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Unusual chemical bonds are proposed. Each bond is characterized by the thread of a small radius, 10–11 cm,
extended between two nuclei in a molecule. An analogue of a potential well, of the depth of MeV scale, is 
formed within the thread. This occurs due to the local reduction of zero point electromagnetic energy. This is 
similar to formation of the Casimir well. The electron–photon interaction only is not sufficient for formation of 
thread state. The mechanism of electron mass generation is involved in the close vicinity, 10–16 cm, of the
thread. Thread bonds are stable and cannot be created or destructed in chemical or optical processes. 
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1. Introduction

Various types of chemical bonds in molecules are well 
studied. See for example [1–3]. This is a branch of chemi-
cal physics with the well established set of basic phenome-
na. Methods of quantum chemistry are effectively applied 
to develop that field. The common feature of chemical 
bonding is the typical energy. Despite a variety of bond 
types there is the upper limit of energies involved into the 
phenomena. It is the atomic scale energy of the order of ten 
electron volts. Also the typical spatial scale in chemical 
bonding is no shorter than the atomic size. 

The field of mesoscopic biology, where the typical 
length scale is of the order of nanometers, is actively de-
veloped now [4–6]. In this paper thread like electron states 
are proposed in biological and chemical systems. The 
thread length can be of the nanometer scale relating to 
mesoscopic objects in the field. 

It looks unusual if energies, involved into molecular 
bonding, are of the order of 1 MeV and the spatial scale is 
10–3 of the size of hydrogen atom. At the first sight, it is
impossible since chemical bonding is associated with the 
atomic processes. However, the proposed thread states 
relate to those parameters. 

The point is that the electron state can have a tendency to 
be singular along the line (thread) connecting two nuclei in a 
molecule. The origin of such singularity is clear from 
Schrödinger equation in cylindrical coordinates which can 
have the solution logarithmically singular on the axis. The 
electron “vibrates” due to the interaction with zero point 

electromagnetic oscillations and the singularity smears out 
within the thread of a small radius ∼10–11 cm. The origin of
this subatomic length scale in molecular systems is not sur-
prising if to look from the standpoint of the Lamb shift [7]. 

Under the interaction with photons the electron “vibrates” 
with the mean displacement = 0〈 〉u  and the mean squared 
displacement 2 2= Tu r〈 〉  where 1110 cmTr

−
  [8–11]. This

is the fluctuation spreading in addition to the usual quantum 
mechanical uncertainty. In this language, the “vibrating” 
electron probes various parts of the potential well and there-
fore changes its energy (the Lamb shift). 

The associated increase of the electron energy 
2 2/ 1 MeVTmr  , which occurs in the thread of the radius

Tr , is compensated by the local (at the same region) reduc-
tion of photon zero point energy. The resulting well is of 
MeV depth. This recalls analogous mechanism, but of a 
smaller energy, of well formation in Casimir (van der 
Waals) effect [7,12,13]. 

The electron–photon interaction, related to quantum 
electrodynamics, is not sufficient to form the thread state. 
Effects of generation of electron mass, described by the 
Higgs mechanism in the Standard Model, should be in-
volved. These mechanisms are responsible for the inner 
structure of the thin thread. In contrast, its length is deter-
mined by arrangement of surrounding atoms in a biological 
medium. This length, of nanometers size, fits the field of 
mesoscopic biology. 

The high energy parts, involved into thread formation, 
correspond to the typical time 10–22 s. Optical processes
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are slow compared to that time. They lead to an adiabatic 
motion of the thread parameters but absorption probability 
of such quanta is exponentially small. Also the thread bond 
cannot be created in chemical processes. Relatively high 
energy impact is required to create the thread state. It can 
be, for example, an irradiation by keV ions. 

These thread bonds, coupling two strands of a DNA 
molecule, prevent DNA replication. One can put a general 
question on a role of such thread bonding in biological 
processes. 

2. Two Coulomb centers 

Electrons wave function in a molecule is complicated. 
The electron motion is collective and is not reduced to a 
single electron problem. The electron wave function is 
smooth in the space. We focus on the certain specificity of 
this function. If to consider usual atomic sizes the electron 
wave function can be formally singular on some line con-
necting two nuclei in the molecule. 

Therefore the problem is separated in two parts. First one 
should find the singular solution of quantum mechanical 
equations for electrons in the molecule. Second one should 
analyze mechanisms of smearing of that singularity. In this 
section we focus on the singularity formation on the line 
connecting two nuclei which can be treated in the molecule 
as static ones according to the Born–Oppenheimer approxi-
mation. 

Instead of solving the problem in full one can simplify 
it considering a single electron. The main features of the 
singular wave function can be demonstrated studying the 
artificial situation when one electron is in the field of two 
positive charges fixed at two points. The singularity line, 
connecting two nuclei in the molecule, is associated with 
large energies and is hardly influenced by chemical forces. 
For this reason the singularity line between two real nuclei 
in the molecule is of the same type as between two point 
charges formally fixed in the space. 

2.1. Formalism 

To study the electron in the Coulomb field of two posi-
tive point charges at the points =z ±σ  it is convenient, 

instead of cylindrical coordinates 2 2=r x y+ , z, and θ , 
to use the elliptic ones ξ , η , and θ  [14] 

 2 1, = .
2

r r±
ξ η

σ
 (1) 

Here 2 2
1,2 = ( )r z rσ +  are distances to the Coulomb 

centers shown in Fig. 1. The surface of a constant ξ  is the 
ellipsoid 

 
2 2

2 2 2 2 = 1
( 1)

z r
+

σ ξ σ ξ −
 (2) 

with the focuses at =z ±σ . The surface of a constant η  is 
hyperbolic 

 
2 2

2 2 2 2 = 1
(1 )

z r
−

σ η σ − η
 (3) 

with the focuses at the same points. The coordinate ξ  
takes values from 1 to ∞  and η  from –1 to 1. Intersec-
tions of the surfaces (2) and (3) with the plane = 0y  are 
shown in Fig. 1. 

The Coulomb interaction potential is 

 
2 2 2

2 2
1 2

2= = ,Ze Ze ZeU
r r

ξ
− − −

σ ξ − η
 (4) 

where Ze  is the positive charge at each center. The Schrö-
dinger equation for the electron 

 
2

2 =
2

U E
m

− ∇ ψ + ψ ψ


 (5) 

in elliptic coordinates takes the form 

 
2

2 2
2 2 2 ( 1) (1 )

2 ( )m
 ∂ ∂ψ ∂ ∂ψ

− ξ − + − η − ∂ξ ∂ξ ∂η ∂ησ ξ − η  

   

 
2

2 2
2 = .Ze Eξ

− ψ ψ
σ ξ − η

 (6) 

We consider an axially symmetric wave function. Since the 
variables are separated it has the form ( , ) =ψ ξ η

1 2( ) ( )= ψ ξ ψ η . One can introduce dimensionless parame-
ters 2 2= 2 /m Eν − σ   and = 4 / Bp Z rσ  where 2 2= /( )Br me  
is the Bohr radius. 

After separation of variables the two Schrödinger equa-
tions are 

Fig. 1. Intersections of surfaces of constant elliptic coordinates ξ 
and η with the plane y = 0 are shown. Two Coulomb centers are 
at the points z = ±σ. 
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 2 21
1( 1) = ( )p

∂ψ∂
− ξ − ξ + β − νξ ψ −

∂ξ ∂ξ
 (7) 

 2 22
2(1 ) = ( ) ,

∂ψ∂
− − η νη − β ψ

∂ξ ∂η
 (8) 

where β is some constant. 
The variable η  can be written as = cosη χ . Then 

Eq. (8) has the form 

 2 2
2

1 sin = ( ) .cos
sin

 ∂ψ∂
χ β − ν χ ψ χ ∂χ ∂χ 

 (9) 

The solution, non-singular at = 0χ , should be also non-
singular after continuation to =χ π . This is the condition 
to choose the parameter β  for a given ν . When two Cou-
lomb centers coincide (σ = 0 and therefore ν = 0) that con-
dition turns to = ( 1)l lβ − +  as for Legendre polynomials 
[15]. In that case the variable χ  coincides with the azi-
muthal angle. 

2.2. Close Coulomb centers 

Below two close Coulomb centers are considered under 
the condition Brσ . We study the state which is iso-
tropic ( = 0l ) in the limit = 0σ . At a finite σ  there is the 
small correction to the wave function which can be written 
as 2 2= 1ψ + δψ . Using the relation 

 2 2sin = ( )sin ,cosd
∂δψ

χ χ β − ν χ χ
∂χ ∫  (10) 

one can obtain 

 2 2
2 = ln 2 .cos sin

3 2 6
ν χ ν   δψ − β − χ      

 (11) 

The solution (11) is finite at = 0χ  (η = 1). In order to get 
it finite at =χ π  (η = –1) it should be = /3β ν . Note that 

2 2 2/ Bp rν σ   are small. 
At Brσ  there is a small region of the size σ  around 

the centers in Fig. 1. This region corresponds to 1ξ η  . 
The region of the order of the Bohr radius Br  is much 
larger and relates to large ξ . We consider this region first. 
In Eq. (7) one can omit β  and to write 2 21ξ − ξ . In the 
limit 1 ξ  Eq. (7) takes the form 

 
2

1 1
1 12

2 = ,p∂ ψ ∂ψ
− − − ψ −νψ

ξ ∂ξ ξ∂ξ
 (12) 

which coincides with the radial Schrödinger equation with 
= 0l  in the Coulomb field of the point charge 2Ze  [15]. 

The solution of (12), decaying on infinity, is finite at small 
distances and corresponds to the eigenvalue 2= /4pν . 
This value relates to the ground state energy in the Cou-
lomb field of the point charge 2Ze . 

For our purposes one needs a solution which also de-
cays on infinity but is singular at = 0r  and 2 2<z σ . To 

obtain that one should write the solution of (12) in the 
form [15] 

 /(2 ) 1
1( ) = exp( )p ν −ψ ξ ξ −ξ ν ×   

 1 , , 2 ,
2 2

p pG  × − − − ξ ν  ν ν
 (13) 

where 

 2
( 1) ( 1)( , , ) = 1 ...

1! 2!
G αβ α α + β β +

α β + + +v
v v

 (14) 

To obtain the solution at shorter distances one should use 
the asymptotics of the function (14) at 1v . Thus at 
small [1 /(2 )]p− ν  one can obtain from Eq. (13) [15] 

 1
1( ) = 1 1 , 1 / .

2 2 B
p r ψ ξ + − ξ σ  ν ξ ν

   (15) 

On the other hand, at not large ξ  the left-hand side of 
Eq. (7) is the principal one and the solution is 

   1
1 1( ) = 1 1 ln , 1 < / .

4 2 1 B
p rξ + ψ ξ + − ξ σ  ν ν ξ −

  (16) 

Equation (16) goes over into the form (15) when their ap-
plicability intervals overlap. 

The wave function along the line, connecting two Cou-
lomb centers in Fig. 1, now can be written at 2 2| |,z − σ

2 2r σ  in the form 

 
0

( , ) = 1 1
16

Br Er z
Z E

 
ψ − − × σ  

  

 
2

2 2 2 2 2 2 2
8ln ,

( ) 4z z r

σ
×

− σ + − σ + σ
 (17) 

where 2 2 2
0 = (2 ) /(2 )E m Ze−  . Equation (17) is also valid 

in the vicinity 2 2 2( ( ))r zσ −  of the entire line 2 2( < )z σ  
between the centers, where 

 
2 2

0

2( , ) = 1 1 ln .
8

Br E zr z
Z E r

  σ −
ψ − − σ  

 (18) 

At large distances, as follows from (13), (14) and the 
definition (1), 

   / 10

0

2( , ) = exp , ,E E
B

B

Z Er z R R r R
r E

−  
ψ −  

  (19) 

where 2 2 2=R r z+ . 
The wave function of the electron in the Coulomb field 

of two positive point charges Ze  exponentially decays at 
large distances (19). But on the line, connecting two charg-
es, ψ  has the logarithmic singularity (18) if the energy 
does not coincide with the eigenvalue 0E . The absence of 
singularities is a usual condition to determine an eigen-
value. The eigenvalue 0E  coincides with one in the Cou-
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lomb field of one point charge 2Ze . In the limit consid-
ered, Brσ , corrections to that eigenvalue are small. 

When the energy differs from 0E  the singular wave 
function is not physical at the first sight. But the situation 
is more complicated as shown below. 

2.3. Singularity 

The electron wave function for the artificial case of two 
point charges and the wave function for two partner nuclei 
in a real molecule have common properties. This happens 
since at short distances (less than rB) atomic forces are not 
significant. In the real molecule close to a nucleus, that is 
below the shell of inner electrons, the wave function is of 
the type (17). The same is valid for the nucleus at a partner 
site. Between the partner sites the wave function is loga-
rithmically singular, as (18), along the connecting line 

< <z−σ σ . In a real molecule Brσ  . In a close vicinity 
( )r σ  of the line, connecting two partner sites, the wave 
function, with the logarithmic accuracy, can be written in 
the form 

  

2 2

2 2

2 2

( ) ln[ ( ) ( )], | | ,

= 2 ( ) ln , ,

( ) ln[ ( ) ( )], | | .

A z r z z

A z r z

A z r z z

 σ − σ + + − σ − σ σ
ψ σ − σ


−σ + σ + − + σ + σ σ







(20) 

Here ( )A z  is the certain function accounting for real 
intramolecular forces. The exact form of this function is 
not crucial for our purposes. 

The nature of the formal singularity along the line 
< <z−σ σ  is easy to understand. At short distances to the 

line the firs term in Eq. (5) dominates. To get is zero the 
wave function should be ln rψ  . To support this solution 
in the right-hand side of (5) the term ( )δ r  (or a slightly 
smeared δ  function) should be. In reality such term is ab-
sent and the singular solution does not exist even formally. 

3. Close to the singularity line 

Under the interaction with the fluctuating fields of pho-
tons the electron “vibrates” and the singularity gets washed 
out. However this process does not convert the state into a 
physical one since the smeared distribution is a superposi-
tion of non-existing state. For this reason, let us formally 
consider the free electron on very short distances. As the 
second step, we will include fluctuating fields and average 
on them. On very short distances the fluctuating field is not 
electromagnetic one only. 

3.1. Scale of the electron Compton length 

The Schrödinger description (5) is valid when the dis-
tance r  to the singularity is larger than the electron Comp-
ton radius 11= / 3.86·10 cmcr mc −

  . At shorter distances 
one should use the Dirac formalism with the bispinor 

= ( , )ψ ϕ χ  where ϕ  and χ  are two spinors satisfying the 
equations for free electron 

 2 2( ) = , ( ) = ,i c mc i c mcε + σ∇ ϕ χ ε − σ∇ χ ϕ
 

   (21) 

where ε  is the total relativistic energy and σ


 are Pauli ma-
trices. Equations (21) follow from the Dirac Lagrangian [7] 

 2= ,L i c mcµ
µψγ ∂ ψ − ψψ  (22) 

where µγ  are Dirac matrices, 0*=ψ ψ γ  is the Dirac con-
jugate, and the partial derivatives are = ( / , )ctµ∂ ∂ ∂ ∇ . 

It follows from (21) that 

 2( ) = ( ).i c
mc

ϕ − χ − σ∇ ϕ + χ
ε +

  (23) 

To be specific, one can choose the spinor ( )ϕ + χ  in the 
form 

 
11( ) = ,
12

F
 

ϕ + χ   
 (24) 

where F  satisfies the equation 

 
2 2

2
2 2 2= .mc F F

c

  ε
−∇ + 

  

 (25) 

We accounted for the relation 2( )( ) =σ∇ σ∇ ∇
  . When the 

wave function does not depend on z, the solution of (25) is 
the Neumann function [16] 

 2 2 4
0( ) = rF CN m c

c
 ε −  

r


 (26) 

with the asymptotics 0 ( ) (2/ ) lnN z zπ  at small argument. 
The electron density [7] 

 2 21 1= | | | |
2 2

n ϕ + χ + ϕ − χ  (27) 

takes the form 

 
2 2

2 2
2 2

1= | | | | .
2 2( )

cn F F
mc

+ ∇
ε +
  (28) 

The second term in (28) is principal one at <cr r  where 
the non-relativistic quantum mechanics is applicable and 

2(ln )n r . The second term in (28) dominates at short 
distance < cr r  (relativistic region) where 21/n r . 

We see again that the singular solution lnF r  of 
Eq. (25) is not supported by a singularity source. This solu-
tion requires the δ  function term in (25) that does not ex-
ist. For this reason, one has to analyze shorter distances, 
compared to cr , from the linear singularity. 
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3.2. Scale of the electron mass generation 

Below we analyze what happens to the singularity on 
much shorter distances compared to the electron Compton 
length cr . 

According to the Standard Model, masses of electron, 
other leptons, W ±  and Z  weak bosons, and quarks are 
generated by the Higgs field [17–19]. Electron acquires its 
mass through the connection between the fermion field ψ  
and the Higgs field φ . In our case of singularity we are 
restricted by the contribution from electrons to fermionic 
fields. The mass in Dirac equations (21) is generated by the 
expectation value of the Higgs field, 2 =mc G〈φ〉 , where 

5/ 10G m −µ   and 2100 GeV/cµ   is the mass of the 
Higgs boson. 

As the first step, we consider the problem without fluc-
tuating field of vector bosons , ,W Z A±  (A relates to pho-
tons) and the fluctuating part of the Higgs field. They can 
be included, as the second step, as given functions of 
space-time with the subsequent average on them. 

The electron field ψ , in turn, influences the Higgs field 
φ. Since ψ  varies in space due to the singularity, the ex-
pectation value 〈φ〉  also acquires a singular correction 
proportional to G [20]. Accordingly the electron mass be-
comes variable in space. The Eq. (25) is modified 

 
2 2 2

2
2 2 2 2= .mc mc F F

mc c

 ∇ ε
−∇ + ∇ + 

ε +  

 (29) 

As follows from [20], the small mass correction is 

 
( )

2 2
2

2

/ , < ,( )

ln / , < ,

c c

c c

R r R rm r G
m R r r R

δ 



  (30) 

where 16= / 10 cmcR c −µ   is the Compton length of the 
Higgs boson. 

The solution = lnF r  of the equation 2 = 0F∇  does 
not exist even formally since it should be supported in the 
right-hand side by ( )δ r . This term plays a role of singular-
ity source. In our case the m∇  term in Eq. (29), propor-
tional to ( / )/F r r∂ ∂ , is also singular as 2F∇ . Therefore 
the m∇  term in Eq. (29), localized at cr R , is the singu-
larity source. The both terms, 2F∇  and ( )( )m F∇ ∇ , form 
the singular solution of (29) as a sum of powers of ln / .cR r
Now a ( )δ r  in the right-hand side is not required to obtain 
that formally singular solution. 

This situation recalls Bessel functions. The equation for 
singular 0 ( )K r  formally requires ( )δ r  (a point “charge”) 
in the right-hand side but the equation for singular ( )pK r , 
with a small p, does not. 

4. Smearing of the singularity 

The solution, obtained in Sec. 2, for free electron re-
mains singular until fluctuations of gauge fields , ,W Z A±  
and of the Higgs field enter the game. These fluctuations 

wash out the singularity around the line. The main contri-
bution to this effect comes from the massless photon 
field A. Fluctuations of gauge bosons and the Higgs field 
result in a weaker smearing due to their large masses. 
Therefore, studying the singularity smearing, one can ac-
count for solely spatial electron fluctuations produced by 
its interaction with photons. 

With electromagnetic fluctuations the electron “vi-
brates” within the certain region of the size Tr . The mean 
displacement = 0〈 〉u  but the mean squared displacement 

2 2= Tu r〈 〉 . As follows from [8–11], 

 
2

11
2

2= ln 0.82·10 cmT c
e cr r

c e
−

π






. (31) 

The same effect of electron “vibrations” leads to the Lamb 
shift of discrete energy levels since the smeared electron 
probes various parts of a potential well [7]. 

4.1. Smooth peak of the electron density 

Under the action of electromagnetic fluctuations the sin-
gular electron density 21/n r  (28) is washed out within the 
thread, along the z axis, of the radius Tr . Without the m∇  
term in (29) it would be 2 ( )F∇ δ r . After the average the 
δ  function becomes smeared over the region Tr r  resul-
ting in the nonexisting term extended in space. With m∇  
term in (29) the kinetic part 2 2 2/F G r∇   exists at any 

0r →  and after the average it goes over into the smooth 
part that is physical. 

Note that solely electron-photon interaction is not suffi-
cient for formation of the thread state. That interaction 
shifts the singularity position ( )δ −r u  only. After the av-
erage on u this still results in the non-existing term. The 
relation 2 2 2/F G r∇   at small r  comes from the mass 
generation mechanism. 

The singularity of ( )F r  is distributed roughly as 
(| |)F〈 − 〉r u  and the kinetic part of (29) is approximately 

estimated as  

 
2 2

2
2(| |) ( ).

2 T
T

F F r r
m mr

− ∇ 〈 − 〉r u 

   (32) 

This part is localized at Tr r  and corresponds to the lo-
cal energy increase that should be compensated by some 
counter-part. This part in the electron–photon system 
comes from a local reduction of the electromagnetic zero 
point energy /2ω∑ . This occurs due to a local reduction 
of photon density of states and can be called anomalous 
well. The uncertainty of the electron momentum / Tr  at 
the region Tr r  is caused by the momentum transfer 
from photons. The characteristic momentum of photons 

/ Tr  relates to the reduction / 1 MeVTc r   of their zero 
point energy. This recalls the known example of creation 
of a well by spatial variations of the vacuum energy in the 
Casimir effect. In this case the zero point photon energy 
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also becomes variable due to a spatial variation of the pho-
ton density of states [7,12,13]. 

The singularity along the line at < <z−σ σ  turns to the 
subatomically narrow thread of the radius Tr . Within this 
thread the enhanced electron energy 2 4 2 2 2 1/2( / )Tm c c r+  

/ 1 MeVTc r    coexists with the energy reduction / Tc r  
responsible for anomalous well. 

States in the well are exact, their continuous spectrum is 
non-decaying, that is with zero imaginary part of energy. 
The continuous non-decaying spectrum of a particle (con-
nected to a medium) in a well is not forbidden in nature. 
Such spectrum is revealed in Ref. 21 on the basis of the 
exact solution. 

5. Thread bonds 

The exact state, where the thread is formed, is steady 
and is characterized by the certain total energy which is 
conserved. In terms of multidimensional quantum mechan-
ics, where photon degrees of freedom are the infinite set of 
oscillators [7], it would an energy eigenvalue. The state, 
considered either far from the thread or inside it, corre-
sponds to the same energy. The thread state with the chem-
ical energy scale of the electron (1 10) eVE −  corre-
sponds to upper energy states in the deep potential well of 
the order of 1 MeV and of the radius Tr . This well is ex-
tended along the thread. 

At distances <Tr r  radiative effects are small and one 
can use the quantum mechanical description of the elec-
tron. At <cr r  this the Schrödinger formalism but at 

< <T cr r r  one should apply Dirac equations. In this case, 
besides the term ln r , the wave function also contains the 
large term /cr r . At < Tr r  the electron–photon interaction 
is essential and a quantum mechanical description is not 
valid. The total number of electrons is determined by the 
region Br r  outside the thread as in a covalent bond. The 
fraction of electrons in the region < cr r  is small as 

2 2 2 3/ ( / )c Br r e c  . 
We emphasize that the interpretation in terms of the po-

tential well is approximate since this is not a single particle 
quantum mechanics but coupling to the electromagnetic 
system. The well is adjusted to an electron state. In a mo-
lecular system or in a solid the thread bond is shown in 
Fig. 2. 

The thread state can be destroyed by quanta absorption. 
The high energy parts, involved into thread formation, cor-
respond to the typical time 10–22 s. Optical processes are 
slow compared to that time. They lead to an adiabatic mo-
tion of the thread parameters but the absorption probability 
of such quanta is exponentially small [15]. The thread ex-
ists until a high energy particle or γ-quantum destroys it. 

The thread bond cannot be created in chemical or opti-
cal processes. A different type of impact is necessary for 
that. The direct way to form the thread state from the usual 
covalent one is to use an external perturbation when the 
matrix element between those states is not small. Such 

perturbation may be the certain charge density varying in 
space on the range of Tr . This charge distribution may be 
created, for example, by an incident charge particle which 
is reflected by lattice sites in a solid. The resulting density, 
related to such particle, is due to the interference of its in-
cident and reflected waves. This static charge density is 
approximately proportional to cos(2 2 / )pR ME   where 

M  is the particle mass and pE  is its energy. If to use deu-

terons, 243.35·10 gM −
 , one can estimate 

 charge density cos 1.96 (keV) ,p
T

R E
r

 
 
 

  (33) 

where Tr  is taken to be 10–11 cm. 
We see that one can bombard a sample by ions with the 

energy of approximately 1 keV to produce anomalous elec-
tron binding within the depth of ions penetration. 

The energy gain, of the order of 1 MeV, is due to deep-
ly localized electron(s) in the anomalous well. The length 
of the thread can be flexible to reduce that MeV scale en-
ergy. The energy pay, caused by the associated violation in 
covalent bonds, is of the eV scale and does not play a role 
in this process. The optimal length of the thread is a matter 
of a further study. 

A form of the outer electron cloud, associated with the 
thread, is determined by chemical mechanisms of interac-
tion with surrounding electrons. The electron density is 
mainly localized outside the thread on the usual distance as 
in a covalent bond. 

An unusual role of thread bonds can be in a DNA mole-
cule sketched in Fig. 3. When two DNA strands are con-
nected by thread bonds the latter cannot be destroyed in 
chemical processes. Otherwise it would cost a MeV ener-
gy. Therefore the DNA replication is stopped when the 
replication fork approaches locations of the thread bonds. 
This prevents cell duplication and therefore the biological 

Fig. 2. Schematic representation of molecular covalent bonds. 
The thread bond between two nuclei is shown by the line. 
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growth. Thread bonds can be created by weak shock waves 
deep inside a biological system to be prevented in the 
growth. 

6. Discussions 

It looks unusual when energies, involved into molecular 
binding, are of the order of 1 MeV  and the spatial scale is 
essentially subatomic that is 10–3 of the size of hydrogen 
atom. At the first sight, it is unlikely since chemical bond-
ing is associated with the atomic processes. Nevertheless in 
chemical and biological systems thread bonds with such 
extreme parameters are possible. 

There are examples of application of quantum electrody-
namics in chemistry. The most known one is van der Waals 
forces when quantum electrodynamics is involved. In that 
case the certain steady attraction potential between atoms is 
formed due to a reduction of the energy of electromagnetic 
zero point oscillations. In formation of threads quantum 
electrodynamics in unavoidable but not the only element. 
Solely electron-photon interaction is not sufficient for for-
mation of electron threads since the key point is distances 
much shorter than the electron Compton radius 10–11 cm. 
Those short distances, 10–16 cm, relate to the formation of 
electron mass (the Higgs mechanism). 

On can list the main issues leading to thread states. (i) 
The wave function of a free electron can be singular on a 
line. In this case the kinetic energy 2 2 /2m− ∇  is also sin-
gular on that line. This singularity does not exist in reality 
since it is not supported by a singular source. (ii) According 

to the Standard Model (with formally neglecting fluctuating 
fields), the singularity in space of the electron density results 
in a singularity of the expectation value of the Higgs field. 
The latter provides the singularity source. (iii) Subsequent 
accounting for the fluctuating fields leads to smoothing of 
the singularity and the state becomes physical. 

The length of the thread bond coincides with the dis-
tance between neighbor sites in the molecular or solid sys-
tem. In biological systems it can be of the order of na-
nometers corresponding to the field of mesoscopic biology. 
In DNA molecules threads block replication process since 
the replication fork cannot extend beyond positions of 
thread bonds. Otherwise the threads have to be destroyed 
that costs MeV energy. 

Electron threads can be formed in solids. In experiments 
[22] x-ray laser bursts were generated during 20 hours from 
a “dead” metal that is after switching off the irradiation of it 
by keV ions. As shown in [11] on the basis of threads for-
mation, this paradoxical phenomenon is possible. 

The recent observations of anomalous oscillations of 
magnetoresistance in superconductors [23] provide another 
mysterious phenomenon. The paradoxical universality of 
the periodicity (in particular, material independence) can 
be explained solely by a subatomic mechanism. The pro-
posed thread states [24] provide an excellent quantitative 
agreement with the experiments [23]. 

7. Conclusions 

 Unusual chemical bonds are proposed. Each bond is 
characterized by the thread of a small radius, 10–11 cm, 
extended between two nuclei in a molecule. An analogue 
of a potential well, of the depth of MeV scale, is formed 
within the thread. This occurs due to the local reduction of 
zero point electromagnetic energy. This is similar to for-
mation of the Casimir well. The electron-photon interac-
tion only is not sufficient for formation of thread state. The 
mechanism of electron mass generation is involved in the 
close vicinity, 10–16 cm, of the thread. Thread bonds are 
stable and cannot be created or destructed in chemical or 
optical processes. 
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