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Introduction

AHnomauia. Y npeocmagneni pobomi KOpOMKO HABEOeHT Memoou aHAli3y YACO8UX PAOI8.
L]i memoou 0o360a510mb pO3POOUMU PIZHOMAHIMHI MOOET Haco8ux psdis (PO3KIAOAHHS,
ARIMA, wmemoo ®@yp’e, excnonenmue 3enadvcysanns ma GARCH). Tounicme
OMPUMAHUX MOOenell MONHCHA Nepegipumu 3a 00NOMO2010 HeB A30K (He@eauKi 8iOXUNIeHHS,
CMAayioHapHi, KOPeno8aHHs mMa HEKOPeno8ants) abo wisxom eepugpikayii npocnosis (ye
He npedcmasiene y oanomy oonuci). Taxooic He posenidaiombces Oazamo memoodis
IHMeNeKMyanbHO20 AHANI3Y OAHUX, SKI MOJCYMb OYMU 3ACMOCO8AHI 00 POHO08020
iHOeKCY Yacosux psois, HANPUKIAO, HEUPOHHI MEPECT MA 2eHeMUYHI AN2OPUMMU.
Knrwowuoei cnosa: R mosa, Oipoicose xomupysanns, WIG 20, @yp’e-ananiz, ARIMA,
GARCH, CENSUS.

Annomayusa. B oannou pabome xopomxo npedcmagnenvi Memoovl AHANU3A BPEMEHHBIX
PA006. Dmu memoObl NO360AAI0M PA3pabOmMams pasiuitsvie MOOeU 8PEMEHHbIX P008
(paznoocenue, ARIMA, memoo @ypwe, ceradicusanue no sxcnonenme u GARCH).
Tounocms nonyueHHbIX MOOeNell MONCHO NPOBEPUMb C NOMOWDBIO HEBA30K (Hebonvuiue
OMKNOHEHUsl, CMAYUOHAPHbIE, KOPPEeIUPOSAHHble U HEeKOPPEIUPOBaHHble) UIU NymeM
sepuduxayuu npoeHo306 (umo He 6yoem 30ecb npedcmasieno). Mol onyckaem makdice
MHOIHCECMBO MEMO008 UHMEIEKMYAIbHO20 AHANU3A OAHHBIX, KOMOpble MO2ym Oblmb
npuMeHeHvl K oHO08OMY UHOEKCY 6PEMEHHLIX PS008, MAaKue KaK HeupoHHule cemu U
2eHemuyeckue aneopummul.

Knrwouesvte cnosa: R szvik, Oupoicesvie komuposku, WIG20, ®@ypwve-ananusz, ARIMA,
GARCH, CENSUS.

Abstract. In this short note we would like to show the basic methods of analyzing time
series. This methods leads us to the different models of time series (decomposition,
ARIMA, Fourier techniques, exponentially smoothing and GARCH). The correctness of
the models obtained may be verified by behavior of residuals (small variance, stationary,
uncorrelated, normally distributes) or by verifying the predictions. This second method
not will be discussed here. We omit the lot of data mining methods, which may be applied
to the stock index time series, such as neural networks and genetic algorithms.

Keywords: R language, stock quotes, WIG20, Fourier analysis, ARIMA, GARCH,
CENSUS.

Having been invited to the first number of Mathematical Modeling in the Economy journal we
would like to present the classical basic sequence of proceeding with time series taken from Polish
WIG20 stock index. The observation was taken from the server BOS: fip.bossa.pl. We work with
quotations running every 30 minutes which are given in ASCII file. We present here the
decomposition on trend and seasonal term ([3]), the ARIMA model ([1, 15]), Fourier transformation
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techniques ([16, 17]), exponential smoothing techniques ([11, 8, 10, 9]) and GARCH models ([7,
4])

We investigate these data using the R language environment, a widely used free
environment for statistical and data mining analysis. We think, that the R environment is the best
tool for statistical and data mining modeling process. R is available from the url: http://cran.r-
project.org. The installation procedure is intuitive and easy.

There are different methods to prepare data for use in R, but the easiest one is to prepare
data in a spreadsheet in Excel, save this spreadsheet as CSV-file (cf. Table 1) and import by the

—_nn

following command read.csv("D:/wig20\ m30.csv", header=T, dec=",", sep=";").

Table 1 — Data taken to analysis

DATE | TIME | OPEN HIGH/LOW |CLOSE
20001117|103000| 1614 |1623|1614| 1623
20001117 |110000| 1623 1627|1623 | 1624
20001117 |113000| 1624 [1628]1622| 1628
20001117 |120000] 1628 |1631|1624 | 1624
20001117 |123000| 1624 1630|1624 | 1629
20001117 [130000| 1629 |1634]1629| 1633

In the R language we import the required libraries, show the direction with data ("D:/Data"), import
a CSV format file "wig20 m30.csv" and transform this OPEN column into time series object
(library ts). The frequency 3555 was taken from computations of the average number of
observations in every year.

Listing 1 — Introduction

library(quadprog)
library(zoo)
library(tseries)
library(forecast)
library(FinTS)
library(fGarch)
library(e1071)
library(nortest)
library(MASS)
setwd("D:/Data")
dane<-read.table("wig20 30.csv", sep =";", header =T)

dd < —ts(danefOPEN, start=1, freq=3555)

1. Data transformation

It is known, that operations of logarithm on time series and differentiations (we replace the given
series {x,k = 13 on {log(xy) —log(xy_, ).k = 1] putting %, = 1, eliminate autocorrelations and

nonstationarity of wide class time series. Here and in what follows log(x) = log_(x) denotes the
natural logarithm of x.

Another method of elimination of autocorrelations is Box-Cox transformation {f; (% ),k = 1} where
function f'is defined by
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log(x), ifar=0
The following fragment of R-code (Listing 2) presents, how we should choose % in the Box-

Cox transformation and how we should evaluate the degree of differentiations.

Listing 2 — Data transformation

par(mfcol = c¢(2,1))
boxcox(dd~time(dd))
boxcox(dd~time(dd), lambda=seq(-0.1, 0.5, 0.01))

lambda<-0.2

adf.test(dd, alternative="stationary")$p.value
kpss.test(dd)

adf.test(log(dd), alternative="stationary")$p.value
kpss.test(log(dd))

adf.test(diff(log(dd), differences=1), altern="stationary")$p.value
kpss.test(diff(log(dd), difference=1))
dif1<-diff(log(dd), differences=1)

dif2<-(dd"“lambda-1)/lambda

adf.test(dif2, alternative="stationary")$p.value

kpss.test(dif2)

adf.test(log(dif2), alternative="stationary")$p.value
kpss.test(log(dif2))

adf.test(diff(log(dif2), differences=1), altern="stationary")$p.value
kpss.test(diff(dif2, differences=1))

dif2<-diff(log(dif2), differences=1)

Analyzing the graph of functions, in order to find maximum, we see that & = 0.2 is the good
choice for our time series (cf. Figure 1).
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Figure 1 — Searching » for Box-Cox transformation

For the differentiation purpose we use two statistics:
- Augmented Dickey-Fuller (ADF) is a test for a unit root in a time series sample (H, - the

series has unit root),

- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the evaluation stationarity (H, - the
series is nonstationary).

Taken the significance level @ = 0.05 we accept the hypothesis that time series is stationary

and time series has not unit root, when computed p in ADF test is less than @ and in KPSS test is
greater than a. We accept such transformation. The sequential values of ADF and KPSS tests are
presented in Table 2.

Table 2 — The result of ADF and KPSS tests

Transformation ADF KPSS
dd 0.7201 0.01
log(dd) 0.7058 0.01
diff(log(dd), difference=1) 0.01 0.1
dif2 0.7162 0.01
log(dif2) 0.7020 | =0.05
diff(log(dif2, difference=1) 0.01 0.1

Thus we see that transformations:
difl, =log( =) —log(x,_y),

XI.{I -

0.2 XI}"

dif2, = log( 03



are possible best. All further computations in R were made both for dd time series as well as for
difl and dif2 time series, although we describe here the results which deal with dd series, only,
because the others turned out to be similar.

2. Census decomposition

The classical approach to time series is the decomposition of time series on the trend, seasonal
fluctuations and the rest. The decomposition is corrected, when the rest is behavior as "white noise",
i.e. it is normally distributed, uncorrelated, stationary with the possible small standard deviation. In
the R library stats the seasonal decomposition is produced by the command stl. The procedure is
described in [3]. Listing 3 produces three stl objects with the period 3555.

Listing 3 — Census

res0<-stl(dd, s.window="periodic')
res1<-stl(difl, s.window="periodic")
res2<-stl(dif2, s.window="periodic")

The Figure 2, presenting the decomposition terms, is produced by the command plot(res0).
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Figure 2 — Census decomposition



The problem how to choose the best period for the seasonal component is discussed in
section 5.

3. ARIMA

Model ARIMA(p,d,q) assumes that the time series {y,,t = 1} has forms

(1—¢,B——¢,B?)(1- B)y, =c+(1+6,F+-6,B%e, (1)

where c,{¢p —i,1 =i <p}{f,1=<i=<gq} are real numbers and E denotes the differentiation
operator, i.e. Bx, =x, —x,_y,B°x, =BX,—BX._, =x,—2x,_4y +x,_5,.... Here and in what
follows {e,,t = 1] denotes the sequence of independent identically distributed random variables
drawn from standard normal distribution. The parameters p, d,q are chosen as a result of the
analysis of Listing 4.

Listing 4 — ARIMA

wynAR=data.frame(i=c(0), d=c(0), j=c(0), AIC=c(0))
for (in 0:3) {
for (d in 0:3) {
for (j in 0:3) {

if (i+d+j>0) {

wynAR<-rbind(wynAR, c¢(i,d,j,
Arima(dd, order=c(i,d,j))$aicc))

S

We choose the methods with the minimal AIC (Akaike information criterion) coefficient. For any
statistical model, the AIC value is

AIC =2k — 2log(L),

where k is the number of parameters in the model, and L is the maximized value of the likelihood

function for the model. AIC stands for the compromise between complexity and quality of the
model. Lower coefficients than 38527 are summarized in Table 3.

Table 3 — AIC coefficient

AIC
385256.9
385263.1
385268.1
385268.1
385268.4
385268.4
385269.5
385269.5
385269.5
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This leads us to the model ARO<-arima(dd, order=c(2,0,3)) and similarly

Listing 5 — ARIMA

ARO<-arima(dd, order=c(2,0,3))S$residuals
AR 1<-arima(difl, order=c(0,0,1))$residuals
AR2<-arima(dif2, order=c(0,0,1))$residuals

The  ARIMA  model obtained for  the dd has computed  coefficients
ary = 0.0593,arn, = 0.9402,ma, = 0.9150,ma, = —0.0282,may = 0.0039,c = 22459831

thus the series {x,,t = 17 is approximated by
(1— 0.0593B — 0.9402B%)y, = 2245.9831+ (1 + 0.91508 — 0.0282B% + 0.00398%)e,
or equivalently

0.0005y, = )
= 22459831 — 1.9397y,_4 + 0.9402y,_, + 11.8868e, — 0.8703¢,_, — 0.0399%¢,_,
— 0.003%e,_,.

Equation (2) allows us to compute sequential values of {y,,t =3} assuming knowledge
¥, = x,,¥; = x,. The results of ARIMA approximations may be observed in Figure 3 produced by
tsdiag command.
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Figure 3 — ARIMA(2,0,3) model

The acf and similar pacf command product the values of autocorrelations and partial
autocorrelations of residuals of models. The presented here figure of acf is good. Box-Ljung test (cf.
[2,13]) investigates whether any of a group of autocorrelations of a time series are different from
zero (null hypothesis - all autocorrelations equal 0). In our result the autocorrelations of one two
and three order are zero, the remaining ones are nonequal. This problem may be inappropriately
chosen period.

In order to choose the parameters of the ARIMA model we may use the command
auto.arima(dd) too.

4. Fourier analysis - identification of season

A Fourier Transform converts a wave from the time domain into the frequency domain. Formally, it
maps the sequence {x,,1 < %k < N} into the complex sequence {X,,1 = k = N} by the formula:

N-1

Xi'{+1 = Z xn+le_gﬂi.l{ﬂ,-'l}f’ 1 E k i: N_.

n=0



where i = v/—1. The inverse mapping may be counted by

N=1
— § 2mikn/ N
xk+1_ X?‘!'l‘le ! ;1::_:k::_:N.
n=0

To perform Fourier Transform in R we use fft(x) command whereas the inverse transformation may
be obtained by fft(X, inverse=TRUE)/length(X) because the inverse series is non normalized. The
big values of | X, | suggest the existence of period k. If we have some values of periods k4, k5, ... Kk;,

say, then the true period is equal lowest common multiply of numbers k4, k,, ...k;. Therefore we

write in R functions ged, lcm, Ged, Lem - the great common divisor and lowest common multiply
two (gcd, lem) and arbitrary (Ged, Lem) real numbers. Function TFrq makes Fast Fourier
Transformation, sorts obtained modulus of complex numbers in a decreasing order and packs all to
returned data frame.

Listing 6 — Fourier procedures

gcd <- function(a,b) ifelse (b==0, a, gcd(b, a %% b))
lcm <- function(a,b) ifelse (b==0, 0, a*b/gcd(b, a %% b))
Gcd <- function(a) {
La<-rep(a[1],length(a))
for (1 in 2:length(a)) La[l]<-gcd(La[l-1], a[l])
return(La)

Lcem <- function(a) {
La<-rep(a[1],length(a))
for (I in 2:length(a)) {
La[l]<-La[l-1]*a[1]/gcd(La[l-1], a[l]) }
return(La)

TFrq <- function(danet,k,l) {

N<-length(danet)

XTv<-fft(danet)

XT<-Mod(XTv)

XT1<-time(XT)

Y T<-sort(as.numeric(XT), index.return=T, decreasing=T)

YTv<-YTSx[YTSix<N/1][1:k]

YTn<-YTSix[YTSix<N/1][1:k]

if (k==1) return(data.frame("valuesMOD"=YTv[1],"values"=XTv[YTn[1]],
"numbers"=XT1[YTn[1]],"num"=YTn[1],"NWW"=YTn[1])) else {
return(data.frame("valuesMOD"=YTv,"values"=XTv[YTn],

"numbers"=XT1[YTn],"num"=YTn,"NWW"=Lcm(YTn))) }

}




Using TFrq(dd,10,2) and observed obtained results allows us to make a conclusion, that
good period for dd is 60 whereas for difl and dif2 is 15264. We correct the freq option in
definitions of time series and repeat Census procedure.

Listing 7 — Fourier analysis

dd1<-ts(dd,freq=60)

difl1<-ts(dif1, freq=15264)

dif2<-ts(dif2, freq=15264)

CENFO0<-stl(dd1, s.window="periodic")$time.series[,3]
CENF1<-stl(difl, s.window="periodic")$time.series[,3]
CENF2<-stl(dif2, s.window="periodic")$time.series|[,3]

5. Exponential smoothing methods

There are other methods of decomposition of time series. In the library forecast there is described
class ets which allows us to do exponential smoothing state space model (cf. [11, 8, 10]) At first,
however, we must evaluate three-character string identifying method. The first letter denotes the
error type ("A", "M" or "Z"); the second letter denotes the trend type ("N","A","M" or "Z"); and the
third letter denotes the season type ("N","A","M" or "Z"). In all cases, "N"=none, "A"=additive,
"M"=multiplicative and "Z"=automatically selected. So, for example, "ANN" is simple exponential
smoothing with additive errors, "MAM" is multiplicative Holt-Winters’ method with multiplicative
errors, and so on. If parameter damped is TRUE, we use a damped trend (either additive or
multiplicative). The ets without parameters with except time series allows us to choose the better
model. The following session produces the best models for our time series

Listing 8 — ETS model

ets(dd) # model M,Md,N

ets(difl) # model A,N,N

ets(dif2) # model A,Ad,N

modl1<-ets(dd, model="MMN", damped=TRUE)
mod2<-ets(difl, model="ANN", damped=FALSE)
mod3<-ets(dif2, model="AAN", damped=TRUE)
EXP0<-mod1$residuals

EXP1<-mod2$residuals

EXP2<-mod3$residuals

In computations there arises a problem with seasonality, which should be smaller than 24 (in our
examples are greater). In consequence the elimination of seasonality was omitted. The
decomposition we observe on diagram by plot (modl) (cf. Figure 4) whereas the basic diagnostic
may be obtained by tsdiag (modl).
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Figure 4 — ETS model
6. Comparison

To sum up we have four models: CENSUS (CEN), ARIMA (AR), CENSUS with period obtained
by Fourier analysis (CENF) and exponential smoothing model (EXP). By commands (cf. Listing 9)

Listing 9 — Comparison

nn

plot_colors <- c("blue","red","green","yellow")
max_y<-max(max(CENO), max(AR0), max(CENFO0), max(EXPO0))
par(mfcol=c(2,2))

plot(CENO, type="0", col=plot_colors[1])

plot(ARO, type="0", pch=22, Ity=2, col=plot_colors[2])

plot(CENFO, type="0", pch=23, lty=3, col=plot_colors[3])
plot(EXPO, type="0", pch=4, Ity=5, col=plot_colors[4])

we produce the residuals of considered methods (see Figure 5).
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Figure 5 — Comparison residuals of CEN, AR, CENF and EXP methods

Additionally the tests of Shapiro-Wilks and Jarque-Bera show that all residuals are not normal. The
analysis of standard deviations of residuals (120.6,8.6, 18.5,8.6 for CEN, AR, CENF, EXP,
respectively) leads us to conclusion that ARIMA 1 EXP methods are better than both CENSUS. But
all methods don’t work "well". The tests results are bad.

7. GARCH models

It seems that the reason for the conclusion of previous section is volatility clustering Volatility
clustering — the phenomenon of there being periods of relative calm and periods of high volatility
— is a seemingly universal attribute of market data. There is no universally accepted explanation of

it. GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) models volatility
clustering. It does not explain it. GARCH (m,r) model assumes that the process {v,,t = 1} satisfies

Ve = T8,

™ s
‘7:2 =, +foe}’g—f +Z.IB_;' JE—:‘
i=1 i=1



fort=m+ 1,m + 2, ... Contrary to ARIMA and EXP models we assume that variance of process
{y,,t = 1} is not constants and dependent of time. We denote this variance by &,2. In R we ask if

the time series has GARCH structure by ArchTest(dd) with null hypothesis that considered series
have not GARCH structure. For all the three considered time series dd,difl, dif2 we get

p —value < 2.2 * 107'® such that we reject null hypothesis and use GARCH methods for

modeling WIG behaviour. In the library FGarch we use garch.fit. We write function to test opitmal
parameters for GARCH:

Listing 10 — GARCH parameters testing

fGAR <- function(danet) {
gwyn<-data.frame(Ni=c(0), Nj=c(0), NAIC=c(0.0), NBIC=c(0.0),
NSIC=¢(0.0), NHQIC=¢(0.0), BLjungX=c(0.0), BLdf=c(0),
BLpvalue=c(0.0), ShaX=c(0.0), Shapvalue=c(0.0),
ADX=¢(0.0), ADpvalue=c(0.0), LillX=c(0.0), Lillpvalue=c(0.0),
SFX=c(0.0), SFpvalue=c(0.0), SD=c(0.0))
for (iin 1:4) {
for (j in 0:6) {
form<-as.formula(paste("danet~garch(",i,",",j,")",sep=""))
wd<-garchFit(form)
wdl<-AutocorTest(residuals(wd))
wml<-shapiro.test(residuals(wd))
wm2<-ad.test(residuals(wd))
wm3<-lillie.test(residuals(wd))
wmd<-sf.test(residuals(wd))
gwyn<-rbind(gwyn, c(i,j,wd@fit$ics[[1]],wd@fitSics[[2]],
wd@fitSics[[3]],wd@fitSics[[4]],wd1Sstatistic[[1]],
wd1$parameter[[ 1]], wd1S$p.value, wml$statistic[[1]],
wml $p.value, wm2$statistic[[1]], wm2$p.value,
wm3$statistic[[1]], wm3S$p.value, wmd$statistic[[1]],
wmd$p.value, sd(residuals(wd))))

3y
return(gwyn)

}

obtaining the best GARCH models garch(1,3) for all the three series. Creating GARCH models and
using method summary we see that in the case of time series dd the residuals are not normal
(Shapiro-Wilk test and Jarque-Bera test) but all autocorrelations are equal to zero (Ljung-Box test).
The model is as follows:

y. = —0.0038 + 0.1906y,_, + 0,e,,

62 = 0.0113 + 0.1906e2 , + 0.388202 , + 0.376502 ,,

and by method plot we may obtain the 13 diagnostic plots (for eg. cf. Figure 6).
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