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Tracer diffusion and ‘chemical’ (atomic) ordering processes in two face-
centred cubic (f.c.c.) binary systems mimicking Nis;Al and FePt were simu-
lated by means of the kinetic mean-field (KMF) method originally pro-
posed by G. Martin in 1990. The systems simulated within the present
work were modelled with fixed pair-interaction parameters and saddle-
point energies adopted earlier via the comparison of Monte Carlo method
modelling and experimental data. In a simulation of tracer migration as
well as ordering, the focus was attracted to comparison of activation en-
ergies rather than pre-exponential factors of kinetic coefficients. Gener-
ally, the mean-field models cannot properly take into account correlation
effect that could be important for the tracer diffusion especially for the
B2 structures. However, at least for the f.c.c. structures, application of
KMF to diffusion and ordering seems demonstrating very reasonable re-
sults qualitatively similar to those obtained in kinetic Monte Carlo (KMC)
method and realistic experiments. Modelling of Ni- and Al-tracer diffu-
sion in NizAl system shows higher diffusivity of Ni atoms as compared
with Al ones that is attributed to easier intrasublattice diffusion channel
for the Ni atoms in the L1,-Ni;Al superstructure. Also, the obtained acti-
vation energy for the tracer Al atoms is higher, and its value is closer to
activation energy of ordering kinetics. Computer experiments for the or-
dering kinetics showed that, in contrast to exchange mechanism, L1,-type
ordering kinetics is described via two relaxation times in case of the va-
cancy diffusion mechanism. Modelling of the discontinuous process of the
surface-induced re-orientation of the monatomic Fe and Pt planes in thin
FePt film was, in turn, a good test for the stochastic variant of the KMF
(SKMF) method. The fact that implementation of the stochastic noise was
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needed to reproduce the process of a surface nucleation by KMF indicates
the correctness of the method.

B poborti posrismaeTbca MoAenaoBaHHSA au@ysii sHaueHHMX aTOMIB i mpoiiecy
«xXeMiuHoro» (aTOMOBOTO) BIOPAAKYBAHHS B [OBOX OiHAPDHUX CHCTEeMax 3
rpanernieHTpoBanoo Kybiunoio (I'LIK) crpykryporo NizAl ta FePt i3 Bukopu-
CTaHHAM CepegHBLOMOJBLOBOI Kinermunoi meromu (KMF), sampomonHoBamOi
JK. Mapranom y 1990 p. [nsa cucrem, IO PO3TJIALAIOTHCI B paMKax TaHOL
po6oTu, BUKOpHCTOBYBamucsa (hiKcoBaHi 3HaUeHHS IMapHUX €HepPriii B3aeMo-
Iifi Ta eHepri#l cimyoBoi TOUKM, mMifAiOpaHi paHillle HIISXOM IIOPiBHAHHS MO-
IeoBaHHSA 3a MeTonoio MouTe-KapJso i eKcliepruMeHTAIbHUX HaHUX. Y MO-
IeqoBaHHI nudysii 3HaueHMX aTOMiB, a TAKOXK YHOPAAKYBAHHS iX OCHOB-
HUII aKIeHT pPoOUThCSI HA MOPiBHAHHI eHepriii akTuBarlii, a He IepemeKcCIIo-
HEHTHUX MHOKHUKIB KiHeTnuHmX KoedimieHTiB. B sarampHOMYy BUIaIKy
CepeIHBOIIONBOBI MOJeIi He MOMKYTh NPABUJIHLHO BPaXOBYBATH KOPEJIAIiii-
HUM edeKT, IKUHA MoKe OyTH icToTHUM Aad Au(ysii sHaueHHUX aTOMiB, 0CO-
6smBo miist cTpykTyp Tuny B2. Ilpore, mpunaiimui gaa 'IIK-ctpykTyp, 3a-
crocyBanHa KMF-metoagu mo augysii Ta ynopAaaxkyBaHHS AEeMOHCTPYE OOC-
TaTHbO peaJiCTUYHi pe3ysabTaTU, AKICHO CXOXKi Ha Ti, IO OLEPKYIOThCA 3
Kimermunoi meromu Monrte-Kapio i B peanbHUX eKcmepuMeHTaX. Mojesio-
BaHHA nudysii suaueHux aromiB Ni i Al B cucremi NizAl moxkasye mBumgmry
mudysiro aromis Ni, miskx Al, 1o mos’a3aHo 3 Jermom audysiero aromis Ni
1o BJacHifl miarparuuii B HagcTpyKTypi Tuny L1,-NizAl. Takosx ogepskaHO
BUIIy €HEeprilo aKTHBAIlil AJas 3HaueHMX aToMmiB Al Ta il O1u3bKe 3HAUEHHSA
o eHeprii akTmBanii KiHeTMKM BHOPANKYBaHHA. Komm’ioTepHi eKcmepume-
HTH 3 KiHeTMKU BUOPANKYBAHHA IIOKa3aJu, 110, Ha BiAMiHY Bif oOMiHHOTO
MexaHi3My, 3a BaKaHCililHOTO MexXaHidMy au@ysii KiHeTuKa BIOPAAKYBaHHA
3a Tunom L1, ommcyeTrbcsi ABoMa 4yacamMu pesakcarii. MogenaooBaHHA mepe-
PHUBUYACTOTO MPOIleCy IIPUIOBEPXHEBOI IIepeopieHTAaIlii MOHOATOMOBUX ILJIO-
muH Fe i Pt y Toukii muiBmi FePt, y cBoio uepry, crajgo XOpOIINM TECTOM
mia croxactuunoro Bapisuty KMF (SKMF). Toit dakT, 1110 BBEeJeHHA CTO-
XaCTUYHOTO IIIYMY BUSABUJOCS HEOOXiTHUM IJiA BiATBOPEHHSA IIPOIleCy IIOBE-
pPXHeBOI HyKJiealii, MoKe CBiJUNTU PO KOPEKTHICTH METOLH.

B paGote paccmarpuBaerca Auddy3us MeUEHBIX aTOMOB U IPOIECC «XWMU-
YecKoro» (aTOMHOTO) YIOPAAZOUYEHUSA B ABYX OMHAPHBIX CHCTEMAax C TIpaHe-
nenTpupoBannoit kKyounueckoii (I'lIK) crpyxrypoii NisAl u FePt ¢ ucnoasso-
BaHWEM CpeAHeINoJeBoro KuHetmueckoro metoxa (KMF), mpeasmosxkeHHOTO
K. Mapranom B 1990 r. [I;ma yKasaHHBIX CHUCTEM MCHOJH30BAJNCh (PUKCH-
POBaHHBIE 3HAUEHUSA IIaPHBLIX 9HEPTUH B3aMMOIEMCTBUA M 9HEPTUH CeIJIOBOM
TOUKM, NOJOOpaHHBIE paHee IMYyTEM CPABHEHUS MOJEJIUPOBAHUA METOAOM
MonTte-Kapyio u sKcnepuMeHTaJbHBIX AaHHBIX. B momenmpoBanuu auddy-
3UM MEUYEeHBIX aTOMOB, a TaK:Ke YIOPAJOUYEHUSA WHX OCHOBHOM aKIIeHT Ha-
IIpaBJIeH Ha CPaBHEHUEe SHEPIrUH aKTWBAIWU, a He IPEeI9KCIOHEHTHHIX MHO-
JKUTeJIell KMHeTUYeCKnX Koaddunuento. B obiiem ciyuae Momenu cpenHe-
IO IOJIA He MOTYT IPABUJIBHO YUYUTHIBATHL KOPPEJAIUOHHBIH 3DHEKT, KOTO-
PBIHi MOXKEeT OBITH CYI[EeCTBEHHBIM IJid TUPDY3ny MedeHBIX aTOMOB, OCOOEH-
HO IJia cTPYKTyp Tuma B2. OgHako, mo kpaiineir mepe, aasa I'IIK-cTpykTyp,
npumeHenue KMF k nuddysuu m ynopaAzouyeHUIO AeMOHCTPUPYET TOCTa-
TOYHO PEeaJICTUYHLIE DPe3yJbTaThl, KAUYECTBEHHO CXOXKHE C TeMH, KOTODBIE
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MOJIyYaroTcs U3 KuHeTnudecKoro metroma MonTte-Kapio u B peaJbHBIX dKCIIe-
pumenTax. MogenupoBanue nuddysuu meueHbIX aToMoB Ni u Al B cucTeme
NizAl memonctpupyet 6osee 6vicTpyio auddysuto atomoB Ni, uem Al, uro
cBA3aHO ¢ O0osee Jérkoii muddysueir aromoB Ni M0 cOOCTBEHHOM ITOAPEIIET-
Ke B cBepxcTpykType Tuma L1,-NigAl. Tak:xe moaydeHbl 0ojiee BBICOKAas
SHEepPrusa aKTHUBAIMKM OJS MeueHbIX aTomMoB Al m eé Oim3Koe 3HaUeHHE K
9HEPruM aKTUBAIIUY KHUHETHUKU YyIopsagoueHus. KOMIbIOTEPHBIE SKCIIEePHU-
MEHTHI 110 KMHEeTHKe YIIOPSAAOUYeHUs IMoKas3ai, UYTO, B OTJINYNE OT OOMEHHO-
TO0 MexXaHu3Ma, IIPY BaKaHCHUOHHOM MexaHuaMe Audp@ysuu KHUHETUKA YIIO-
pAnoueHud mo tumy L1, ommchiBaeTcA ABYMs BpeMeHaMU pesakcanuu. Mo-
JeJIUpOBaHUe IPEepPLIBUCTOTO IIPOIlecca MPUIIOBEPXHOCTHOU IepeopueHTaIlun
MOHOATOMHBIX mJjockocTteil Fe u Pt B Toukoii niénke FePt, B cBoio ouepens,
CTaJI0 XOPOIIUM TecTOM IJA croxactuueckoro Bapuanta KMF (SKMF). Tor
¢daKT, UYTO BBeJeHME CTOXACTUYECKOTO IITyMa OKAa3aJoCh HEOOXOIUMBIM MIJIA
BOCIIPOM3BEAEHUA IIPOIlecca ITOBEPXHOCTHONM HYKJealuu, MOMKET CBUIETEIb-
CTBOBATh O KOPPEKTHOCTU METOHA.

Keywords: kinetic mean-field method, tracer diffusion, ordering kinetics,
atomistic simulation, intermetallics.

KarouoBi cioBa: KiHeTwWuHa cepeqHLOIIOJLOBA METOdAa, AUPY3isa 3HaUEHUX
aToMiB, KiHeTMKa BHOPAAKYBAHHS, aTOMiCTHYHE MOJeJNIOBAaHHSA, iHTepMeTa-
Jigm.
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1. INTRODUCTION

Simulation of ordering and atomic migration in ordered alloys was
always the subject of Monte Carlo simulations [1-3]. Usually, such
methods need a lot of computation time. In the present paper, the
advantages and disadvantages of an alternative method are dis-
cussed. The method called ‘kinetic mean field’ was originally pro-
posed by George Martin in 1990 [4] as a pseudo-1D-algorithm. The
technique was then applied to nanofilms with diffusion asymmetry
in the series of papers by Z. Erdelyi, D. Beke et al. [6—8], extended
to 3D [9], and recently generalized to first-order transformations by
introducing dynamic noise of jump frequencies in the kinetic mas-
ter equations (‘stochastic KMF’ (SKMF) [10].)

The Martin’s version of KMF approach is not the only one [11-
14]. The mean-field approach is a very popular approximation when
interactions between particles are approximated by interactions of
particles with some effective field representing an averaged effect
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of the surrounding atoms.

In the widely used cluster variation method (CVM) (see, e.g.,
[15]), the averaging is based on parameterizing the atomic configu-
ration by so-called cluster variables defined as probabilities for the
finding clusters of atoms showing explicit configurations. The larg-
est cluster taken into account determines the order of approxima-
tion.

In the present paper, we discuss the simplest mean-field ap-
proach—so called point (Bragg—Williams) approximation where only
one-atom clusters are considered and the cluster variables are equal
to average concentrations C,(i) of u-type atoms on particular lattice
sites i. These concentrations have a meaning of probabilities p,(i)
for the finding p-type atoms on i-lattice sites calculated over an en-
semble of systems. In this approximation, all multisite correlations
are neglected. In the case of a binary A—B system, the pair probabil-
ity p,s of the occupation of neighbouring i and j sites by A and B
species is approximated by a product of unary probabilities: p,z(i,j)
= ps()ps(j) = C,(P)Cg(j). Consequently, the energy of an A-atom resid-
ing on the i-site and interacting with Z nearest neighbours reads as

Z

E, =Y (C,(n)V,, + Cz(in)V,;), (1)

in=1

where V,, denotes the nearest-neighbour pair-interaction energies
between - and v-atoms, in—i-site neighbour.

The approximation is analogous to the initial Weiss approxima-
tion of the ‘molecular field’ in magnetism. The mean-field method
of static concentration waves suggested by Khachaturyan is widely
applied to the description of phase transformations in alloys [11]. It
was intensively developed to calculate, for example, the phase dia-
gram of f.c.c. binary alloys [12], but also to model the kinetics of
the phase transformations (for example, precipitation of Ni;Al from
disordered solution) [13, 14]. The fundamental difference between
Martin’s approach and other kinetic mean-field approaches is the
self-consistent introduction of jump frequencies using the actual
interaction energies. In Khachaturyan’s kinetics, the Onsager coef-
ficients are, of course, proportional to the jump frequency, but this
frequency is not related to the actual energy state of the system. In
Martin’s kinetics, the jump frequencies contain the energies of
atomic configurations before the jump calculated within the mean-
field approximation. That is the main reason why Martin’s kinetic
model directly leads to equilibrium distribution as a limiting case of
zero fluxes.

The main kinetic equation of the original Martin’s paper (written
for the chain of parallel atomic planes—pseudo-1D-model) is just a
master equation with self-consistently defined frequencies:
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dcC,
d_tl =-Z, |:Ci 1-C., )ri,i—l -1- Ci)ci—lri—l,i +

+C,(1-C,,)T

(2)
-@1-c)c,T

i,i+1 i+17 i+l | *

Here, C; is a probability of any site in the plane i to be occupied by
species A, Z = Z, + 2Z,—total number of nearest neighbours, Z, de-
notes the number of nearest neighbours in the ‘central’ plane per-
pendicular to the concentration gradient, Z, is the number of near-
est neighbours in the right-hand plane i + 1 (or left-hand plane i — 1),

E .
I, =vexp|l ——21 3)
’ ET

is a frequency (probability per unit time) of exchange between an
atom A in the plane i and an atom B in the plane i + 1, E;,,; is a
difference between the saddle point energy E*"° and the energy
E ., of interactions of the two exchanging atoms with their

neighbours before the exchange:

E

Bitl B — Ei,i+1' (4)

While the saddle-point energy E*** is in most applications taken
the same (e.g., equal to zero) for all exchanges (Fig. 1), the energies
E ., are determined for each exchange in terms of the pair-
interaction energies V,, usually evaluated by fitting to experimen-
tally determined parameters of particular systems. In addition, it

should be remarked that any change (increment/decrement) of E*!°

ES

Ebefore Q - Es- Ebdo”

Fig. 1. Scheme of energy barriers under the assumption of universal sad-
dle-point. (Analogous picture was suggested long ago by Kirill Gurov and
can be found in the monograph of Former Soviet Union [16].)
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brings about a totally uniform change of currently appearing values
of E;;;;. The same increment/decrement is thus transferred to the
collective energy parameters—e.g., to the thermodynamic activation
energy determined for any process modelled within this approach.
In the case of a binary system, the energy of the A—B pair before
their exchange is taken as
E,.=2C. Vu+Z,(A-C. )WV, +Z,C Vi +Z,(1-C_ )V, +

i,i+1 v i+l v7i-1

+ZCV +ZA-CYW, , +ZC, .V, +Z,A~C )V, + (5)

v7i+2
+Z,CVap + Z,(1=C)Vpp + Z,C | Vg + 2/ (1 = C )V

The Debrecen team (Beke, Erdelyi et al.) applied this pseudo-1D
method to initial stages of interdiffusion in the binary diffusion
couples with a large difference between V,, and V;z. Among other
interesting results, they predicted a possibility of sharpening the
concentration profile at the initial stage of interdiffusion (instead
of a standard case of its broadening) [5, 6]. This prediction was
checked and proved experimentally. Another interesting prediction
was a linear regime (instead of standard parabolic one) at similar
conditions [7]. Finally, Debrecen team predicted that in strongly
asymmetrical systems, ordering during diffusive formation of the
B2 structure may start far from stoichiometric concentrations [8].

In [9] almost trivial generalization of existing KMF scheme on
3D case was suggested:

dC Z Z
o —C2A-C)r ,+1-C)3.Cr,, (6)
j=1 j=1
_(Esaddle _ _‘ )
I, =vexp ———— |, 7
E =E'+E’,
Z Z
EiA = AAZCin + VABZ(l -C,)s (8)

Z Z
E} =V, Cp+ V> (1-C,);
jn jn

here, Y%, _, indicates the sum over the nearest neighbours of i-site,
szn:1 indicates the sum over nearest neighbours of j-site, which is
in turn, one of the nearest neighbours of i-site (see Fig. 2).

Since the saddle point energy is a fitting parameter and the pre-
exponential factor v in Eq. (3) can be reasonably evaluated only for
the vacancy mechanism, one cannot treat the time parameter ¢ in
(6) as a real time. It is more convenient to rescale time and use the
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o
4

Fig. 2. The scheme of neighbours in the calculation of energy before ex-
change of atoms at the i and j sites within the KMF method. Grey and
light-grey sites are the neighbours of i-site (index ‘in’ in equations), black
and light-grey sites are the neighbours of j-site (index ‘jn’ in equations).
Light-grey sites are common neighbours for both i and j.

dimensionless time. For this aim, it is convenient to rewrite the
equations (7) and (8) as follows:

=27V, +(M - V)ZZ: C,(in) - (M + V)ZZ: C,(jn) =

Eiaim) ~ e
. , (9)
=Z(Vup +Vp) + (M - V)Z C,Gn)+ (M + V)Z C,(jn),
in=1 jn=1
r, =TT, (10)
where
V:VAB——VAA;VBB, M:—VAA;VBB. (11)

Here, the dimensionless frequency factor fi’j and the dimensionless

pre-exponential factor I'y are equal to

(M - V)i C,(in) + (M + V)i C,(jn)

I =ex in=l =1 , 12a
ij p oT (12a)
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Esaddle _ (V + V )Z
I, =vexp| - AB BB , 12b
0 p[ BT ( )
Dimensionless time can be defined as
f= Lot (13)

As one can see, the dimensionless time scaling is temperature de-
pendent.

Recently, a scheme very similar to 3D KMF version [9] was in-
troduced for the modelling of an ordering kinetics [17]. The formal-
ism differs from the 3D KMF in three respects. They are as follow:
(1) vacancy mechanism was introduced from the very beginning, (2)
only homogeneous ordering was considered—concentration of any
species (A, B, or vacancy V) was the same for all given sublattice
sites, (3) the saddle point energy was variable and followed the Kki-
netic Monte Carlo (KMC) tradition: E¥® = E* + (E*™™ + E**")/2
with E* depending exclusively on the kind of the jumping atom.

Being a deterministic formalism, the standard KMF method is
not adequate to model discontinuous transformations triggered by
fluctuations. To enable the modelling of first-order ordering trans-
formations in f.c.c. lattice, the method was enriched by introducing
the initial concentration noise (noise of initial probability on sites
at atomic scale) [9].

In Ref. [10], the next logical step was introduced. Dynamic noise
of frequencies (instead of or additionally to initial noise of concen-
trations) was introduced providing the possibility for the overcom-
ing the nucleation barriers. This new version of the kinetic mean-
field method was called as a stochastic kinetic mean-field (SKMF)
method.

The master equation in SKMF can be written in the following
form:

Z
% = —; [Ca-C)(T,, +8r5) — (A -C)C, (T, +8T5) |, (14)

where the Langevin noise of frequencies can be expressed as
A

\/éﬁ(Zwand—l). (15)

Lang __
8ri’j -

As shown in Ref. [10], changing the noise amplitude, one may
tune the kinetic Monte Carlo with various numbers of runs. (We
will not discuss here the special precautions made in SKMF to avoid
the going of the probabilities beyond the interval [0, 1]; see Ref.
[10] in detail.)
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2. KMF METHOD—APPLICATION TO TRACER DIFFUSION

2.1. KMF simulations implemented with the exchange mechanism
of atomic migration

Up to now, the only attempt for the KMF modelling of inter-
diffusion involved the method implemented with unphysical ‘direct
exchange’ mechanism of atomic migration. However, as mentioned
above, even with this unphysical assumption, the KMF was able to
predict some real properties of diffusion in systems with large pair-
interaction asymmetry M (11). This method can be easily modified
to model tracer diffusion. (Note that KMF with vacancy mechanism
will be discussed in subsec. 2.2.) Of course, in KMF we cannot trace
the trajectory of individual atoms (as, e.g., in Monte Carlo simula-
tions). Therefore, we cannot use Einstein relation for the mean
squared displacements of tracers. Instead, one can use the well-
known analytical solution for the point source. Assuming a binary
A—B system, we consider an A-thick layer located in the centre of a
long sample, substitute the A (B) atoms by A" (B") tracers and sub-
sequently monitor the evolution of locally averaged tracer concen-
tration profile. Local averaging, usually performed over two planes,
is necessary since, for example, in the ordered lattice one may ex-
pect regular oscillations of tracers among two sublattices.

Denoting C,; as a total A (B) atom concentration, COA(B)—A (B)
atom concentration, C*A(B)—A (B) tracer concentration, we have

Cc,=C,+C% C,=1-C° -C.. (16)

One expects the following time dependence of the locally aver-
aged C*,(t, X) profile:

. C:  h 2
C .t X)=—28% exp —XT s am
A(B) "
TEDA(B)t 4DA(B)t
% 1 2
InC, 4 (¢, X) = const - —— X", (18)

A(B)t

where X denotes the distance from the centre of the layer originally
occupied by the tracer atoms. The slope of In(C (¢, X) vs. X? yields
the diffusivity scaled with respect to the simulation time units.

The kinetic equations are modified in almost trivial way:

dC, (i)
dt

Z ‘o . Z
= -C,()Y CaR ™ —CL(i)D . Cu(R)T;,° +
k=1 k=1
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Z Z
+CL()Y. CLBT ™ + Cy()D CalR)TR* (19)
k=1 k=1
0: 7 . 2 .
2O _ ooy i - ChmY Cyrs” +
dt i e 20)
Z ‘o VA .
+C, ()Y CLRT, ™ +Cy()Y Co(RT,
k=1 k=1
‘o Esaddle _ Ebifoore
Iy =vexp[—k—T“J, (21)
bef 4 0 % Z
BT =V, > (CRl) + CL)) + Vi > Cai) +
o o 22
Z o . VA ( )
VY (CA(k’) + CA(k’)) + VY. Cy(R),
k=1 k=1
. Esaddle _ Ebifore
| :vexpl——kT AB ], (23)
bet Z, o " 4
B =V, 3 (CRE) + CL()) + Vi . Cui) +
o o (24)
VoS (Y 4 C DY)+ V.S C
+ ABZ( A( )+ A( ))+ BBZ B( )9
k=1 E'=1
befi Z 0 B Z
Ey = VAAZ(CA(Z") + CA(i’)) + VABZ Cy(@) +
! o (25)

+Vap f (CH(E) + CL () + Vi i C,(E).

Redistribution of the probabilities (concentrations) is calculated
after each time step according to Egs. (19)—(25). As a result, the
profile of tracers is found. Its typical shape for the tracer diffusion
in the ordered alloy is presented in Fig. 3.

As previously mentioned, the linear regression of InC",; (¢, X) vs.
X?/(4t) yields then the diffusivity scaled with respect to the simula-
tion time units (Fig. 4).

Standard Arrhenius analysis of the temperature dependence of
the evaluated diffusivity yields the thermodynamic activation en-
ergy Qup for the A (B) tracer diffusion. The possible curvature of
the Arrhenius plot indicates that this activation energy is tempera-
ture dependent, e.g., due to ‘chemical’ (atomic) ordering.
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Fig. 3. The typical tracer concentration profile resulting from diffusion
within the ordered alloy from three planes initially occupied by the tracer
atoms: (a) initial profile, (b) profile after ¢ > 0 without averaging, (c) pro-
file after ¢ > 0 averaged over each two neighbouring planes.

The use of the dimensionless time (see Eqs. (12) and (13)) causes,
however, that the right value of @, is shifted with respect to the
slope a®™™ of the Arrhenius plot by E** — (V,; + Vzp)Z:

QA(B) — aArrhenius + Esaddle _ (VAB + VBB)Z- (26)

Consideration of any relationship between the values of @, and
the experimental thermodynamic activation energy for the tracer
diffusion is reasonable provided the relationship between the KMF
time and real time is found.

In(C(4°))

14 . . | !
0 0.5 1 1.5 2 25

X*/(41) %10°®

Fig. 4. Typical dependence of the logarithm of locally averaged local tracer
concentration on squared distance scaled with the dimensionless time (Eq.

(13)).
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2.2. KMF simulations implemented with vacancy mechanism
of atomic migration

The major limitation of any kinetic mean field approach to vacancy
mechanism is a lack of proper account of time correlations in va-
cancy mechanism diffusion. In real situation, system always has
some ‘memory’ about last few jumps of any atom: if atom has just
exchange places with neighbour vacancy, its next jump is not to-
tally random; there is a significant probability of reverse exchange.
Any mean field theory, by definition, has no ‘memory’. Therefore,
it is impossible, for example, to find correlation factor for the
tracer diffusion by vacancy mechanism. It should be calculated, for
example, by kinetic Monte Carlo method. Therefore, in calculation
of tracer diffusivities by SKMF method, we are not pretending on
accurate values of diffusion coefficients and instead we concentrate
on determining of activation energy of diffusion. Thus, in the fol-
lowing when we speak about the frequency of exchanges A<V or
BV, we keep in mind, actually, the series of correlated vacancy—
atom exchanges leading to resulting atomic displacement into
neighbouring site. Kinetic Monte Carlo with vacancy mechanism is
more ‘honest’ in this sense (but much less computational timesav-
ing). Nevertheless, as we will see below, comparison of KMF and
KMC gives qualitatively very similar results. The following kinetic
equations describe the evolution of a system where only nearest-
neighbour atom—vacancy exchanges are realized:

dCu(i) _ RS 0 AV R BV
—= = —C, (). (CL(R) + CL(R)) T - C, ()Y CyBIT, +
dt k=1 k=1 (27)
Z Z
+(CL0) + C50) D C, (T +Co()Y. C ()T,
k=1 k=1
% =-C,()Y.C,(RT + cu(i)f C,(R)C2, (28)
A0 _ i@y c,mrs + 03 CLmry, (29)
dt P k=1
0/s Z Z
% = -CLMY_C,(R} +C,(1) X CiTL . (30)

Since vacancies are much more mobile than atoms (at vacancy
concentration 1-10°%, the vacancies are million times more mobile
than atoms), the evolution of the vacancy subsystem is much faster
than that of the main components. It means that, for the direct
numerical solution of KMF equations (27)—(30), one needs the time
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step dt circa million times smaller than in the case of the exchange
mechanism. This makes the tailoring of the tracer concentration
profile (or other profiles) practically unreachable, due to limitations
of the computation time. In the vacancy mediated diffusion, one
encounters, therefore, the hierarchy in the chain of processes and
characteristic times, which was analyzed in detail by Bogolyubov in
Ref. [18]. As faster processes usually accommodate to slower ones,
their analysis may be performed within the steady-state approxima-
tion. Therefore, following the ideas of Gurov and co-authors in Ref.
[19], we suggested to use the steady-state approximation for the va-
cancies, to accommodate the vacancy profile to the slowly changing
profile of the main components [20], [21]. The steady-state ap-
proximation for the vacancies transforms Eq. (27) from the differ-
ential form to the iteration scheme for the finding of a steady-state
vacancy distribution:

Z Z
(CLO) +Co@) Y (R + C)D Cr (TS
Citer+1(i) — ~ k=1 k=1
Y (Calk) + Co () T4 + Ch (TS

k=1

. (31)

To satisfy the constraint of the frozen vacancy sinks or sources, we
use renormalization of the vacancy profile at each iteration step:

Cli)terJrl(i) — %Cli)ter+1(i), S — chi)ter+1, SO — ZCS- (32)

The standard criterion for the iteration convergence is applied:

Aiter+1 Aiter
Cv - Cv

<e&. (33)

It is assumed that

saddle before
1—~AV _ _ E - EAV
ko V()A €exp - 4 |’

kT
Esaddle _ Ebefore (34)
rY =v,,exp| ——2 |,
ki 0B p( kT J
where
Z
ENoc = 2 (Calk) + CL) Wy + Co(RYW 1 + C ()W, +

=

' (35)

Z
+ 2 (CLE) + CL@ Wiy + Col Wy + Cy (Wi
=1

12
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Z
Epioc,y = 2 (Ch(R) + CL(R) Vi, + Cp(R Wy, + C ()W, +
k=1
p (36)
+ 2 (CLE) + CLEN Wi + CoiWVo + Cp (Vs
i'=1
bef Z 0 %
Ein = 2 (CL) + CL)Vay + Co@)W s + C(0Wy +
= (37)
+ 2 (COR) + CLUEN Wy + CoB W,y + Cro (B,
k=1
Z
Byl = 2 (Ch@) + CLi) Wy + Coli)Wys + C, (1), +
i'=1
(38)

Z
+ 2 (CLE) + CLE) Wy + CoBW,yy + Cy (BVy
k=1

Assuming zero interactions with and between the vacancies, one ob-
tains:

A
Bt = D (COE) + CLlE) Wy + Cok)V (39)
k=1
or
By = 2V + (Vs = Vip) D (CLE) + CL(R)), (40)
k=1
Z
Eppoy =2V, + (Vg = Vig ) D Cy(B). (41)
k=1

Similarly, as in the case of the exchange mechanism, one can in-
troduce the following dimensionless parameters:
I, AeV=TT,(4c7),
~ 42
[,,BeoV)=[l, . (BcV), (42)

where the dimensionless frequencies and the pre-exponential factor
are equal to

I (AoV)= /V& exp (—(V “mYe, (kn)/ij,
Vos

in=1

fk,i (B < V) = 4,Vﬂ exp [_(V + M) i CB(kn)/(kT)j,
Voa in-1

(43)
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Esaddle -V..Z
Ly = \VouVos €XD [—TAB]

The dimensionless time is then defined as
t =Tt (44)

As the temperature-dependent dimensionless time scaling may
again lead to the inversion of the slopes of the Arrhenius plots of
the evaluated diffusivities (Eq. (26)), usual dimensional parameters
for the time and frequency defined by Eqs. (34) were applied in the
simulations for the vacancy mechanism—in contrary to the case of
the exchange mechanism, in which the meaning of the pre-
exponential factor is ambiguous.

3. KMF METHOD—APPLICATION TO CHEMICAL ORDERING
3.1. General relationships

The validity of the KMF method in the field of thermodynamics and
kinetics of ordering in f.c.c. alloys has been recently checked [20].
For the reasons described in Sec. 1 (atomic configurations param-
eterized within point approximation), only long-range order (LRO)
phenomena can be modelled by means of the KMF version used in
the present work.

The degree of LRO is most often quantified by means of the
Bragg—Williams parameters. In the case of binary A-B systems
whose crystalline structure is composed of two sublattices (I and II),
the parameter is defined as

I 11
_pA_CA_pB_CB 45
1 1-V! 1-v" 7’ (49)
where
pI(H) — NAI4((HB)) I(ID) — NI(H) (46)
A(B) NI(II) ’ NI + NII

denote the probability to find A-type (B-type) atom at the sublattice
I (IT) and the fraction of I (IT) sublattice sites, respectively.

For the sake of KMF, a local analogue of the LRO parameter (45)
must be defined, e.g., by considering a cluster with the same atomic
fractions of the components and vacancies as the whole crystal. The
cluster should contain sites belonging to all sublattices in propor-
tions equal to the global ones. Generally, it may contain both ‘en-
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tire’ sites and their ‘fractions’ (if the case of sites shared with
neighbouring clusters). The sublattice fractions v'™ are then calcu-
lated according to Eq. (46) with

= il/share(il), N" = MZ 1/share(i2), (47)

il=1 i2=1

where the summations are performed over all M' (M") sublattice
sites belonging entirely or partially to the cluster; share(i) is a
number of neighbouring clusters which share i-th site, so that
1/share(i) is a fraction of site i in the cluster. One should calculate
the local atomic concentrations in the cluster as

MII
Z C,(i1)/share(il) + Y_ C,(i2)/share(i2)
C _ i1=1 i2=1
A 1 I ’
NN (48)
Z C,(i1)/share(il) + Z C,(i2)/share(i2)
C — il=1 i2=1
? N'+N"

The a priori probabilities for the sublattices being occupied by the A
and B atoms are calculated according to the following formulas:

MI MII
> C,(i1)/share(il) > C,(i2)/share(i2)
pi _ i1=1 , pg _ i2=1 . (49)

NI NII

We choose a cluster composed of the central site and 12 nearest
neighbours. Such choice of the smallest possible cluster might be
preferable for the describing of the systems with very sharp concen-
tration gradients. Two neighbouring clusters are shown in Fig. 5.

Fig. 5. Two clusters used for the calculation of the local LRO at i and j
sites. For example, site I belongs to both of them as well as to two more
clusters above. In total, the site 1 belongs simultaneously to 4 clusters, so
that only j of it belongs to the given cluster. The same can be shown for
all sites around i.
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They share four common sites. One cluster consists of one central
site (share = 1) and 12 boundary sites (share = 4). Indeed, one can
easily check that each boundary site is common for the four clus-
ters. Hence, the total number of ‘pure’ sites is N'+ N"'=1+12/4=4.
The central site may belong to one of 4 simple cubic lattices, which
form an f.c.c. lattice. For each case, one should calculate its own
‘local’ LRO parameter. Three simple cubic lattices form a majority
sublattice of L1, structure (face centres), the 4-th simple cubic lat-
tice is a minority sublattice of this structure (cube corners).

If we assume that the central site of the cluster belongs to the
majority sublattice I, then 8 of 12 neighbours also belong to the
same sublattice but only j of them belong to the given cluster. The
remaining 4 neighbours belong to sublattice II but only j of them
belong to the given cluster. Hence,

M'=1+8=9, N'=1+8/4=3,
M"=0+4=4, N'=0+4/4=1.

If we assume that the central site of the cluster belongs to the
minority sublattice II, then all 12 neighbours belong to the counter-
part majority sublattice but again, only j of them belong to the
given cluster. Hence,

M'=0+12=12, N'=0+12/4=3,
M"=1+0=1, N'=1+0/4=1.

As mentioned above, each site may belong a priori to 4 simple cu-
bic sublattices of f.c.c. lattice: three of them correspond to the ma-
jority sublattice of the A;B structure and the remaining one—to the
minority sublattice. Of course, in general, all four versions should
be checked and compared. Namely, if an i-site is considered as be-
longing to the majority sublattice of the L1, superstructure and is
occupied by a majority component, then there exist 3 ways to
choose two planes of the same majority sublattice out of three mu-
tually perpendicular planes containing the given site. Each choice
corresponds to some value of local order parameter. Then three LRO
parameters can be calculated depending on the choice of 8
neighbouring sites (out of 12) belonging to the same sublattice:

C, (i) +i i C.(nn) C,(i) +i i C,(nn)

nn=1 nn=1

NOE 3 mr 4 . (50)

If the i-site is treated as belonging to the minority sublattice,
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then the local LRO parameter can be defined as:

C, @) + 1 122: C,(nn)
CA(Z) _ 4 nn=1

4
1-1/4 ' (1)

ny @) =

One can easily check that the above ‘local LRO’ parameters de-
fined for each site are equal to 1 in the case of perfect order pro-
vided the sublattices are appropriately chosen. In the case of incor-
rect choice of the sublattice, the value of 1 is 1/3.

The correct order parameter corresponding to the given i-site is
thus the one that shows maximum modulus.

3.2. KMF simulation of ordering implemented with the exchange
mechanism of atomic migration

To avoid the formation and consequent competition of the antiphase
domains, the study of the ordering kinetics described here always
start from the homogeneous and perfectly ordered structure (i.e.
from T = 0 K). Temperature is then instantly increased to some
higher value, and partial disordering of the ideal single domain
starts, leading to a new degree of LRO. Once the system equilibra-
tion is observed, the procedure is repeated by again abruptly raising
the temperature.

3.3. KMF of ordering implemented with the vacancy mechanism
of atomic migration

In the case of the vacancy mechanism, the scheme is almost the
same. Simulation additionally allows determining the equilibrium
vacancy distribution (i.e. LRO) on the sublattices. The simulations
start with a uniformly distributed arbitrary vacancy concentration
(probability per site). During ordering, vacancies are redistributed
among sublattices. Therefore, despite an arbitrary value of the va-
cancy concentration, the equilibrium ratio of vacancy concentra-
tions at sublattices may be determined. (So far, the sinks and
sources of vacancies, providing equilibrium of vacancy concentra-
tions, are not included in the SKMF model.)

4. KMF-SIMULATION RESULTS FOR THE BINARY SYSTEM
WITH L1,-TYPE STRUCTURE

The procedures described in sections 1 and 3 were applied to simu-
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late the A;B system mimicking the intermetallic compound NijAl.
The nearest-neighbour pair interaction parameters (V,, = —0.3 eV,
Vs = —0.15 eV, and V,; = —0.295 eV) used in the simulation were
fitted in Ref. [23] to reproduce the properties of the phase y-NizAl.

4.1. Simulations implemented with the exchange mechanism
of atomic migration

Arrhenius plots of the self(tracer)-diffusion coefficient of both A
(majority) and B (minority) components are shown in Fig. 6. As ex-
plained in Sec. 2.1, their slopes a*™™" are related to the thermo-
dynamic activation energies @, and @5 for the A- and B-tracer dif-
fusion according to Eq. (26).

According to Eq. (24), one obtains:

Q, =1.1793-10" J + E*" —(V,, + V,,,)Z =~
~1.18-107°J + E*% — (V,; + V) Z,

Qp =2.4335-107" J + E™ —(V,, + V) Z =~
~ 2.43-10°J + E¥N —(V,, + V,,)Z.

(52)

Comparing the mentioned above with the experimental result Qy; ~

In(D")

_26 1 1 1 1 1 1 1 1
6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

(1/kT) x 10

Fig. 6. Arrhenius plots of the A- and B-tracer diffusivities in A;B (NizAl)
evaluated with the exchange mechanism of atomic migration.
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~ 3 eV =4.8.10""° J [24], one can estimate

E*Y —(V,, +V,up)Z ~ 3.62-107" J, (53)
and consequently

R, ~6.05-10"°J, Q,/Q, ~1.27. (54)

Higher activation energy for the tracer diffusion of the minority
component in the L1,-ordered binary system, B (Al) in A;B (NizAl),
is in agreement with the experimental results which, due to a lack
of appropriate Al tracer, mostly concern the diffusion of admixture
elements substituting for the Al atoms in Ni;Al (see, e.g., [3] and
[25]). Higher diffusivity of Ni and lower value of @y; results from
the fact that in contrary to Al, Ni can diffuse within its own
sublattice.

The KMF simulation of ‘order—order’ kinetics yielded the follow-
ing results: the ‘order—order’ relaxation isotherms fitted the single
exponential

n(t) - n(oo) = exp (_Ej. (55)
1—mn(x) T

The linear Arrhenius plot of the dimensionless relaxation time t
24
22
20

©
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14
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6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

1/kT x10%

Fig. 7. Arrhenius plot of the relaxation time for the ‘order—order’ kinetics
in A;B (NizAl) evaluated with the exchange mechanism of atomic migra-
tion.
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(Fig. 7) indicates its standard temperature dependence:
ordering
T=1,exXp| —— |. 56
0 p( BT ] (56)

The slope a®™"" = 2,32.107'° J of the Arrhenius plot is, however,
again related to the thermodynamic activation energy Q°*""¢ for
the ‘order—order’ kinetics according to Eq. (26).

Using the estimation of Eq. (53), one obtains

Q™ =2.32-10" J + E¥ —(V,, +V,,)Z ~5.9-107" J,
which indicates that the activation energy for the ‘order—order’ ki-

netics in the simulated L1,-ordered A;B binary, is quite close to the
activation energy for the minority tracer (B") diffusion.

4.2, Simulations implemented with the vacancy mechanism
of atomic migration

The simulations were carried out with arbitrarily chosen fixed va-
cancy concentration of C, = 10™. Figure 8 shows the Arrhenius plots

6 6.5 7 7.5 9 9.5 10 10.5

8 85
1/kT x 1019

Fig. 8. Arrhenius plots of the A- and B-tracer diffusivities in A;B (NizAl)
evaluated with the vacancy mechanism of atomic migration.
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of the A- and B-tracer diffusivities.

As we remarked in Sec. 1, the constant value of the E*¥ makes
that its change linearly scales the thermodynamic activation energy.
The thermodynamic activation energy @, for the A-tracer diffusion
may thus be adjusted to the experimental value of @y by adding an
appropriate correction AE® to the slope a®*™™" of the Arrhenius
plot of the A-tracer diffusivity in Fig. 8:

Q, ~5.00-107"° J + AE™", 57)
In view of the value of @y; [24],
AE®™" ~ -0.20-107" J, (58)
and we obtain
Q, ~5.70-10"° J + AE™" =5.5x10" eV > Q,. (59)
This is in a perfect qualitative agreement with the result obtained
within the exchange mechanism of atomic migration.
A typical example of the ‘order—order’ relaxation isotherm is

shown in Fig. 9.
The simulated ‘order—order’ relaxation isotherms fitted weighted

real
= = = gpproximation|

T1—Teq
10— eq

O 1 1 1 1
0 2 4 6 8 10 12

time x10"?

Fig. 9. ‘Order—order’ relaxation isotherm of the A;B (NizAl) binary simu-
lated at T = 800 K with the vacancy mechanism for the atomic migration.
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sums of two exponentials:

) -—nl©) _ _t _t
—l—n(oo) —(1 Az)exp( Tlj+A2exp( TJ. (60)

Qualitatively this result coincides with the findings of Kozubski
and Oramus [23] obtained with Monte Carlo simulations. For exam-
ple, at T =800 K, the amplitude A, of the equals about 0.03, and
relaxation time 1, is almost two times shorter than t;: 1,/1, ~ 0.54.
Both relaxation times t; and t, fulfil the Arrhenius laws (Fig. 10).

The consistency of the approach requires that the activation en-
ergies for both modes of the ‘order—order’ relaxation are identified
with the slopes of the Arrhenius plots in Fig. 10 corrected with the
increment AE*® (Eq. 58). The procedure results in

Qlordering ~ 5.33 X 10—19 J, onrdering ~ 5.36 . 10*19 J. (61)

Similarly, as in the case of simulations implemented with the ex-
change mechanism of atomic migration, the thermodynamic activa-
tion energies for the ‘order—order’ relaxations resulted close to the
thermodynamic activation energy for the minority B-tracer diffu-

35 T T T T T T T

30

In(r)

20

4 8 8.05 8.1 8.15 l89.2
10
10 F 1 1 L 1 1
6.5 7 75 8 8.5 9 9.5 10
1/(kT) x10"

Fig. 10. Arrhenius plot of the relaxation times t; and t, of the ‘order—
order’ kinetics in A;B (NizAl) evaluated with the vacancy mechanism of
atomic migration.
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sion. It means, therefore, that the bottleneck of ordering is the mi-
gration of the minority component.

5. KMF-SIMULATION RESULTS FOR THE BINARY SYSTEM
WITH L1,-TYPE STRUCTURE

The KMF simulations were also applied for the modelling of chemi-
cal (atomic) ordering phenomena in the FePt intermetallic com-
pound. The compound orders in the f.c.c.-based L1,-type super-
structure where alternating monatomic Fe and Pt planes may show
three (100)-type orientations defining three variants of the super-
structure. The superstructure generates very high magnetocrystal-
line anisotropy which, in turn, makes nanostructures of the system
promising for the technology of high-density magnetic storage me-
dia. The free-standing nanolayers of the system have recently been
extensively modelled by means of atomistic Monte Carlo simulations
which revealed that the alternating Fe and Pt monatomic planes
spontaneously take the orientation perpendicular to the (100) free
surfaces limiting the layer [26, 27]. The process later observed also
experimentally [29] nucleates on the surface and discontinuously
advances inward the layer.

We used the nearest-neighbour pair interaction energies deduced
from ab initio calculations for FePt [29]: V4 = Viere = 0.01145 eV,
Veg= Vs = 0.08563 eV, V,, = Vip, =—0.06705 eV. Because of the dis-
continuous character of the phenomenon, its modelling required ap-
plication of the stochastic versions of KMF [9, 10] since this ver-
sion was specially designed to describe the ability of systems to
overcome energetic barriers.

The present modelling of FePt layers initially ordered in the L1,
variant with monatomic planes parallel to (100)-oriented free sur-
faces yielded the following main results.

1. On the free surfaces built of Fe-atoms, the reorientation proc-
ess spontaneously nucleated but its development stopped after hav-
ing covered two crystalline planes (one row of f.c.c. unit cells) adja-
cent to the surface (Fig. 11). An initial noise was necessary to initi-
ate such process on free surfaces built of Pt-atoms.

2. The reorientation front continued its propagation only if the
amplitude of the stochastic noise of frequencies exceeded some
threshold value (Fig. 12).

3. In a free cubic nanoparticle, the reorientation process led to a
complex mosaic of anti-phase domains of L1, variants (Fig. 13).

The above results of the KMF (SKMF) modelling of the nanos-
tructures FePt show that the method reproduces the Monte Carlo
results and, therefore, is adequate to model ordering phenomena
generating inhomogeneous superstructures.
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Moreover, simulation of the discontinuous process of the mona-
tomic plane reorientation in FePt indicated the importance of the
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Fig. 11. Reorientation of the Fe and Pt monatomic planes in the L1,-
ordered FePt layer initially limited by free iron surfaces.

&S g g g g g
Fig. 13. Complex mosaic of domains of the L1, variants in a cubic nano-
particle of FePt initially homogeneously ordered in one L1, variant.
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implementation of the stochastic noise, without which the phe-
nomenon neither nucleated nor advanced.

6. DISCUSSION AND CONCLUSIONS

Tracer diffusion and chemical ordering processes in two f.c.c. bi-
nary systems mimicking Ni;Al and FePt were simulated by means of
the kinetic mean field method. Some of the results were compared
with the ones previously obtained by simulating the same systems
with atomistic Monte Carlo algorithms.

Kinetic equations formulated within the KMF technique, as
originally proposed by G. Martin in 1990 [4], describe time evolu-
tion of configuration parameters which having a local character are,
however, averaged over macroscopic parts of the system (crystallo-
graphic planes, sublattices, etc.). Moreover, none of the known re-
alizations of the KMF method goes beyond the point approximation,
i.e., the atomic configurations are parameterized by average site
concentrations. In this way, any correlation effects are definitely
beyond the current version of the method.

The systems simulated within the present work were modelled
with fixed nearest-neighbour pair-interaction parameters fitted to
their equilibrium properties and also fixed saddle-point energy
whose value might also be fitted to the parameters of diffusion and
ordering kinetics. Time evolution of the system configuration due
to atomic migration was considered in two levels of approximation:
(i) by assuming a simple, but non-physical ‘direct exchange’ mecha-
nism and (ii) by approaching the reality and implementing the
model with the vacancy mechanism.

KMF is a timesaving method, more efficient than kinetic Monte
Carlo one. However, one should pay for everything! For the effec-
tiveness, we pay by neglecting the correlation factors and, in gen-
eral, time correlations for the atomic migration. As mentioned
above, kinetic mean-field models cannot pretend on predicting the
pre-exponential factors of tracer diffusion and ordering kinetics. It
is evident for the direct exchange mechanism since it is not realistic
mechanism. Moreover, this is true even for the vacancy mechanism
because mean-field approach excludes ‘memory’ about past atom-
vacancy exchanges. Therefore, in all our studies, we concentrated
on comparison of activation energies. Luckily, as demonstrated in
this paper, all qualitative results of KMF correlate with known Kki-
netic KMC results, at least for the f.c.c. alloys considered in this
paper.

In view of all the approximations described above, only relative
values of the evaluated parameters and the qualitative agreement
with experimental results might be considered as significant.
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Indeed, the modelling of the Ni- and Al-tracer diffusion in Ni;Al
yielded higher diffusivity of Ni—the effect anticipated in most of
the related investigations due to easy intrasublattice diffusion
channel for the Ni atoms in the L1,-type superstructure of Ni;Al. In
contrary to the experimental investigations suffering from a lack of
practically applicable Al tracers, the simulations made it possible
to model the process directly. In addition, the higher thermody-
namic activation energy for the Al'-tracer diffusion and its value
close to the simulated thermodynamic activation energy for the ‘or-
der—order’ kinetics in the same system is in agreement with the ex-
perimental results concerning ‘order—order’ kinetics and tracer dif-
fusion of admixtures substituting for the Al atoms in Nij;Al (see,
e.g., [3]).

It is interesting that the simulated ‘order—order’ relaxations in
Niz;Al showed either one, or two-time scales depending on whether
the ‘direct exchange’ or vacancy mechanism for the atomic migra-
tion was implemented. The presence of the two-time scales might
recall the results obtained for the Ni;Al by means of atomistic
Monte Carlo simulation [22]. It is supposed, however, that as the
effect reported in Ref. [22] originated from a specific correlation of
the atomic jumps (beyond the scope of the KMF formalism), the
short time scale revealed by the present KMF simulations stems
rather from the initial vacancy redistribution in the system.

The results obtained for the L1,-ordered FePt binary are of spe-
cial interest. As followed from the atomistic Monte Carlo simula-
tions [27], the process of the surface-induced re-orientation of the
Fe and Pt monatomic planes shows a definitely discontinuous char-
acter. In addition, its nucleation requires that the system passes
beyond some energetic barrier. Modelling of the phenomenon was,
therefore, a good test for the stochastic variant of the KMF [9],
[10]. The fact that implementation of the stochastic noise was nec-
essary to reproduce the monatomic plane re-orientation process by
KMF indicates the correctness of the method.

The KMF and SKMF methods, whose usefulness was indicated by
the results obtained within the present work, is now developed in
several directions. One of them is an extension of the mean-field
parameterization upon the point approximation that will make it
possible to apply the KMF (SKMF) to model much wider range of
structural transformations in materials.

ACKNOWLEDGEMENTS

This work was supported by: the Marie Curie International Re-
search Staff Exchange Scheme Fellowship IRSES within the 7th
European Community Framework Programme under Grant 612552;



232 V. M. BEZPALCHUK, R. KOZUBSKI, and A. M. GUSAK

Ministry of Education and Science of Ukraine under Grant
0115 U 000638 and Grant 0116 U 004691.

REFERENCES

1. K. Binder, Monte Carlo Methods in Statistical Physics (Berlin—Heidelberg:
Springer: 1986).

2. Diffusion in Crystalline Solids (Eds. G. E. Murch and A. S. Nowick)
(Orlando—New York: Academic Press: 2012).

3. R. Kozubski, Progress in Materials Science, 41, Nos. 1-2: 1 (1997).

4. G. Martin, Phys. Rev. B, 41, No. 4: 2279 (1990).

5. Z. Erdélyi, I. A. Szaby, and D. L. Beke, Phys. Rev. Lett., 89, No. 16: 165901
(2002).

6. Z. Erdélyi, M. Sladecek, L. M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga,
and B. Sepiol, Science, 306, No.5703: 1913 (2004).

7. Z. Erdélyi, G. L. Katona, and D. L. Beke, Phys. Rev. B, 69, No. 11: 113407
(2004).

8. Z. Erdélyi, D. L. Beke, and A. Taranovskyy, Appl. Phys. Lett., 92, No. 13:
133110 (2008).

9. N. V. Storozhuk, K. V. Sopiga, and A. M. Gusak, Phil. Mag., 93, No. 16:
1999 (2013).

10. Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Toman, B. Gajdics, and A. M.
Gusak, Computer Physics Communications, 204: 31 (2016).

11. J. M. Sanchez and D. De Fontaine, Phys. Rev. B, 25, No. 3: 1759 (1982).

12. A. G. Khachaturyan, Theory of Structural Transformations in Solids
(Mineola, N.Y.: Dover Publications: 2008).

13. L. Q. Chen and A. G. Khachaturyan, Phys. Rev. B, 46, No. 10: 5899 (1992).

14. Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Acta Materialia,
46, No. 9: 2983 (1998).

15. G. Inden and W. Pitsch, Materials Science and Technology. A Comprehensive
Treatment (Eds. R. W. Cahn, P. Hansen, and E. J. Kramer) (Weinheim:
VCH: 1991).

16. I. B. Borovsky, K. P. Gurov, I. D. Marchukova, and Yu. Eh. Ugaste, The
Interdiffusion Processes in Alloys (Moscow: Nauka: 1973) (in Russian).

17. A. Biborski, R. Kozubski, and V. Pierron-Bohnes, Diffusion Foundations, 2:
191 (2014).

18.  N. Bogoliubov, The Dynamical Theory in Statistical Physics (Delhi:
Hindustan Pub. Corp.: 1965).

19. K. P. Gurov and A. M. Gusak, Fiz. Met. Metalloved., 59, No. 6: 1062 (1985)
(in Russian).

20. O. M. Rymar and A. M. Gusak, Cherkasy University Bulletin: Physical and
Mathematical Sciences, 349, No. 16: 50 (2015) (in Ukrainian).

21. V. M. Bezpalchuk and A. M. Gusak, Metallofiz. Noveishie Tekhnol., 37, No.
12: 1583 (2015) (in Ukrainian).

22. V. M. Bezpalchuk, M. O. Pasichnyy, and A. M. Gusak, Metallofiz. Noveishie
Tekhnol., 38, No. 9: 1135 (2016) (in Ukrainian).

23. P. Oramus, R. Kozubski, V. Pierron-Bohnes, M. C. Cadeville, and
W. Pfeiler, Phys. Rev. B, 63, No. 17: 174109 (2001).


https://doi.org/10.1016/S0079-6425(97)00002-9
https://doi.org/10.1103/PhysRevB.41.2279
https://doi.org/10.1103/PhysRevLett.89.165901
https://doi.org/10.1103/PhysRevLett.89.165901
https://doi.org/10.1126/science.1104400
https://doi.org/10.1103/PhysRevB.69.113407
https://doi.org/10.1103/PhysRevB.69.113407
http://dx.doi.org/10.1063/1.2905334
http://dx.doi.org/10.1063/1.2905334
http://dx.doi.org/10.1080/14786435.2012.746793
http://dx.doi.org/10.1080/14786435.2012.746793
https://doi.org/10.1016/j.cpc.2016.03.003
https://doi.org/10.1103/PhysRevB.25.1759
https://doi.org/10.1103/PhysRevB.46.5899
https://doi.org/10.1016/S1359-6454(98)00015-9
https://doi.org/10.1016/S1359-6454(98)00015-9
https://doi.org/10.4028/www.scientific.net/DF.2.191
https://doi.org/10.4028/www.scientific.net/DF.2.191
https://doi.org/10.15407/mfint.37.12.1583
https://doi.org/10.15407/mfint.37.12.1583
https://doi.org/10.15407/mfint.38.09.1135
https://doi.org/10.15407/mfint.38.09.1135
https://doi.org/10.1103/PhysRevB.63.174109

SIMULATION OF THE DIFFUSION, BULK ORDERING, AND SURFACE REORDERING 233

24.

25.

26.

27.

28.

29.

S. T. Frank, U. Siodervall, and C. Herzig, Physica Status Solidi B, 191, No.
1: 45 (1995).

S. Divinski, S. Frank, U. Soédervall, and C. Herzig, Acta Materialia, 46, No.
12: 4369 (1998).

M. Koztowski, R. Kozubski, and C. Goyhenex, Diffusion Foundations, 1: 3
(2014).

M. Koztowski, R. Kozubski, C. Goyhenex, V. Pierron-Bohnes, M. Rennhofer,
and S. Malinov, Intermetallics, 17, No. 11: 907 (2009).

M. Rennhofer, M. Kozlowski, B. Laenens, B. Sepiol, R. Kozubski,

D. Smeets, and A. Vantomme, Intermetallics, 18, No. 11: 2069 (2010).

M. Koztowski, R. Kozubski, V. Pierron-Bohnes, and W. Pfeiler,
Computational Materials Science, 33, Nos. 1-3: 287 (2005).


https://doi.org/10.1002/pssb.2221910105
https://doi.org/10.1002/pssb.2221910105
https://doi.org/10.1016/S1359-6454(98)00109-8
https://doi.org/10.1016/S1359-6454(98)00109-8
https://doi.org/10.4028/www.scientific.net/DF.1.3
https://doi.org/10.4028/www.scientific.net/DF.1.3
https://doi.org/10.1016/j.intermet.2009.03.019
https://doi.org/10.1016/j.intermet.2010.06.011
http://dx.doi.org/10.1016/j.commatsci.2004.12.012

