УДК 544.77.022.82, 54-145.2

РОЛЬ ВОДЫ В ПРОЦЕССАХ СТРУКТУРООБРАЗОВАНИЯ БИОПОЛИМЕРОВ

В.В. Манк¹, О.П. Мельник², В.В. Трачевский³

¹Национальный университет биоресурсов и природопользования, ²Институт биоколлоидной химии им. Ф.Д. Овчаренко НАН Украины, ³Институт металлофизики им. Г.С. Курдюмова НАН Украины, г. Киев

Поступила 22.04.2011 г.

Исследована роль воды в стабилизации упорядоченной структуры биологической макромолекулы – полисахарида крахмала методами ЯМР и ИК-спектроскопии. Показано, что молекулы воды играют важную роль в образовании спиралеподобной структуры биополимера.

Ключевые слова: водородные связи, ИК- и ЯМР - спектроскопии, квазикристаллическое состояние, макромолекулы крахмала.

Введение. Природные полимеры, в отличие от синтетических, характеризуются частично упорядоченной спиральной структурой, которая формируется в процессе их синтеза и роста. Такая особенность биологических макромолекул обусловлена, прежде всего, их хиральным строением, сопряженным с существованием водородных связей с включенными в структуру молекулами воды.

Основные цепи биополимеров представляют собой последовательность C - C - C-связей, образующих друг с другом определенные валентные углы, которые незначительно деформируются в процессе тепловых колебаний атомов и молекул. Вращение звеньев цепи вокруг направления соседних связей не свободно, а сводится к конформационным переходам с минимумом потенциальной энергии. Отсутствие свободы вращения звеньев – следствие существования сильных взаимодействий между близко расположенными группами полимера [1, 2].

Устойчивость структуры биополимеров обеспечивают межфрагментные связи, максимальное количество которых образуется при свертывании полимерной цепи в конформации с оптимальным соотношением поверхности к объему и организацией координационной насыщенности донорных атомов функциональных групп и входящих в состав композиций молекул воды [2].

© В.В. МАНК, О.П. МЕЛЬНИК, В.В. ТРАЧЕВСКИЙ, 2011

666

Каждая структурная модификация молекул биополимеров характеризуется набором жестких конформаций цепи. Это приводит к значительным отклонениям пространственной организации макромолекул от структуры клубка. Причины таких особенностей заключены в полифункциональности молекул биополимеров. Взаимодействие групп различной природы приводит к возникновению устойчивых внутримолекулярных связей. В простейших случаях эти связи обусловливают свернутые (приближающиеся к глобулярным) конформации цепи. В других случаях они приводят к возникновению конформационных состояний цепи, аналогичных линейным кристаллам.

Спиралевидная форма полимерной цепи обеспечивает ее наибольшую энергетическую стабильность. Для молекулы крахмала характерной является α-спираль Полинга – Кори, в которой на каждый виток приходится 3,6 мономерного звена и, в среднем, три водородные связи, стабилизирующие виток [2, 3].

При сближении витки спирали полимерной цепи взаимодействуют между собой посредством водородных связей. Необходимо отметить, что даже в наиболее плотно свернутых состояниях макромолекул в атомно-молекулярной архитектуре существуют пустоты, соизмеримые с размерами молекул. Вода может заполнять такого рода пустоты в макромолекуле и в результате становится составной частью макромолекулярной глобулы [2–4].

Макромолекулярная глобула размером R имеет центры, участвующие в образовании водородных связей двух различных типов. В наружном слое толщиной d и объемом $4/3\pi [R^3 - (R - d)^3]$ находятся поверхностные центры макромолекулы биополимера [1], и любая боковая цепь, заключенная в этом объеме, является сольватированной. Во внутреннем сферическом объеме $4/3\pi (R - d)^3$ содержатся активные центры. Боковые цепи макромолекулы, заключенные в этом объеме, не контактируют с растворителем, находясь в малополярном окружении.

При фиксированном значении *d* соотношение между внутренним и наружным объемами возрастает с увеличением *R*, так что число внутренних центров увеличивается с возрастанием размера свернутой глобулы. Однако в дальнейшем, при достижении критических размеров глобулы, число этих центров не изменяется [1].

Можно предположить, что водородные связи между функциональными группами звеньев цепи несколько слабее связей, образующихся между молекулами воды, соединенными с активными центрами биополимера, и молекулами воды в жидкой фазе.

Как известно, в диапазоне 40 – 70°С наблюдается изменение характера межмолекулярных взаимодействий в биомакромолекулах и происходит преобразование их упорядоченной структуры [1, 2, 5]. Цель данной работы — исследование роли воды в стабилизации упорядоченной структуры макромолекулы крахмала, который является одним из наиболее распространенных представителей биополимеров.

Методика эксперимента. При проведении опытов готовили 10%ные суспензии нативного картофельного крахмала (36% амилозы) в дистиллированной воде и выдерживали их в термостате в течение 30 мин при 25; 70; 90°С. После этого образцы высушивали до достижения гидратного равновесия при комнатной температуре. Твердофазный остаток измельчали до получения порошка.

Спектры ИК-поглощения крахмалов регистрировали на Фурье - спектрометре Vector-22 ("Bruker", Германия). Для этого исследуемые образцы прессовали в таблетку с КВг.

Спектры ЯМР ¹Н и ¹³С твердых образцов и растворов крахмала в тяжелой воде записывали при комнатной температуре на импульсном спектрометре Avance-400 ("Bruker", Германия) с рабочей частотой 400 МГц.

Результаты и их обсуждение. В ИК-спектрах крахмалов (рис. 1) наблюдаются широкие полосы поглощения валентных колебаний гидроксильных групп в области $3000 - 3700 \text{ см}^{-1}$, а также ряд полос в низкочастотной области от 2000 до 400 см⁻¹, относящихся к колебаниям других групп молекул. Проявление всех типов ИК-поглощения гидроксильной группы зависит от того, к какому углеродному атому звена полимера присоединена гидроксильная группа – первичному, вторичному или третичному, является ли эта группа свободной либо она связана внутримолекулярными или межмолекулярными водородными связями, какова сила этих водородных связей. Частота валентных колебаний убывает, а деформационных возрастает при усилении водородной связи. Смещение полос, связанных с группой ОН, которая является донором протонов, больше, чем смещение полос, связанных с группами – акцепторами протонов (например, C = O) [6].

Сопоставление ИК-спектров образцов крахмала, обработанных при различных температурах, показывает, что с повышением температуры полоса валентных колебаний групп ОН существенно сужается и смещается в высокочастотную область спектра. Это свидетельствует о том, что при тепловой обработке крахмала снижается доля структурно связанных молекул воды. Тепловое преобразование квазикристаллической структуры молекул крахмала, четко фиксируемое на рентгеновских дифрактограммах [5], связано с перераспределением в системе форм участия донорных атомов. Прочное связывание молекул воды внутри спиральной структуры макромолекул обусловливает дополнительную устойчивость кристаллогидрата.

Незначительные изменения наблюдаются при тепловой обработке крахмала и в других областях ИК-спектра. Так, полоса при 575 см⁻¹, которая соответствует колебаниям цепочки C - C - C...-связей [6 – 8], не обнаруживается уже при обработке образца при 90°С (см. рис. 1, δ). Это значит, что

углеводородные цепочки получают свободу движений после изменения пространственной организации молекул. В результате увеличения "теплового напряжения" в местах слабых взаимодействий, удерживающих цепь, структура спирали трансформируется в развёрнутую форму макромолекулы.

Рис. 1. ИК-спектры картофельного крахмала: а – нативного, б – термообработанного при 90°С.

ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6

В ИК-спектрах дальней области наблюдаются полосы поглощения при 5180; 4790; 4300 и 4000 см⁻¹, относящиеся к составным колебаниям молекул и обертонам [6, 7]. Незначительные изменения в спектрах образцов, подвергшихся тепловой обработке, характерны только для полосы 4000 см⁻¹, интенсивность которой уменьшается, что также является результатом изменений характера колебаний С – С – С...-связей, отмеченных выше.

Спектроскопия ЯМР – один из основных методов получения информации о структуре и динамике воды вблизи границы раздела фаз. Большие различия в ширине и форме линий спектров магнитных ядер молекул, находящихся в фиксированном положении в пространстве и подвижных, позволяют количественно оценить долю молекул в разных состояниях, в том числе в гетерогенных дисперсных системах [9–11].

В спектрах ЯМР ¹Н воздушно-сухих образцов крахмала, обработанных при различных температурах, наблюдается широкая и узкая полосы поглощения протонов полисахарида и воды (рис. 2). Широкая полоса относится к протонам углеводородных фрагментов и воды, молекулы которой жестко фиксированы в пространстве твердой матрицы. Полуширина спектра молекул крахмала составляет ~ 4, а кристаллизационной воды – ~ 80 кГц. В узкую линию полушириной ~ 1 Гц вносят вклад протоны подвижной воды, которая может находиться в разных состояниях в крахмале (адсорбционно-связанная, вода в капиллярах и свободная).

*Рис. 2. Характерный спектр ЯМР*¹*Н* воздушно-сухого образца нативного крахмала.

Соотношение интегральных интенсивностей узкой I_y и широкой I_m линий ЯМР можно использовать для оценки доли молекул воды, жестко связанной в структуре кристаллогидрата полисахарида и находящейся в движении. В случае отсутствия молекул воды в структуре кристаллогидрата соотношение узкой и широкой линий составляет $1,8\cdot10^{-2}$ w, где w – влажность образца в массовых процентах [12]. Если часть воды n находится в структуре кристаллогидрата, а m – в подвижной фазе, причем n + m = 1, соотношение узкой и широкой полос поглощения составляет:

$$\Theta = \frac{I_{y}}{I_{m}} = \frac{1 - n}{\frac{55,53}{w} + n}.$$
 (1)

При сопоставлении параметров экспериментальных спектров образцов крахмала в соответствии с уравнением (1) можно определить количество кристаллизационной воды в структуре полисахаридов. Так, при температуре их обработки 20°С оно составляет 1,4; 70° C – 1,23 и 90°C – 1,08. Параллельно с этим, согласно данным термического анализа, уменьшается общее количество воды в крахмале от 15% для исходного образца до 9% термообработанного (при 90°С). Эти сведения указывают на разрушение частично упорядоченной структуры крахмала при его нагревании > 60°С с разделением фазы воды и полимера. К такому же результату пришли авторы [2] на основании анализа релаксационных характеристик ядер водорода в крахмалалах. Иными словами, происходит плавление кристаллогидрата, сопровождающееся выделением определенного количества тепла [2, 13].

Вышеизложенное подтверждается данными анализа спектров ЯМР ¹Н и ¹³С водных растворов исследуемых полисахаридов. Так, в протонных спектрах ЯМР растворов исходного крахмала (рис. 3) наблюдается практически одна интенсивная линия поглощения в области $\delta = 5$ ppm, тогда как в спектрах растворов термообработанного при 90°С крахмала, наряду с сигналом воды, четко выделяются сигналы протонов полисахаридных звеньев. Это свидетельствует о свободных движениях отдельных звеньев полимера после преобразования его квазикристаллической структуры под действием температуры.

На рис. 4 представлены спектры ЯМР ¹³С растворов исходного и термообработанного при 90°С крахмала. Как и в протонных спектрах, при термообработке спектры крахмала становятся более растянутыми по горизонтали, что также связано с ростом подвижности углеводородных звеньев полимера после его разрушения. На указанном рисунке четко видны полосы поглощения отдельных типов ядер углерода звеньев полисахарида. Можно было ожидать заметных смещений сигналов ЯМР ¹³С после удаления кристаллогидратной воды из структуры крахмала. Однако при сравнении полученных нами и известных [14, 15] спектров крахмалов разного происхождения и отдельно для амилозы и амилопектина [16, 17] принципиальных различий не наблюдается. Это указывает на то, что образование водородных связей молекул воды с атомами кислорода звеньев полимера не сильно влияет на перераспределение электронной плотности вокруг атомов углерода.

Рис. 3. Спектры ЯМР ¹Н водных растворов крахмалов: 1 – нативного, 2 – термообработанного при 90°С.

Рис. 4. Спектры ЯМР ¹³С водных растворов крахмалов: 1 – нативного, 2 – термообработанного при 90°С.

Следует отметить, что большего различия можно ожидать при ñðàâí áí èè ßÌ Đñï åêòðî â ¹³С амилозы и амилопектина, поскольку звенья этих полисахаридов по-разному связаны между собою в цепях. Так, амилоза представляет собой полимер, в котором глюкозидные звенья соединены α -1,4-связями, а амилопектин – α -1,4- и 1,6-связями.

Сходство спектров этих полимеров может указывать на незначительное изменение электронного окружения атомов углерода в центрах соединения звеньев полимера, в то время как взаимодействие амилопектина и амилозы с азидом приводит к смещению сигнала ЯМР углерода полисахарида в положении С-6 на 10 ppm, что свидетельствует о сильном изменении электронного окружения атома углерода при взаимодействии с азотом [15].

Выводы. Таким образом, на основании полученных данных можно заключить, что полимерные макромолекулы крахмала существуют в квазикристаллическом состоянии в форме спиралей, положение витков которых стабилизировано встроенными в виде мостиков молекулами воды. Повышение температуры > 60°С приводит к ослаблению водородных связей между полимерными звеньями и молекулами воды, вследствие чего происходит структурная перестройка кристаллогидрата крахмала или его плавление. Освободившиеся из кристаллической структуры крахмала молекулы воды переходят в подвижную адсорбционную фазу.

Резюме. Досліджено роль води в стабілізації впорядкованої структури біологічної макромолекули – полісахариду крохмалю методами ЯМР та ІЧ-спектроскопії. Показано, що молекули води виконують важливу роль в утворенні спіралеподібної структури біополімера.

V.V. Mank, O.P. Melnyk, V.V. Trachevsky

ROLE OF WATER IN THE PROCESS OF STRUCTURE OF BIOPOLYMERS

Summary

This paper studies the role of water in stabilizing the ordered structure of biological macromolecules – polysaccharide starch by NMR and IR spectroscopy. It is shown that water molecules play an important role in the formation of spiral-like structures of biopolymers.

- 1. Структура и стабильность биологических макромолекул / Под ред. М.В.Волькенштейна. М.: Мир, 1973. 584 с.
- 2. *Starches* : characterization, properties, and applications / Ed. C.A. Bertolini. New York: Taylor and Francis Group, LLC, 2010. 276 p.
- 3. *Шульц Г., Ширмер Р.* Принципы структурной организации белков. М.: Мир, 1982. 360 с.
- 4. *Цветков В.Н., Эскин В.Е., Френкель С.Я.* Структура макромолекул в растворах. М.: Наука, 1964. 720 с.
- 5. *Мельник О.П., Манк В.В.* // Вопр. химии и хим.технологии. 2010. №2. С. 49 52.
- 6. *Накамото К.* ИК-спектры и спектры КР неорганических и координационных соединений. – М.: Мир, 1991. – 536 с.
- Наканиси К. Инфракрасные спектры и строение органических соединений. М.: Мир, 1965. – 209 с.
- 8. *Рощина Е.В., Суконкина Е.Б., Литвяк В.В., Петюшев Н.Н., Москва В.В.* // Хранение и перераб. сельхозсырья. 2009. №5. С. 56 59.
- 9. Воловенко Ю.М., Туров О.В. Ядерний магнітний резонанс. К.: Ірпінь, 2007. 480 с.
- 10. *Манк В.В., Лебовка Н.И.* Спектроскопия ядерного магнитного резонанса в гетерогенних системах. – Киев: Наук. думка, 1988. – 202 с.
- 11. *Гунько В.М., Туров В.В., Горбик П.П.* Вода на межфазной границе. Киев: Наук. думка, 2009. 694 с.
- 12. *Манк В.В., Кобылинская Е.В., Ковбаса В.Н.* // Пищ. ингредиенты. Сырье и добавки. 1999. № 2. С. 14 15.
- 13. Берштейн В.А., Егоров В.М. Дифференциальная сканирующая калориметрия в физикохимии полимеров. Л.: Химия, 1990. 256 с.
- 14. *Moo-Yeol Baik, Dickinson L.C., Chinachoti P. //* Cereal Chem. 2002. **83**. P. 407 411.
- Justin Shey, Kevin M. Holtman, Rosalind Y. Wong. // Carbohydrate Polymers. 2006. – 65. – P. 529 – 534.
- 16. Smits A. L. M., Ruhnau F. C., Johannes F. G. // Starch/Starke. 1998. 50, N11/12. P. 478 483.
- Morgan K. R., Furneaux R. H., Stanley R. A. // Carbohydrate Res. 1992. –
 235. P. 15 22.