Электромагнитные поверхностные волны в слоистых проводниках

В. М. Гохфельд

Донецкий физико-технический институт им. А. А. Галкина НАН Украины ул. Розы Люксембург, 72, г. Донецк, 83114, Украина E-mail: gokhfeld@host.dipt.donetsk.ua

Статья поступила в редакцию 26 октября 2001 г.

С помощью выведенного интегрального дисперсионного уравнения рассмотрены спектральные и релаксационные свойства поверхностных плазменных колебаний в слоистых проводниках с квазидвумерным характером движения носителей заряда. Результаты демонстрируют значительные отличия от случая изотропного металла.

За допомогою виведеного інтегрального дисперсійного рівняння розглянуто спектральні та релаксаційні властивості поверхневих плазмових коливань у шаруватих провідниках з квазідвовимірним характером руху носіїв заряду. Результати демонструють значні відмінності від випадку ізотропного металу.

PACS: 73.20.Mf

1. Введение

Поверхностные плазменные колебания, т.е. высокочастотные электромагнитные волны рэлеевского типа [1,2], содержащие продольную компоненту электрического поля и локализованные вблизи границы раздела металл-вакуум (либо, вообще, проводник-диэлектрик), наблюдались и получили качественно ясную теоретическую интерпретацию [3] уже несколько десятилетий назад. Обзоры [4,5] и специальные главы в монографии [6] (см. также цитированную в них литературу) дают достаточно подробное изложение вопроса. Однако развитая там гидродинамическая теория фактически базируется на изотропной модели металла Друде-Лоренца и лишь в общих чертах может быть применена к реальным проводящим кристаллам. В настоящее время внимание исследователей привлечено к синтетическим металлоподобным соединениям, в том числе органического происхождения, обладающим ярко выраженной слоистой либо цепочечной кристаллической структурой и резкой — достигающей

нескольких порядков — анизотропией как статической, так и высокочастотной электропроводности. Как правило, такие объекты характеризуются эффективно сниженной размерностью электронного энергетического спектра, т.е. открытыми поверхностями Ферми типа «гофрированный цилиндр» либо «гофрированная плоскость» [7].

Последовательный учет влияния анизотропии электронного закона дисперсии на свойства поверхностных плазмонов может быть выполнен лишь в рамках микроскопического описания, основанного на кинетическом уравнении и корректном решении граничной задачи для металлического полупространства^{*}. Такой подход приводит к интегральному дисперсионному уравнению, решая которое (в каждом из геометрически различных частных случаев) можно единым образом описать как дисперсию, так и затухание приповерхностных плазменных волн.

При некоторых упрощающих предположениях это и будет сделано в настоящей работе для слоистого проводника с квазидвумерным энергетическим спектром носителей заряда.

* Плазменные волны в тонких пленках, а также квантовые эффекты в данной работе не рассматриваются.

2. Вывод дисперсионного уравнения

Пусть волновой вектор **k** и внутренняя нормаль **n** к плоской поверхности образца направлены вдоль главных — как предполагается, взаимно перпендикулярных — кристаллографических осей. Мы рассмотрим так называемую ТМ-волну, в которой вектор электрического поля **E** лежит в плоскости (**k**,**n**). Будем исходить из уравнения Максвелла

$$\nabla \cdot \left(\frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{j}\right) = 0 \tag{1}$$

и (пока) пренебрежем запаздыванием, связанным с конечностью скорости света, оставляя в определении поля лишь скалярный потенциал: $\mathbf{E} = -\nabla \boldsymbol{\varphi}$. Тогда в пустом полупространстве $x_n < 0$ монохроматическая волна имеет вид

$$\mathbf{E} = \begin{pmatrix} E_k \\ E_n \end{pmatrix} = E_n(-0) \begin{pmatrix} i \\ 1 \end{pmatrix} \exp(i\mathbf{k}\cdot\mathbf{x} + k\mathbf{n}\cdot\mathbf{x} - i\omega t) \quad (2)$$

(в дальнейших формулах общий временной множитель $\exp(-i\omega t)$ будем опускать). Внутри же металла ($x_n \ge 0$) плотность тока

$$\mathbf{j} \equiv -e \langle \mathbf{v}\psi \rangle \equiv -\frac{2e}{\left(2\pi\hbar\right)^3} \int \frac{dS_F}{v} \mathbf{v}\psi \qquad (3)$$

следует вычислить с помощью кинетического уравнения

$$v_n \frac{\partial \Psi}{\partial x_n} + i \left(\mathbf{k} \cdot \mathbf{v} - \omega - \frac{i}{\tau} \right) \Psi = -e \mathbf{v} \cdot \mathbf{E}$$
(4)

для неравновесной части ψ электронной функции распределения. Здесь **v** — скорость электрона; усреднение в (3) производится по ферми-поверхности S_F . Таким образом, принимается представление о «резкой» границе металла, снаружи которой ток проводимости отсутствует. Для других проводящих объектов, например для разреженной плазмы, более реалистичной может оказаться модель макроскопически «нерезкой» границы, использованная в [8]. Кстати, именно авторы работы [8] указали на желательность микроскопического (т.е. использующего кинетическое уравнение) описания поверхностных плазменных колебаний.

Поскольку нас интересуют высокие частоты, сравнимые с плазменной и существенно превышающие обратные времена релаксации носителей при низких температурах, мы пренебрежем как объемным, так и поверхностным их рассеянием. Первое означает переход к пределу $\omega + i/\tau \rightarrow \omega + i0$ в кинетическом уравнении^{*}, а второе — принятие «зеркального» граничного условия^{**} к нему:

$$\Psi(+0, v_n) = \Psi(+0, -v_n) .$$
 (5)

Условие (5) существенно облегчает применение метода Фурье для решения системы уравнений (2)–(4): если теперь четным образом продолжить функцию $E_k(x_n)$ на отрицательную полуось x_n и нечетным — функцию $E_n(x_n)$, то продолженная в соответствии с (4) функция $\Psi(x_n)$ не будет иметь (неизвестного и подлежащего специальному вычислению) скачка в $x_n = 0$, а ток через границу автоматически обратится в нуль. В результате после преобразования Фурье по координате x_n (с индексом q) плотность тока выражается через тензор нелокальной проводимости $\sigma_{\alpha\beta}$ таким же образом, как и в неограниченном металле:

$$\tilde{j}_{\alpha}(k,q) = \sigma_{\alpha\beta}\tilde{E}_{\beta}(k,q) ;$$

$$\sigma_{\alpha\beta} = ie^{2} \left\langle \frac{v_{\alpha}v_{\beta}}{\omega - \mathbf{Q}\cdot\mathbf{v}} \right\rangle ; \mathbf{Q} \equiv \mathbf{k} + \mathbf{n}q \qquad (6)$$

$$(\alpha,\beta = k,n) .$$

В фурье-образах (они отмечены «тильдой») решение системы уравнений (2)–(4) с заданным значением нормальной компоненты поля на границе (E_n (+0)) имеет вид

$$\tilde{\mathbf{E}} = 2E_n(+0) \, \frac{\mathbf{Q}}{iQ^2 \epsilon(\mathbf{Q}, \omega)} \, ; \tag{7}$$

- Малую мнимую добавку к частоте с положительным знаком ниже следует подразумевать везде, где это требуется для сходимости либо для выбора должных ветвей соответствующих выражений.
- ** Строго говоря, «зеркальное» условие оправдано лишь для идеальной границы образца, параллельной кристаллографической плоскости отражения и повторяющей ее симметрию, либо в случаях, в которых существенны малые углы падения частиц (см. [9]), как в рассматриваемом ниже случае В, когда поверхность параллельна слоям. Однако в известных задачах электродинамики металлов учет поверхностного рассеяния обычно лишь численно меняет результаты (см., например, [10–12]). Он важен только тогда, когда имеется значительная группа носителей, достаточно часто сталкивающихся с поверхностью, например, в тонких пленках и/или в магнитном поле.

$$e(\mathbf{Q},\omega) \equiv 1 + \frac{4\pi i}{\omega} \,\sigma(\mathbf{Q},\omega) = 1 + \frac{4\pi e^2}{\omega Q^2} \left\langle \frac{(\mathbf{Q}\cdot\mathbf{v})^2}{\mathbf{Q}\cdot\mathbf{v}-\omega} \right\rangle.$$
(8)

Здесь $\epsilon(\mathbf{Q}, \omega)$ — не что иное как диэлектрическая функция безграничного металла относительно продольных электромагнитных колебаний с волновым вектором $\mathbf{Q} \equiv \mathbf{k} + \mathbf{n}q$.

В микроскопическом рассмотрении обе компоненты поля должны быть непрерывными на границе раздела металл-вакуум. Из этого условия, вычисляя $E_k(+0)$ обратным фурье-преобразованием выражения (7) и приравнивая его $E_k(-0)$ в (2), получаем интегральное дисперсионное уравнение:

$$1 + \frac{k}{\pi} \int_{-\infty}^{+\infty} \frac{dq}{Q^2 \epsilon(\mathbf{Q}, \omega)} = 0 .$$
 (9)

Вместе с определением (8) уравнение (9) в принципе решает поставленную задачу, позволяя найти спектр и затухание поверхностных волн при любом заданном законе дисперсии носителей заряда.

3. Электронный закон дисперсии

Воспользуемся простой, но характерной моделью квазидвумерного энергетического спектра носителей заряда в слоистых проводниках, предложенной в [13]:

$$\varepsilon(\mathbf{p}) = \frac{p_x^2 + p_y^2}{2m} - \frac{\hbar v_{z0}}{a} \cos\left(\frac{ap_z}{\hbar}\right).$$
(10)

Здесь **р** — квазиимпульс, *а* — период кристаллической решетки в направлении слабой проводимости (ось 0*Z*), v_{z0} — максимальная *z*-проекция электронной скорости. Последняя предполагается малой по сравнению с $v_F \equiv \sqrt{2\epsilon_F/m}$, так что поверхность Ферми есть слабогофрированный открытый цилиндр, ось которого совпадает с p_z , а параметром, характеризующим анизотропию локальных значений высокочастотной проводимости, служит

$$\mu = \frac{\langle v_z^2 \rangle}{\langle v_x^2 \rangle} = \frac{v_{z0}^2}{v_F^2} \,. \tag{11}$$

В таком же отношении понижается и квадрат плазменной частоты для объемных колебаний, распространяющихся перпендикулярно слоям (вдоль 0*Z*):

$$\Omega_{\perp}^{2} = 4\pi e^{2} \langle v_{x}^{2} \rangle = \frac{4\pi N e^{2}}{m} \equiv \Omega^{2} ;$$

$$\Omega_{z}^{2} = 4\pi e^{2} \langle v_{z}^{2} \rangle = \mu \Omega^{2}$$
(12)

(*N* – концентрация свободных носителей).

В такой модели продольные диэлектрические функции для главных направлений волнового вектора \mathbf{K} , т.е. вдоль и поперек 0Z, легко вычисляются и равны

$$\epsilon_{z}(K,\omega) = 1 + \frac{\kappa^{2}}{K^{2}} \left(1 - \frac{\omega}{\sqrt{\omega^{2} - K^{2} v_{z0}^{2}}} \right); \quad (13)$$

$$\epsilon_{\perp}(K,\omega) = 1 + \frac{\kappa^2}{K^2} \left(1 - \frac{\omega}{\sqrt{\omega^2 - K^2 v_F^2}} \right), \quad (14)$$

где

$$\kappa \equiv \sqrt{4\pi e^2 \langle 1 \rangle} = \Omega \sqrt{2} / v_F = (2e/\hbar) \sqrt{m/a} \quad (15)$$

— декремент статического экранирования^{*}; при $a \sim 10^{-7}$ см к ~ 10^8 см⁻¹. Формула (13) является точной (см. [14]), тогда как (14) справедлива с точностью до более высоких порядков по μ .

Известен и другой способ описания, когда слоистый проводник представляют периодической совокупностью чисто двумерных проводящих слоев, разделенных изолирующей средой с заданной диэлектрической постоянной (см., например, [15–17] и цитируемую там литературу). Однако такая модель представляется применимой скорее к искусственным сверхрешеткам с мезоскопическим периодом, в которых движение электронов в соседних слоях можно считать независимым. Если же речь идет именно о кристалле слоистой структуры, причем с металлическим типом проводимости как вдоль, так и поперек слоев, то следует предпочесть трактовку в терминах квазидвумерного электронного спектра. Разумеется, количественное описание электродинамики реальных слоистых металлов, подобных солям тетратиафульвалена (BEDT-TTF)2I3, может потребовать обобщения модели (10), например, учетом анизотропии ферми-поверхностей в базисной плоскости [18].

В модели (10) плотность состояний (1), а с нею и декремент экранирования к, не зависят от энергии ε. Это
 – свойство квазидвумерного электронного спектра, более общее, чем модель (10) (см. [14]).

4. Частоты активации поверхностных плазмонов

Вернемся теперь к дисперсионному уравнению (9) и преобразуем его, вычисляя с помощью (8) вычет интеграла в точке Q = 0, т.е. q = ik. Уравнение принимает вид

$$k \int_{(c)} \frac{dq}{\pi Q^2 \epsilon(\mathbf{Q}, \omega)} = -1 - \epsilon_{0n}^{-1} \sqrt{\epsilon_{0n}} \epsilon_{0k} \equiv G(\omega) , \qquad (16)$$

где контур (c) проходит вдоль оси вещественных q, обходя, однако, сверху указанную точку. Правая часть (16) не зависит от k: она определяется локальными значениями парциальных диэлектрических функций для кристаллографических направлений, параллельных **k** либо **n**,

$$\epsilon_{0\alpha} = 1 - \frac{4\pi e^2 \langle v_{\alpha}^2 \rangle}{\omega^2} \equiv 1 - \frac{\Omega_{\alpha}^2}{\omega^2} \quad (\alpha = k, n) , \quad (17)$$

где Ω_{α} — соответствующие активационные частоты объемных плазменных колебаний (см. (12)). Именно в случаях (назовем их А и В соответственно), когда один из векторов **k**, **n** ортогонален слоям,

$$G(\omega) = \frac{\omega^2}{\sqrt{(\Omega^2 - \omega^2)(\mu\Omega^2 - \omega^2)}} - 1 \quad (18)$$

если же оба вектора лежат в плоскости слоев (случай С), то в (18) надо положить $\mu = 1$. Эта функция принимает положительные значения начиная со значений частоты

$$\omega_{\mu} = \Omega \sqrt{\mu/(1 + \mu)}$$
 (в случаях А, В)
и $\omega_{1} = \Omega/\sqrt{2}$ (в случае С), (19)

которые, таким образом, и дают начало спектра поверхностных плазмонов в пренебрежении запаздыванием ($c \rightarrow \infty$). Видно, что геометрия С фактически эквивалентна случаю изотропного металла и может быть использована для сравнения с ним.

5. Приближенное решение дисперсионного уравнения

Решая уравнение (16), следует учесть, что прямому экспериментальному наблюдению^{*} доступны лишь сравнительно длинные поверхностные волны, т.е. волновые числа k, малые по сравнению с соответствующими параметрами электронной подсистемы металла, такими как к либо k_F (в «хороших» металлах порядковые значения этих величин совпадают). Поэтому резонно ограничиться основным приближением по k, в котором дисперсионное уравнение можно переписать в виде

$$k(\omega) \int_{-\infty+i0}^{+\infty+i0} \frac{dq}{\pi q^2 e(\mathbf{n}q,\omega)} = G(\omega) \equiv G(f,\mu) \quad (20)$$

(в некоторых из дальнейших формул удобно использовать приведенную частоту $f \equiv \omega/\Omega$). Знаменатель подынтегрального выражения дается теперь формулами (13) либо (14) и интеграл вычисляется элементарно: в случаях A и C он равен сумме вычета в точке

$$q_0(f) = i\kappa \sqrt{1 - g(f)} , \ g(f) \equiv f \frac{f + \sqrt{f^2 + 8}}{4} ,$$
 (21)

и вклада точки ветвления

$$q_1(f) = \frac{\kappa f}{\sqrt{2}} = \frac{\omega + i0}{v_F} \,. \tag{22}$$

Последний вклад, т.е. интеграл по соответствующему разрезу в плоскости комплексных q, является чисто мнимым и описывает бесстолкновительное затухание Ландау: оно неизбежно имеет место в системе, где есть частицы, движущиеся в фазе с волной.

В случае же В, как видно из сравнения выражений (13), (14), результат интегрирования сводится к предыдущему с заменой $f \rightarrow f/\sqrt{\mu}$. Суммируя сказанное, можно представить результаты в виде

A)
$$\mathbf{k} \parallel 0Z$$
: $k[R(f) - i\Gamma(f)] = \kappa G(f,\mu);$ (23)

B)
$$\mathbf{n} \parallel 0Z$$
: $k[R(f/\sqrt{\mu}) - i\Gamma(f/\sqrt{\mu})] = \kappa G(f,\mu)$; (24)

C)
$$\mathbf{k} \times \mathbf{n} \parallel 0Z$$
: $k[R(f) - i\Gamma(f)] = \kappa G(f, 1),$ (25)

где R/κ и Γ/κ – вещественная и мнимая части интеграла в (20):

$$R(f) = \frac{1}{\sqrt{1 - g(f)}} \frac{f^2}{f^2 - g^3(f)};$$
 (26)

В таких опытах длина волны фиксируется с помощью расположенной вблизи образца дифракционной решетки, период которой, разумеется, превосходит микроскопические длины 1/к либо 1/k_F [17].

$$\Gamma(f) = \frac{f\sqrt{2}}{\pi} \int_{0}^{0} \frac{du}{\sqrt{1+u^2}} \frac{u^2}{1+(1+f^2(1+u^2)/2)^2 u^2} \,.$$
(27)

Вблизи начала спектра

 ∞

$$G(f,\mu) \approx (1+\mu)(f-f_{\mu})f_{\mu}^{-3}; f_{\mu} = \sqrt{\mu/(1+\mu)}$$
 (28)

(см. (18), (19)), а в остальные функции приведенной частоты f можно приближенно подставить $f = f_{\mu}$. Таким образом, дисперсионные соотношения для поверхностных волн имеют вид

$$\omega(k) \approx \Omega \sqrt{\mu/(1+\mu)} \left(1 + \mu \frac{R - i\Gamma}{(1+\mu)^2} \frac{k}{\kappa} \right), \quad (29)$$

где, как нетрудно сосчитать по формулам (26), (27), величины R и Γ в рассматриваемых частных случаях принимают следующие значения:

A)
$$R\left(\sqrt{\mu/(1+\mu)}\right) \approx 1;$$

 $\Gamma\left(\sqrt{\mu/(1+\mu)}\right) \approx -0.449\sqrt{\mu} \ln \sqrt{\mu};$
B) $R\left(1/\sqrt{(1+\mu)}\right) \approx \sqrt{3/2} \mu^{-3/2};$
 $\Gamma\left(1/\sqrt{(1+\mu)}\right) \approx \Gamma(1) \approx 0.096;$
C) $R(\sqrt{1/2}) \approx 3.512; \Gamma(\sqrt{1/2}) \approx 0.114.$
(30)

Групповая скорость колебаний $V = \text{Re} (\partial \omega / \partial k)$ определяется величиной R и, следовательно, в основном приближении по $\mu << 1$ равна

A)
$$V \approx v_{z0} \frac{\mu}{\sqrt{2}}$$
; B) $V \approx v_F \frac{\sqrt{3}}{2}$; C) $V \approx 0.439 v_F$.
(31)

Скорость аномально мала ($V \propto \mu^{3/2}$) для волны, распространяющейся по перпендикулярной слоям грани кристалла; такие волны могли бы найти применение в «линиях задержки». Отметим также специфическую (обусловленную малостью параметра анизотропии) малость относительного затухания Γ/R в случаях А и В; в случае же С, качественно эквивалентном изотропному металлу, бесстолкновительное затухание оказывается малым лишь численно.

6. О точном решении

Следует указать, что использование основного приближения по k (т.е. переход к уравнению (20)), хотя и оправдано физически, вовсе не

Рис. 1. Дисперсия поверхностной моды в симметричном случае С (в пренебрежении запаздыванием). Частота отложена в единицах Ω , волновое число — в единицах к (см. формулы (12), (15)).

является необходимым с вычислительной точки зрения: по крайней мере численный расчет дисперсионных кривых может быть выполнен непосредственно по формуле (9) (или (16)). В симметричном же случае С, когда $\epsilon(\mathbf{Q}, \omega) = \epsilon_{\perp}(Q, \omega)$ (см. (14)), точное дисперсионное соотношение нетрудно получить и в аналитическом виде. Вычисляя вычет интеграла в (16) в точке $Q \equiv (k^2 + q^2)^{1/2} = q_0(f)$, находим

$$R(f,k) = \frac{1}{\sqrt{1 + k^2/\kappa^2 - g(f_{})}} \frac{f^2}{f^2 - g^3(f_{})}, \quad (32)$$

где функция g(f) определена в (21). Подставляя (32) вместо R(f) в соотношение (25) и пренебрегая малым затуханием, получаем

$$k(f) = \kappa H(f) \left(\frac{1 - g(f)}{1 - H^2(f)} \right)^{1/2},$$

$$H(f) = \frac{2f^2 - 1}{1 - f^2} \left(1 - \frac{g^3(f)}{f^2} \right).$$
(33)

Эта зависимость, однако, не слишком отличается от линейной (см. рис. 1), что подтверждает достаточную точность использованного выше приближения.

7. О возможности инверсного спектра

Полученные результаты позволяют качественно рассмотреть неоднократко обсуждавшуюся в литературе возможность инверсного спектра поверхностных плазмонов: согласно [6], убывание $\omega(k)$ при малых k наблюдалось экспериментально. Поскольку функция $R(\omega)$ положительна (26), а $G(\omega)$ знакопеременна (18), (28), наши уравнения (20), (23)–(25) в принципе допускают и отрицательные значения k; но это означало бы неограниченное возрастание поля в пустом полупространстве (при $x_n \to -\infty$; см. (2)). Если, однако, пустая (либо диэлектрическая) область представляет собой слой конечной толщины, например, в волноводе между двумя металлическими поверхностями, то нарастающие решения в ней допустимы, и они могли бы привести к убыванию $\omega(k)$ на начальном участке спектра.

8. Учет запаздывания

Учтем теперь конечность скорости света c, рассматривая дисперсию ТМ-волн в предельно длинноволновом диапазоне, т.е. при волновых числах k, сравнимых с ω/c . Это означает, что вместо (1) следует решать уравнения Максвелла

$$c^2 \nabla \times (\nabla \times \mathbf{E}) = \omega^2 \mathbf{E} + 4\pi i \omega \mathbf{j}$$
 (34)

Действуя методом Фурье при тех же предположениях, что и в разд. 2, и «сшивая» решения, полученные для металла и вакуума, нетрудно получить общее дисперсионное уравнение:

$$\int_{-\infty}^{+\infty} dq \, \frac{\epsilon_n p^2 - k^2}{\pi D} = \sqrt{k^2 - p^2} \,, \qquad (35)$$

где

$$D(q,k,\omega) \equiv Q^{2} \epsilon(\mathbf{Q},\omega) - p^{2} (\epsilon_{k} \epsilon_{n} - S^{2}) ;$$

$$\epsilon_{\alpha} \equiv 1 + \frac{4\pi i \sigma_{\alpha\alpha}}{\omega} ; \quad S \equiv \frac{4\pi i \sigma_{kn}}{\omega} ; \quad k > p \equiv \frac{\omega}{c}$$
(36)

(см. (6), (8); последнее неравенство обеспечивает убывание поля при удалении от металла). Это уравнение сложнее, чем (9) (уравнение (36), естественно, переходит в (9) при $p \rightarrow 0$), однако, поскольку характерные скорости в электронной подсистеме много меньше *c*, второе слагаемое в *D* следует считать малым. Поэтому, вычисляя интеграл в (35) при достаточно малых *k*, мы вправе ограничиться лишь вычетом при малых *Q*, т.е. подставить в *D* локальные значения диэлектрических функций $\epsilon_{0\alpha}$ из (17); перекрестная же проводимость в локальном случае отсутствует, $S_0 = 0$. В результате дисперсионное уравнение для длинных волн имеет вид

$$k^{2} = \frac{\omega^{2}}{c^{2}} e_{0n} \frac{1 - e_{0k}}{1 - e_{0k} e_{0n}}.$$
 (37)

Специфика слоистого проводника проявляется здесь лишь в различии значений локальной проводимости вдоль и поперек слоев. Используя определения (12), в трех рассмотренных геометрических случаях находим

A)
$$\mathbf{k} \parallel 0Z$$
: $k(\omega) = \frac{\omega}{c} \left[\mu \frac{\Omega^2 - \omega^2}{\mu \Omega^2 - \omega^2 (1 + \mu)} \right]^{1/2}$;
B) $\mathbf{n} \parallel 0Z$: $k(\omega) = \frac{\omega}{c} \left[\frac{\mu \Omega^2 - \omega^2}{\mu \Omega^2 - \omega^2 (1 + \mu)} \right]^{1/2}$;
C) $\mathbf{k} \times \mathbf{n} \parallel 0Z$: $k(\omega) = \frac{\omega}{c} \left[\frac{\Omega^2 - \omega^2}{\Omega^2 - 2\omega^2} \right]^{1/2}$. (38)

Таким образом, в длинноволновом пределе мы имеем почти свободную электромагнитную волну ($\omega \approx kc$), а затем, в соответствии с (19), частота выходит на предельное значение $\Omega \sqrt{\mu/(1+\mu)}$, причем различным образом в случаях A и B; в случае C, как и в изотропном металле, это значение есть $\Omega/\sqrt{2}$. Соответствующие графики при $\mu = 0,1$ показаны на рис. 2.

Разумеется, «локальный» результат (37), (38) можно получить, просто решая задачу макроскопически, т.е. выражая ток в (34) через локальные значения тензора проводимости, а затем сшивая тангенциальные компоненты поля E_b и нормальные

Рис. 2. Дисперсионные кривые (с учетом запаздывания) в длинноволновой области в геометриях А, В и С; $\mu = 0,1$. Частота отложена в единицах Ω , волновое число — в единицах Ω/c (см. (12)).

— индукции $\epsilon_{0n}E_n$ (причем в вакууме $\epsilon_{0n} \equiv 1$). Однако мы сочли полезным привести общий вид интегрального дисперсионного уравнения (35), (36).

9. Заключение

Итак, мы обнаружили ряд особенностей в спектре и затухании плазменных волн ТМ-типа, распространяющихся вдоль поверхности слоистого проводящего кристалла, по сравнению с изотропным металлом при той же концентрации носителей (либо с симметричным случаем C, когда ферми-поверхность изотропна в плоскости (**k**,**n**)):

 существенное понижение активационной частоты в асимметричных случаях, когда волновой вектор либо нормаль к поверхности ортогональны слоям (А, С в (19));

 сильное замедление поверхностной моды, распространяющейся перпендикулярно слоям: ее групповая скорость оказывается много меньше, чем даже малая фермиевская скорость в этом направлении (случай А в (31));

— относительное затухание (речь идет о бесстолкновительном затухании в режиме $\omega \tau >> 1$), т.е. отношение Γ/R , оказывается малым во всех трех геометриях (30). Однако если для С эта малость лишь численная, то в характерных для слоистого проводника асимметричных случаях А и В она связана с малостью параметра анизотропии μ .

Такие свойства слоистых проводящих кристаллов могут представлять значительный интерес в плане их практического использования в СВЧприборах.

- 1. J. Rayleigh, Proc. London Math. Soc. 17, 4 (1885).
- 2. R. Stoneley, Proc. Roy. Soc. London A106, 416 (1924).
- 3. R. H. Ritchie, Progr. Theor. Phys. 29, 607 (1963).
- 4. R. C. Browm and N. H. March, *Phys. Rep.* C24, 77 (1976).
- 5. G. Barton, Rep. Progr. Phys. 42, 963 (1979).

- 6. N. H. March and M. Parrinello, *Collective Effects in Solids and Liquids*, Adam Hilger Ltd., Bristol (1982); Н. Марч, М. Паринелло, Коллективные эффекты в твердых телах и жидкостях, Мир, Москва (1986).
- J. Vosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors, Springer Tracts of Modern Physics 134 (1996).
- А. Я. Бланк, В. Л. Березинский, ЖЭТФ 75, 2317 (1978).
- 9. А. Ф. Андреев, УФН 105, № 1, 113 (1971).
- G. E. Reuter and E. N. Sondheimer, *Proc. Roy. Soc. London* A195, 336 (1948).
- L. E. Hartmann and J. M. Luttinger, *Phys. Rev.* 151, 430 (1966).
- В. М. Гохфельд, М. И. Каганов, Г. Я. Любарский, ЖЭТФ 92, 523 (1987).
- 13. В. М. Гохфельд, М. И. Каганов, В. Г. Песчанский, *ФНТ* **12**, 1173 (1986).
- V. M. Gokhfeld and V. G. Peschansky, Nonlocal Acoustoelectronic Effects in Metals and Layered Conductors, Sov. Sci. Rev. A17, Phys. Harwood Acad. Publ. Gmbh (1993).
- 15. Л. Н. Булаевский, УФН **116**, 449 (1974).
- 16. V. M. Gvozdikov, *ФНТ* 26, 776 (2000).
- T. Ando, A. Fowler, and F. Stern, *Rev. Mod. Phys.* 54, #2 (1982); Т. Андо, А. Фаулер, Ф. Стерн, Электронные свойства двумерных систем, Мир, Москва (1985).
- В. М. Гохфельд, В. Г. Песчанский, Д. А. Торяник, ФНТ 24, 371 (1986).

Electromagnetic surface waves in layered conductors

V. M. Gokhfeld

Using the integral dispersion equation derived, we consider the spectral and relaxation properties of surface plasma oscillations in layered conductors with quasi-two-dimensional motion of charge carriers. The results manifest essential distinctions from the case of isotropic metal.