg–Williams) approximation where only 
one-atom clusters are considered and the cluster variables are equal 
to average concentrations C(i) of -type atoms on particular lattice 
sites i. These concentrations have a meaning of probabilities p(i) 
for the finding -type atoms on i-lattice sites calculated over an en-
semble of systems. In this approximation, all multisite correlations 
are neglected. In the case of a binary A–B system, the pair probabil-
ity pAB of the occupation of neighbouring i and j sites by A and B 
species is approximated by a product of unary probabilities: pAB(i,j) 
 pA(i)pB(j)  CA(i)CB(j). Consequently, the energy of an A-atom resid-
ing on the i-site and interacting with Z nearest neighbours reads as 

  
1

( ) ( ) ,
Z

A A AA B AB

in

E C in V C in V


   (1) 

where V denotes the nearest-neighbour pair-interaction energies 
between - and -atoms, in—i-site neighbour. 
 The approximation is analogous to the initial Weiss approxima-
tion of the ‘molecular field’ in magnetism. The mean-field method 
of static concentration waves suggested by Khachaturyan is widely 
applied to the description of phase transformations in alloys [11]. It 
was intensively developed to calculate, for example, the phase dia-
gram of f.c.c. binary alloys [12], but also to model the kinetics of 
the phase transformations (for example, precipitation of Ni3Al from 
disordered solution) [13, 14]. The fundamental difference between 
Martin’s approach and other kinetic mean-field approaches is the 
self-consistent introduction of jump frequencies using the actual 
interaction energies. In Khachaturyan’s kinetics, the Onsager coef-
ficients are, of course, proportional to the jump frequency, but this 
frequency is not related to the actual energy state of the system. In 
Martin’s kinetics, the jump frequencies contain the energies of 
atomic configurations before the jump calculated within the mean-
field approximation. That is the main reason why Martin’s kinetic 
model directly leads to equilibrium distribution as a limiting case of 
zero fluxes. 
 The main kinetic equation of the original Martin’s paper (written 
for the chain of parallel atomic planes—pseudo-1D-model) is just a 
master equation with self-consistently defined frequencies: 
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 1 , 1 1 1,

1 , 1 1 1,

(1 ) (1 )

(1 ) (1 ) .

i
v i i i i i i i i

i i i i i i i i

dC
Z C C C C

dt

C C C C

   

   

       

      

 (2) 

Here, Ci is a probability of any site in the plane i to be occupied by 
species A, Z  Zl  2Z—total number of nearest neighbours, Zl de-
notes the number of nearest neighbours in the ‘central’ plane per-
pendicular to the concentration gradient, Z is the number of near-
est neighbours in the right-hand plane i  1 (or left-hand plane i  1), 

 , 1

, 1
exp

i i

i i

E

kT





 
    

 
 (3) 

is a frequency (probability per unit time) of exchange between an 
atom A in the plane i and an atom B in the plane i  1, Ei,i+1 is a 
difference between the saddle point energy Esaddle and the energy 

, 1i i
E

  of interactions of the two exchanging atoms with their 
neighbours before the exchange: 

 saddle

, 1 , 1
.

i i i i
E E E

 
   (4) 

 While the saddle-point energy Esaddle is in most applications taken 
the same (e.g., equal to zero) for all exchanges (Fig. 1), the energies 

, 1i i
E

  are determined for each exchange in terms of the pair-
interaction energies V usually evaluated by fitting to experimen-
tally determined parameters of particular systems. In addition, it 
should be remarked that any change (increment/decrement) of Esaddle 

 

Fig. 1. Scheme of energy barriers under the assumption of universal sad-
dle-point. (Analogous picture was suggested long ago by Kirill Gurov and 
can be found in the monograph of Former Soviet Union [16].) 
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brings about a totally uniform change of currently appearing values 
of Ei,i+1. The same increment/decrement is thus transferred to the 
collective energy parameters—e.g., to the thermodynamic activation 
energy determined for any process modelled within this approach. 
 In the case of a binary system, the energy of the A–B pair before 
their exchange is taken as 

 

, 1 1 1 1 1

2 2

1 1

(1 ) (1 )

(1 ) (1 )

(1 ) (1 ) .

i i v i AA v i AB v i AA v i AB

v i AA l i AB v i AB v i BB

v i AB v i BB l i AB l i BB

E Z C V Z C V Z C V Z C V

Z CV Z C V Z C V Z C V

Z CV Z C V Z C V Z C V

    

 

 

      

      

     

 (5) 

The Debrecen team (Beke, Erdelyi et al.) applied this pseudo-1D 
method to initial stages of interdiffusion in the binary diffusion 
couples with a large difference between VAA and VBB. Among other 
interesting results, they predicted a possibility of sharpening the 
concentration profile at the initial stage of interdiffusion (instead 
of a standard case of its broadening) [5, 6]. This prediction was 
checked and proved experimentally. Another interesting prediction 
was a linear regime (instead of standard parabolic one) at similar 
conditions [7]. Finally, Debrecen team predicted that in strongly 
asymmetrical systems, ordering during diffusive formation of the 
B2 structure may start far from stoichiometric concentrations [8]. 
 In [9] almost trivial generalization of existing KMF scheme on 
3D case was suggested: 

 
, ,

1 1

(1 ) (1 ) ,
Z Z

i
i j i j i j j i

j j

dC
C C C C

dt  

         (6) 

 
saddle

,

,

( )
exp ,

i j

i j

E E

kT

  
    

 
 

 (7) 

 

,
,

(1 ),

(1 );

A B

i j i j

Z Z
A

i AA in AB in

in in

Z Z
B

j AB jn BB jn

jn jn

E E E

E V C V C

E V C V C

 

  

  

 

 

 (8) 

here, Z
in1 indicates the sum over the nearest neighbours of i-site, 

Z
jn1 indicates the sum over nearest neighbours of j-site, which is 

in turn, one of the nearest neighbours of i-site (see Fig. 2). 
 Since the saddle point energy is a fitting parameter and the pre-
exponential factor  in Eq. (3) can be reasonably evaluated only for 
the vacancy mechanism, one cannot treat the time parameter t in 
(6) as a real time. It is more convenient to rescale time and use the 
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dimensionless time. For this aim, it is convenient to rewrite the 
equations (7) and (8) as follows: 

 
( ) ( )

1 1

1 1

2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

Z Z

i A j B AB A B

in jn

Z Z

AB BB A A

in jn

E ZV M V C in M V C jn

Z V V M V C in M V C jn

 

 

     

     

 

 
 (9) 

 
, 0 ,i j i j

    , (10) 

where 

 ,    .
2 2

AA BB AA BB
AB

V V V V
V V M

 
    (11) 

Here, the dimensionless frequency factor 
,i j

  and the dimensionless 

pre-exponential factor 0 are equal to 

 1 1

,

( ) ( ) ( ) ( )

exp

Z Z

A A

in jn

i j

M V C in M V C jn

kT

 

 
   

  
 
 
 

 
, (12a) 

 

Fig. 2. The scheme of neighbours in the calculation of energy before ex-
change of atoms at the i and j sites within the KMF method. Grey and 
light-grey sites are the neighbours of i-site (index ‘in’ in equations), black 
and light-grey sites are the neighbours of j-site (index ‘jn’ in equations). 
Light-grey sites are common neighbours for both i and j. 
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saddle

0

( )
exp AB BB

E V V Z

kT

  
    

 
, (12b) 

Dimensionless time can be defined as 

 
0

t t  . (13) 

As one can see, the dimensionless time scaling is temperature de-
pendent. 
 Recently, a scheme very similar to 3D KMF version [9] was in-
troduced for the modelling of an ordering kinetics [17]. The formal-
ism differs from the 3D KMF in three respects. They are as follow: 
(1) vacancy mechanism was introduced from the very beginning, (2) 
only homogeneous ordering was considered—concentration of any 
species (A, B, or vacancy V) was the same for all given sublattice 
sites, (3) the saddle point energy was variable and followed the ki-
netic Monte Carlo (KMC) tradition: 

saddle before after
( )/2E E E E    

with E  depending exclusively on the kind of the jumping atom. 
 Being a deterministic formalism, the standard KMF method is 
not adequate to model discontinuous transformations triggered by 
fluctuations. To enable the modelling of first-order ordering trans-
formations in f.c.c. lattice, the method was enriched by introducing 
the initial concentration noise (noise of initial probability on sites 
at atomic scale) [9]. 
 In Ref. [10], the next logical step was introduced. Dynamic noise 
of frequencies (instead of or additionally to initial noise of concen-
trations) was introduced providing the possibility for the overcom-
ing the nucleation barriers. This new version of the kinetic mean-
field method was called as a stochastic kinetic mean-field (SKMF) 
method. 
 The master equation in SKMF can be written in the following 
form: 

    Lang Lang

, , , ,

1

(1 ) (1 ) ,
Z

i
i j i j i j i j j i j i

j

dC
C C C C

dt 

           
   (14) 

where the Langevin noise of frequencies can be expressed as 

 Lang

,
3(2 rand 1).n

i j

A

dt
     (15) 

 As shown in Ref. [10], changing the noise amplitude, one may 
tune the kinetic Monte Carlo with various numbers of runs. (We 
will not discuss here the special precautions made in SKMF to avoid 
the going of the probabilities beyond the interval [0, 1]; see Ref. 
[10] in detail.) 
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2. KMF METHOD—APPLICATION TO TRACER DIFFUSION 

2.1. KMF simulations implemented with the exchange mechanism 
of atomic migration 

Up to now, the only attempt for the KMF modelling of inter-
diffusion involved the method implemented with unphysical ‘direct 
exchange’ mechanism of atomic migration. However, as mentioned 
above, even with this unphysical assumption, the KMF was able to 
predict some real properties of diffusion in systems with large pair-
interaction asymmetry M (11). This method can be easily modified 
to model tracer diffusion. (Note that KMF with vacancy mechanism 
will be discussed in subsec. 2.2.) Of course, in KMF we cannot trace 
the trajectory of individual atoms (as, e.g., in Monte Carlo simula-
tions). Therefore, we cannot use Einstein relation for the mean 
squared displacements of tracers. Instead, one can use the well-
known analytical solution for the point source. Assuming a binary 
A–B system, we consider an h-thick layer located in the centre of a 
long sample, substitute the A (B) atoms by A*

 (B
*) tracers and sub-

sequently monitor the evolution of locally averaged tracer concen-
tration profile. Local averaging, usually performed over two planes, 
is necessary since, for example, in the ordered lattice one may ex-
pect regular oscillations of tracers among two sublattices. 
 Denoting CA(B) as a total A (B) atom concentration, C0

A(B)—A (B) 
atom concentration, C*

A(B)—A (B) tracer concentration, we have 

     * 0 0 *
,  1 .

A A A B A A
C C C C C C  (16) 

 One expects the following time dependence of the locally aver-
aged C*

A(t, X) profile: 
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   (18) 

where X denotes the distance from the centre of the layer originally 
occupied by the tracer atoms. The slope of ln(C*

A(B)(t, X) vs. X
2 yields 

the diffusivity scaled with respect to the simulation time units. 
 The kinetic equations are modified in almost trivial way: 
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 Redistribution of the probabilities (concentrations) is calculated 
after each time step according to Eqs. (19)–(25). As a result, the 
profile of tracers is found. Its typical shape for the tracer diffusion 
in the ordered alloy is presented in Fig. 3. 
 As previously mentioned, the linear regression of lnC*

A(B)(t, X) vs. 
X2/(4t) yields then the diffusivity scaled with respect to the simula-
tion time units (Fig. 4). 
 Standard Arrhenius analysis of the temperature dependence of 
the evaluated diffusivity yields the thermodynamic activation en-
ergy QA(B) for the A (B) tracer diffusion. The possible curvature of 
the Arrhenius plot indicates that this activation energy is tempera-
ture dependent, e.g., due to ‘chemical’ (atomic) ordering. 
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 The use of the dimensionless time (see Eqs. (12) and (13)) causes, 
however, that the right value of QA(B) is shifted with respect to the 
slope aArrhenius of the Arrhenius plot by Esaddle  (VAB + VBB)Z: 

 Arrhenius saddle

( )
( ) .

A B AB BB
Q a E V V Z     (26) 

 Consideration of any relationship between the values of QA(B) and 
the experimental thermodynamic activation energy for the tracer 
diffusion is reasonable provided the relationship between the KMF 
time and real time is found. 

 
a    b   c 

Fig. 3. The typical tracer concentration profile resulting from diffusion 
within the ordered alloy from three planes initially occupied by the tracer 
atoms: (a) initial profile, (b) profile after t  0 without averaging, (c) pro-
file after t  0 averaged over each two neighbouring planes. 

 

Fig. 4. Typical dependence of the logarithm of locally averaged local tracer 
concentration on squared distance scaled with the dimensionless time (Eq. 
(13)). 



216 V. M. BEZPALCHUK, R. KOZUBSKI, and A. M. GUSAK 

2.2. KMF simulations implemented with vacancy mechanism  
of atomic migration 

The major limitation of any kinetic mean field approach to vacancy 
mechanism is a lack of proper account of time correlations in va-
cancy mechanism diffusion. In real situation, system always has 
some ‘memory’ about last few jumps of any atom: if atom has just 
exchange places with neighbour vacancy, its next jump is not to-
tally random; there is a significant probability of reverse exchange. 
Any mean field theory, by definition, has no ‘memory’. Therefore, 
it is impossible, for example, to find correlation factor for the 
tracer diffusion by vacancy mechanism. It should be calculated, for 
example, by kinetic Monte Carlo method. Therefore, in calculation 
of tracer diffusivities by SKMF method, we are not pretending on 
accurate values of diffusion coefficients and instead we concentrate 
on determining of activation energy of diffusion. Thus, in the fol-
lowing when we speak about the frequency of exchanges AV or 
BV, we keep in mind, actually, the series of correlated vacancy–
atom exchanges leading to resulting atomic displacement into 
neighbouring site. Kinetic Monte Carlo with vacancy mechanism is 
more ‘honest’ in this sense (but much less computational timesav-
ing). Nevertheless, as we will see below, comparison of KMF and 
KMC gives qualitatively very similar results. The following kinetic 
equations describe the evolution of a system where only nearest-
neighbour atom–vacancy exchanges are realized: 
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 Since vacancies are much more mobile than atoms (at vacancy 
concentration 110

6, the vacancies are million times more mobile 
than atoms), the evolution of the vacancy subsystem is much faster 
than that of the main components. It means that, for the direct 
numerical solution of KMF equations (27)–(30), one needs the time 
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step dt circa million times smaller than in the case of the exchange 
mechanism. This makes the tailoring of the tracer concentration 
profile (or other profiles) practically unreachable, due to limitations 
of the computation time. In the vacancy mediated diffusion, one 
encounters, therefore, the hierarchy in the chain of processes and 
characteristic times, which was analyzed in detail by Bogolyubov in 
Ref. [18]. As faster processes usually accommodate to slower ones, 
their analysis may be performed within the steady-state approxima-
tion. Therefore, following the ideas of Gurov and co-authors in Ref. 
[19], we suggested to use the steady-state approximation for the va-
cancies, to accommodate the vacancy profile to the slowly changing 
profile of the main components [20], [21]. The steady-state ap-
proximation for the vacancies transforms Eq. (27) from the differ-
ential form to the iteration scheme for the finding of a steady-state 
vacancy distribution: 
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 (31) 

To satisfy the constraint of the frozen vacancy sinks or sources, we 
use renormalization of the vacancy profile at each iteration step: 
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The standard criterion for the iteration convergence is applied:  

 ter 1 iter
.

i
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It is assumed that 
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where 
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Assuming zero interactions with and between the vacancies, one ob-
tains: 
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 Similarly, as in the case of the exchange mechanism, one can in-
troduce the following dimensionless parameters: 
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where the dimensionless frequencies and the pre-exponential factor 
are equal to 
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The dimensionless time is then defined as 

 
0

.t t   (44) 

 As the temperature-dependent dimensionless time scaling may 
again lead to the inversion of the slopes of the Arrhenius plots of 
the evaluated diffusivities (Eq. (26)), usual dimensional parameters 
for the time and frequency defined by Eqs. (34) were applied in the 
simulations for the vacancy mechanism—in contrary to the case of 
the exchange mechanism, in which the meaning of the pre-
exponential factor is ambiguous. 

3. KMF METHOD—APPLICATION TO CHEMICAL ORDERING 

3.1. General relationships 

The validity of the KMF method in the field of thermodynamics and 
kinetics of ordering in f.c.c. alloys has been recently checked [20]. 
For the reasons described in Sec. 1 (atomic configurations param-
eterized within point approximation), only long-range order (LRO) 
phenomena can be modelled by means of the KMF version used in 
the present work. 
 The degree of LRO is most often quantified by means of the 
Bragg–Williams parameters. In the case of binary A–B systems 
whose crystalline structure is composed of two sublattices (I and II), 
the parameter is defined as 
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denote the probability to find A-type (B-type) atom at the sublattice 
I (II) and the fraction of I (II) sublattice sites, respectively. 
 For the sake of KMF, a local analogue of the LRO parameter (45) 
must be defined, e.g., by considering a cluster with the same atomic 
fractions of the components and vacancies as the whole crystal. The 
cluster should contain sites belonging to all sublattices in propor-
tions equal to the global ones. Generally, it may contain both ‘en-
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tire’ sites and their ‘fractions’ (if the case of sites shared with 
neighbouring clusters). The sublattice fractions I(II) are then calcu-
lated according to Eq. (46) with 
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where the summations are performed over all MI (MII) sublattice 
sites belonging entirely or partially to the cluster; share(i) is a 
number of neighbouring clusters which share i-th site, so that 
1/share(i) is a fraction of site i in the cluster. One should calculate 
the local atomic concentrations in the cluster as 
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 (48) 

The a priori probabilities for the sublattices being occupied by the A 
and B atoms are calculated according to the following formulas: 
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 We choose a cluster composed of the central site and 12 nearest 
neighbours. Such choice of the smallest possible cluster might be 
preferable for the describing of the systems with very sharp concen-
tration gradients. Two neighbouring clusters are shown in Fig. 5. 

 

Fig. 5. Two clusters used for the calculation of the local LRO at i and j 
sites. For example, site 1 belongs to both of them as well as to two more 
clusters above. In total, the site 1 belongs simultaneously to 4 clusters, so 
that only ¼ of it belongs to the given cluster. The same can be shown for 
all sites around i. 
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They share four common sites. One cluster consists of one central 
site (share  1) and 12 boundary sites (share  4). Indeed, one can 
easily check that each boundary site is common for the four clus-
ters. Hence, the total number of ‘pure’ sites is NI

  N
II

  1  12/4  4. 
The central site may belong to one of 4 simple cubic lattices, which 
form an f.c.c. lattice. For each case, one should calculate its own 
‘local’ LRO parameter. Three simple cubic lattices form a majority 
sublattice of L12 structure (face centres), the 4-th simple cubic lat-
tice is a minority sublattice of this structure (cube corners).  
 If we assume that the central site of the cluster belongs to the 
majority sublattice I, then 8 of 12 neighbours also belong to the 
same sublattice but only ¼ of them belong to the given cluster. The 
remaining 4 neighbours belong to sublattice II but only ¼ of them 
belong to the given cluster. Hence, 

I I

II I

1 8 9,   1 8/4 3,

0 4 4,   0 4/4 1.

M N

M N

     

     
 

 If we assume that the central site of the cluster belongs to the 
minority sublattice II, then all 12 neighbours belong to the counter-
part majority sublattice but again, only ¼ of them belong to the 
given cluster. Hence, 

I I

II I

0 12 12,   0 12/4 3,

1 0 1,   1 0/4 1.

M N

M N

     
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 As mentioned above, each site may belong a priori to 4 simple cu-
bic sublattices of f.c.c. lattice: three of them correspond to the ma-
jority sublattice of the A3B structure and the remaining one—to the 
minority sublattice. Of course, in general, all four versions should 
be checked and compared. Namely, if an i-site is considered as be-
longing to the majority sublattice of the L12 superstructure and is 
occupied by a majority component, then there exist 3 ways to 
choose two planes of the same majority sublattice out of three mu-
tually perpendicular planes containing the given site. Each choice 
corresponds to some value of local order parameter. Then three LRO 
parameters can be calculated depending on the choice of 8 
neighbouring sites (out of 12) belonging to the same sublattice: 
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 If the i-site is treated as belonging to the minority sublattice, 
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then the local LRO parameter can be defined as: 
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 One can easily check that the above ‘local LRO’ parameters de-
fined for each site are equal to 1 in the case of perfect order pro-
vided the sublattices are appropriately chosen. In the case of incor-
rect choice of the sublattice, the value of  is 1/3. 
 The correct order parameter corresponding to the given i-site is 
thus the one that shows maximum modulus. 

3.2. KMF simulation of ordering implemented with the exchange 
mechanism of atomic migration 

To avoid the formation and consequent competition of the antiphase 
domains, the study of the ordering kinetics described here always 
start from the homogeneous and perfectly ordered structure (i.e. 
from T  0 K). Temperature is then instantly increased to some 
higher value, and partial disordering of the ideal single domain 
starts, leading to a new degree of LRO. Once the system equilibra-
tion is observed, the procedure is repeated by again abruptly raising 
the temperature. 

3.3. KMF of ordering implemented with the vacancy mechanism  
of atomic migration 

In the case of the vacancy mechanism, the scheme is almost the 
same. Simulation additionally allows determining the equilibrium 
vacancy distribution (i.e. LRO) on the sublattices. The simulations 
start with a uniformly distributed arbitrary vacancy concentration 
(probability per site). During ordering, vacancies are redistributed 
among sublattices. Therefore, despite an arbitrary value of the va-
cancy concentration, the equilibrium ratio of vacancy concentra-
tions at sublattices may be determined. (So far, the sinks and 
sources of vacancies, providing equilibrium of vacancy concentra-
tions, are not included in the SKMF model.)  

4. KMF-SIMULATION RESULTS FOR THE BINARY SYSTEM  
WITH L12-TYPE STRUCTURE 

The procedures described in sections 1 and 3 were applied to simu-
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late the A3B system mimicking the intermetallic compound Ni3Al. 
The nearest-neighbour pair interaction parameters (VAA  0.3 eV, 
VBB  0.15 eV, and VAB  0.295 eV) used in the simulation were 
fitted in Ref. [23] to reproduce the properties of the phase -Ni3Al. 

4.1. Simulations implemented with the exchange mechanism  
of atomic migration 

Arrhenius plots of the self(tracer)-diffusion coefficient of both A 
(majority) and B (minority) components are shown in Fig. 6. As ex-
plained in Sec. 2.1, their slopes aArrhenius are related to the thermo-
dynamic activation energies QA and QB for the A- and B-tracer dif-
fusion according to Eq. (26). 
 According to Eq. (24), one obtains: 

 

19 saddle

19 saddle

19 saddle

19 saddle

1.1793 10  J ( )

1.18 10 ( ) ,

2.4335 10  J ( )

2.43 10 ( ) .

A AB BB

AB BB

B AB BB

AB BB

Q E V V Z

J E V V Z

Q E V V Z

J E V V Z









     

    

     

    

 (52) 

Comparing the mentioned above with the experimental result QNi  

 

Fig. 6. Arrhenius plots of the A- and B-tracer diffusivities in A3B (Ni3Al) 
evaluated with the exchange mechanism of atomic migration. 
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 3 eV  4.810
19 J [24], one can estimate 

 saddle 19
( ) 3.62 10  J,

AB BB
E V V Z      (53) 

and consequently 

 19

Al
6.05 10  J,   1.27.

B A
Q Q Q    (54) 

Higher activation energy for the tracer diffusion of the minority 
component in the L12-ordered binary system, B (Al) in A3B (Ni3Al), 
is in agreement with the experimental results which, due to a lack 
of appropriate Al tracer, mostly concern the diffusion of admixture 
elements substituting for the Al atoms in Ni3Al (see, e.g., [3] and 
[25]). Higher diffusivity of Ni and lower value of QNi results from 
the fact that in contrary to Al, Ni can diffuse within its own 
sublattice. 
 The KMF simulation of ‘order–order’ kinetics yielded the follow-
ing results: the ‘order–order’ relaxation isotherms fitted the single 
exponential 

 
     

  
    

( ) ( )
exp .

1 ( )

t t
 (55) 

The linear Arrhenius plot of the dimensionless relaxation time  

 

Fig. 7. Arrhenius plot of the relaxation time for the ‘order–order’ kinetics 
in A3B (Ni3Al) evaluated with the exchange mechanism of atomic migra-
tion. 
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(Fig. 7) indicates its standard temperature dependence: 

 
 

    
 

ordering

0
exp .

Q

kT
 (56) 

The slope aArrhenius  2.3210
19 J of the Arrhenius plot is, however, 

again related to the thermodynamic activation energy Qordering for 
the ‘order–order’ kinetics according to Eq. (26). 
 Using the estimation of Eq. (53), one obtains 

ordering 19 saddle 19
2.32 10  J ( ) 5.9 10  J,

AB BB
Q E V V Z         

which indicates that the activation energy for the ‘order–order’ ki-
netics in the simulated L12-ordered A3B binary, is quite close to the 
activation energy for the minority tracer (B*) diffusion. 

4.2. Simulations implemented with the vacancy mechanism  
of atomic migration 

The simulations were carried out with arbitrarily chosen fixed va-
cancy concentration of C  10

4. Figure 8 shows the Arrhenius plots 

 

Fig. 8. Arrhenius plots of the A- and B-tracer diffusivities in A3B (Ni3Al) 
evaluated with the vacancy mechanism of atomic migration. 
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of the A- and B-tracer diffusivities.  
 As we remarked in Sec. 1, the constant value of the Esaddle makes 
that its change linearly scales the thermodynamic activation energy. 
The thermodynamic activation energy QA for the A-tracer diffusion 
may thus be adjusted to the experimental value of QNi by adding an 
appropriate correction Esaddle to the slope aArrhenius of the Arrhenius 
plot of the A-tracer diffusivity in Fig. 8: 

 19 saddle
5.00 10  J .

A
Q E     (57) 

In view of the value of QNi [24], 

 saddle 19
 0.20 10 J,E      (58) 

and we obtain 

        19 saddle 19
  5.70 10 J 5.5 10 eV .

B A
Q E Q  (59) 

This is in a perfect qualitative agreement with the result obtained 
within the exchange mechanism of atomic migration.  
 A typical example of the ‘order–order’ relaxation isotherm is 
shown in Fig. 9. 
 The simulated ‘order–order’ relaxation isotherms fitted weighted 

 

Fig. 9. ‘Order–order’ relaxation isotherm of the A3B (Ni3Al) binary simu-
lated at T  800 K with the vacancy mechanism for the atomic migration. 
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sums of two exponentials: 

  2 2

1 2

( ) ( )
1 exp exp .

1 ( )

t t t
A A

      
       

       
 (60) 

 Qualitatively this result coincides with the findings of Kozubski 
and Oramus [23] obtained with Monte Carlo simulations. For exam-
ple, at T  800 K, the amplitude A2 of the equals about 0.03, and 
relaxation time 2 is almost two times shorter than 1: 2/1  0.54. 
Both relaxation times 1 and 2 fulfil the Arrhenius laws (Fig. 10).  
 The consistency of the approach requires that the activation en-
ergies for both modes of the ‘order–order’ relaxation are identified 
with the slopes of the Arrhenius plots in Fig. 10 corrected with the 
increment Esaddle (Eq. 58). The procedure results in 

     ordering 19 ordering 19
  

1 2
5.33 10 J,  5.36 10 J.Q Q  (61) 

 Similarly, as in the case of simulations implemented with the ex-
change mechanism of atomic migration, the thermodynamic activa-
tion energies for the ‘order–order’ relaxations resulted close to the 
thermodynamic activation energy for the minority B-tracer diffu-

 

Fig. 10. Arrhenius plot of the relaxation times 1 and 2 of the ‘order–
order’ kinetics in A3B (Ni3Al) evaluated with the vacancy mechanism of 
atomic migration. 
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sion. It means, therefore, that the bottleneck of ordering is the mi-
gration of the minority component. 

5. KMF-SIMULATION RESULTS FOR THE BINARY SYSTEM  
WITH L10-TYPE STRUCTURE 

The KMF simulations were also applied for the modelling of chemi-
cal (atomic) ordering phenomena in the FePt intermetallic com-
pound. The compound orders in the f.c.c.-based L10-type super-
structure where alternating monatomic Fe and Pt planes may show 
three (100)-type orientations defining three variants of the super-
structure. The superstructure generates very high magnetocrystal-
line anisotropy which, in turn, makes nanostructures of the system 
promising for the technology of high-density magnetic storage me-
dia. The free-standing nanolayers of the system have recently been 
extensively modelled by means of atomistic Monte Carlo simulations 
which revealed that the alternating Fe and Pt monatomic planes 
spontaneously take the orientation perpendicular to the (100) free 
surfaces limiting the layer [26, 27]. The process later observed also 
experimentally [29] nucleates on the surface and discontinuously 
advances inward the layer. 
 We used the nearest-neighbour pair interaction energies deduced 
from ab initio calculations for FePt [29]: VAA  VFeFe  0.01145 eV, 
VBB  VPtPt  0.08563 eV, VAA  VFePt  0.06705 eV. Because of the dis-
continuous character of the phenomenon, its modelling required ap-
plication of the stochastic versions of KMF [9, 10] since this ver-
sion was specially designed to describe the ability of systems to 
overcome energetic barriers. 
 The present modelling of FePt layers initially ordered in the L10 
variant with monatomic planes parallel to (100)-oriented free sur-
faces yielded the following main results. 
 1. On the free surfaces built of Fe-atoms, the reorientation proc-
ess spontaneously nucleated but its development stopped after hav-
ing covered two crystalline planes (one row of f.c.c. unit cells) adja-
cent to the surface (Fig. 11). An initial noise was necessary to initi-
ate such process on free surfaces built of Pt-atoms. 
 2. The reorientation front continued its propagation only if the 
amplitude of the stochastic noise of frequencies exceeded some 
threshold value (Fig. 12). 
 3. In a free cubic nanoparticle, the reorientation process led to a 
complex mosaic of anti-phase domains of L10 variants (Fig. 13). 
 The above results of the KMF (SKMF) modelling of the nanos-
tructures FePt show that the method reproduces the Monte Carlo 
results and, therefore, is adequate to model ordering phenomena 
generating inhomogeneous superstructures. 
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 Moreover, simulation of the discontinuous process of the mona-
tomic plane reorientation in FePt indicated the importance of the 

 

Fig. 11. Reorientation of the Fe and Pt monatomic planes in the L10-
ordered FePt layer initially limited by free iron surfaces. 

 
Fig. 12. Propagation of the reoriented domain from the free surface when 

the amplitude of dynamic noise A is equal to 0.02 (in dimensionless units). 

 
Fig. 13. Complex mosaic of domains of the L10 variants in a cubic nano-
particle of FePt initially homogeneously ordered in one L10 variant. 
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implementation of the stochastic noise, without which the phe-
nomenon neither nucleated nor advanced. 

6. DISCUSSION AND CONCLUSIONS 

Tracer diffusion and chemical ordering processes in two f.c.c. bi-
nary systems mimicking Ni3Al and FePt were simulated by means of 
the kinetic mean field method. Some of the results were compared 
with the ones previously obtained by simulating the same systems 
with atomistic Monte Carlo algorithms. 
 Kinetic equations formulated within the KMF technique, as 
originally proposed by G. Martin in 1990 [4], describe time evolu-
tion of configuration parameters which having a local character are, 
however, averaged over macroscopic parts of the system (crystallo-
graphic planes, sublattices, etc.). Moreover, none of the known re-
alizations of the KMF method goes beyond the point approximation, 
i.e., the atomic configurations are parameterized by average site 
concentrations. In this way, any correlation effects are definitely 
beyond the current version of the method. 
 The systems simulated within the present work were modelled 
with fixed nearest-neighbour pair-interaction parameters fitted to 
their equilibrium properties and also fixed saddle-point energy 
whose value might also be fitted to the parameters of diffusion and 
ordering kinetics. Time evolution of the system configuration due 
to atomic migration was considered in two levels of approximation: 
(i) by assuming a simple, but non-physical ‘direct exchange’ mecha-
nism and (ii) by approaching the reality and implementing the 
model with the vacancy mechanism. 
 KMF is a timesaving method, more efficient than kinetic Monte 
Carlo one. However, one should pay for everything! For the effec-
tiveness, we pay by neglecting the correlation factors and, in gen-
eral, time correlations for the atomic migration. As mentioned 
above, kinetic mean-field models cannot pretend on predicting the 
pre-exponential factors of tracer diffusion and ordering kinetics. It 
is evident for the direct exchange mechanism since it is not realistic 
mechanism. Moreover, this is true even for the vacancy mechanism 
because mean-field approach excludes ‘memory’ about past atom-
vacancy exchanges. Therefore, in all our studies, we concentrated 
on comparison of activation energies. Luckily, as demonstrated in 
this paper, all qualitative results of KMF correlate with known ki-
netic KMC results, at least for the f.c.c. alloys considered in this 
paper. 
 In view of all the approximations described above, only relative 
values of the evaluated parameters and the qualitative agreement 
with experimental results might be considered as significant. 
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 Indeed, the modelling of the Ni- and Al-tracer diffusion in Ni3Al 
yielded higher diffusivity of Ni—the effect anticipated in most of 
the related investigations due to easy intrasublattice diffusion 
channel for the Ni atoms in the L12-type superstructure of Ni3Al. In 
contrary to the experimental investigations suffering from a lack of 
practically applicable Al* tracers, the simulations made it possible 
to model the process directly. In addition, the higher thermody-
namic activation energy for the Al*-tracer diffusion and its value 
close to the simulated thermodynamic activation energy for the ‘or-
der–order’ kinetics in the same system is in agreement with the ex-
perimental results concerning ‘order–order’ kinetics and tracer dif-
fusion of admixtures substituting for the Al atoms in Ni3Al (see, 
e.g., [3]). 
 It is interesting that the simulated ‘order–order’ relaxations in 
Ni3Al showed either one, or two-time scales depending on whether 
the ‘direct exchange’ or vacancy mechanism for the atomic migra-
tion was implemented. The presence of the two-time scales might 
recall the results obtained for the Ni3Al by means of atomistic 
Monte Carlo simulation [22]. It is supposed, however, that as the 
effect reported in Ref. [22] originated from a specific correlation of 
the atomic jumps (beyond the scope of the KMF formalism), the 
short time scale revealed by the present KMF simulations stems 
rather from the initial vacancy redistribution in the system. 
 The results obtained for the L10-ordered FePt binary are of spe-
cial interest. As followed from the atomistic Monte Carlo simula-
tions [27], the process of the surface-induced re-orientation of the 
Fe and Pt monatomic planes shows a definitely discontinuous char-
acter. In addition, its nucleation requires that the system passes 
beyond some energetic barrier. Modelling of the phenomenon was, 
therefore, a good test for the stochastic variant of the KMF [9], 
[10]. The fact that implementation of the stochastic noise was nec-
essary to reproduce the monatomic plane re-orientation process by 
KMF indicates the correctness of the method. 
 The KMF and SKMF methods, whose usefulness was indicated by 
the results obtained within the present work, is now developed in 
several directions. One of them is an extension of the mean-field 
parameterization upon the point approximation that will make it 
possible to apply the KMF (SKMF) to model much wider range of 
structural transformations in materials. 

ACKNOWLEDGEMENTS 

This work was supported by: the Marie Curie International Re-
search Staff Exchange Scheme Fellowship IRSES within the 7th 
European Community Framework Programme under Grant 612552; 



232 V. M. BEZPALCHUK, R. KOZUBSKI, and A. M. GUSAK 

Ministry of Education and Science of Ukraine under Grant 
0115 U 000638 and Grant 0116 U 004691. 

REFERENCES 

1. K. Binder, Monte Carlo Methods in Statistical Physics (Berlin–Heidelberg: 

Springer: 1986).  

2. Diffusion in Crystalline Solids (Eds. G. E. Murch and A. S. Nowick)  

(Orlando–New York: Academic Press: 2012).  

3. R. Kozubski, Progress in Materials Science, 41, Nos. 1–2: 1 (1997).  

4. G. Martin, Phys. Rev. B, 41, No. 4: 2279 (1990).  

5. Z. Erdélyi, I. A. Szabó, and D. L. Beke, Phys. Rev. Lett., 89, No. 16: 165901 

(2002).  

6. Z. Erdélyi, M. Sladecek, L. M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga, 
and B. Sepiol, Science, 306, No.5703: 1913 (2004).  

7. Z. Erdélyi, G. L. Katona, and D. L. Beke, Phys. Rev. B, 69, No. 11: 113407 

(2004).  

8. Z. Erdélyi, D. L. Beke, and A. Taranovskyy, Appl. Phys. Lett., 92, No. 13: 

133110 (2008).  

9. N. V. Storozhuk, K. V. Sopiga, and A. M. Gusak, Phil. Mag., 93, No. 16: 

1999 (2013).  

10. Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Tomán, B. Gajdics, and A. M. 

Gusak, Computer Physics Communications, 204: 31 (2016).  

11. J. M. Sanchez and D. De Fontaine, Phys. Rev. B, 25, No. 3: 1759 (1982).  

12. A. G. Khachaturyan, Theory of Structural Transformations in Solids  

(Mineola, N.Y.: Dover Publications: 2008).  

13. L. Q. Chen and A. G. Khachaturyan, Phys. Rev. B, 46, No. 10: 5899 (1992).  

14. Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Acta Materialia, 

46, No. 9: 2983 (1998).  

15. G. Inden and W. Pitsch, Materials Science and Technology. A Comprehensive 

Treatment (Eds. R. W. Cahn, P. Hansen, and E. J. Kramer) (Weinheim: 

VCH: 1991).  

16. I. B. Borovsky, K. P. Gurov, I. D. Marchukova, and Yu. Eh. Ugaste, The  

Interdiffusion Processes in Alloys (Moscow: Nauka: 1973) (in Russian).  

17. A. Biborski, R. Kozubski, and V. Pierron-Bohnes, Diffusion Foundations, 2: 

191 (2014).  

18. N. Bogoliubov, The Dynamical Theory in Statistical Physics (Delhi:  

Hindustan Pub. Corp.: 1965).  

19. K. P. Gurov and A. M. Gusak, Fiz. Met. Metalloved., 59, No. 6: 1062 (1985) 

(in Russian).  

20. О. М. Rymar and А. М. Gusak, Cherkasy University Bulletin: Physical and 

Mathematical Sciences, 349, No. 16: 50 (2015) (in Ukrainian).  

21. V. M. Bezpalchuk and A. M. Gusak, Metallofiz. Noveishie Tekhnol., 37, No. 

12: 1583 (2015) (in Ukrainian).  

22. V. M. Bezpalchuk, M. O. Pasichnyy, and A. M. Gusak, Metallofiz. Noveishie 

Tekhnol., 38, No. 9: 1135 (2016) (in Ukrainian).  

23. P. Oramus, R. Kozubski, V. Pierron-Bohnes, M. C. Cadeville, and 

W. Pfeiler, Phys. Rev. B, 63, No. 17: 174109 (2001).  

https://doi.org/10.1016/S0079-6425(97)00002-9
https://doi.org/10.1103/PhysRevB.41.2279
https://doi.org/10.1103/PhysRevLett.89.165901
https://doi.org/10.1103/PhysRevLett.89.165901
https://doi.org/10.1126/science.1104400
https://doi.org/10.1103/PhysRevB.69.113407
https://doi.org/10.1103/PhysRevB.69.113407
http://dx.doi.org/10.1063/1.2905334
http://dx.doi.org/10.1063/1.2905334
http://dx.doi.org/10.1080/14786435.2012.746793
http://dx.doi.org/10.1080/14786435.2012.746793
https://doi.org/10.1016/j.cpc.2016.03.003
https://doi.org/10.1103/PhysRevB.25.1759
https://doi.org/10.1103/PhysRevB.46.5899
https://doi.org/10.1016/S1359-6454(98)00015-9
https://doi.org/10.1016/S1359-6454(98)00015-9
https://doi.org/10.4028/www.scientific.net/DF.2.191
https://doi.org/10.4028/www.scientific.net/DF.2.191
https://doi.org/10.15407/mfint.37.12.1583
https://doi.org/10.15407/mfint.37.12.1583
https://doi.org/10.15407/mfint.38.09.1135
https://doi.org/10.15407/mfint.38.09.1135
https://doi.org/10.1103/PhysRevB.63.174109


SIMULATION OF THE DIFFUSION, BULK ORDERING, AND SURFACE REORDERING 233 

24. S. T. Frank, U. Södervall, and C. Herzig, Physica Status Solidi B, 191, No. 

1: 45 (1995).  

25. S. Divinski, S. Frank, U. Södervall, and C. Herzig, Acta Materialia, 46, No. 

12: 4369 (1998).  

26. M. Kozłowski, R. Kozubski, and C. Goyhenex, Diffusion Foundations, 1: 3 

(2014).  

27. M. Kozłowski, R. Kozubski, C. Goyhenex, V. Pierron-Bohnes, M. Rennhofer, 

and S. Malinov, Intermetallics, 17, No. 11: 907 (2009).  

28. M. Rennhofer, M. Kozlowski, B. Laenens, B. Sepiol, R. Kozubski, 

D. Smeets, and A. Vantomme, Intermetallics, 18, No. 11: 2069 (2010).  

29. M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, and W. Pfeiler,  

Computational Materials Science, 33, Nos. 1–3: 287 (2005).  

https://doi.org/10.1002/pssb.2221910105
https://doi.org/10.1002/pssb.2221910105
https://doi.org/10.1016/S1359-6454(98)00109-8
https://doi.org/10.1016/S1359-6454(98)00109-8
https://doi.org/10.4028/www.scientific.net/DF.1.3
https://doi.org/10.4028/www.scientific.net/DF.1.3
https://doi.org/10.1016/j.intermet.2009.03.019
https://doi.org/10.1016/j.intermet.2010.06.011
http://dx.doi.org/10.1016/j.commatsci.2004.12.012

