Псевдощель и флуктуационная проводимость в монокристаллах Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} с разной концентрацией празеодима

А.Л. Соловьев, Л.В. Омельченко

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина E-mail: solovjov@ilt.kharkov.ua

Р.В. Вовк, С.Н. Камчатная

Харьковский национальный университет им. В.Н. Каразина пл. Свободы, 4, г. Харьков, 61077, Украина

Статья поступила в редакцию 12 июля 2016 г., после переработки 21 февраля 2017 г., опубликована онлайн 25 мая 2017 г.

Исследовано влияние допирования празеодимом на избыточную проводимость $\sigma'(T)$ и псевдощель (ПЩ) $\Delta^*(T)$ в монокристаллах $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ при изменении концентрации Pr от x = 0 до x = 0,43. Установлено, что по мере увеличения x сопротивление образцов возрастает, а критическая температура T_c понижается. При этом форма кривых $\rho(T)$ меняется от металлической ($x \le 0,34$) до типичной для слабодопированных монокристаллов YBa₂Cu₃O_{7- δ} с характерным термоактивационным прогибом (x > 0,34). Независимо от величины x, вблизи $T_c \sigma'(T)$ хорошо описывается флуктуационными теориями Асламазова–Ларкина и Маки– Томпсона, демонстрируя 3D–2D кроссовер при увеличении температуры. Температура кроссовера T_0 позволяет определить длину когерентности вдоль оси c, $\xi_c(0)$. При $x = 0 \Delta^*(T)$ демонстрирует характерный для пленок YBCO максимум при $T_{pair} \approx 110$ К. С ростом x максимум при T_{pair} размывается, но появляется резко выраженный максимум $\Delta^*(T)$ в области высоких температур, за которым следует линейный участок с положительным наклоном. Такая зависимость $\Delta^*(T)$ является типичной для магнитных сверхпроводников и, наиболее вероятно, обусловлена влиянием собственного магнитного момента Pr ($\mu_{Pr} \approx 4\mu_B$).

Досліджено вплив допування празеодимом на надміцну провідність $\sigma'(T)$ та псевдощілину (ПЩ) $\Delta^*(T)$ в монокристалах $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ при зміні концентрації Pr від x = 0 до x = 0,43. Встановлено, що в міру збільшення x опір зразків зростає, а критична температура T_c знижується. При цьому форма кривих $\rho(T)$ змінюється від металевої ($x \le 0,34$) до типової для слабодопованих монокристалів YBa₂Cu₃O_{7- δ} з характерним термоактиваційним прогином (x > 0,34). Незалежно від величини x, поблизу T_c $\sigma'(T)$ добре описується флуктуаційними теоріями Асламазова–Ларкіна та Макі–Томпсона, демонструючи 3D–2D кросовер при збільшенні температури. Температура кросовера T_0 дозволяє визначити довжину когерентності вздовж осі c, $\xi_c(0)$. При x = 0 $\Delta^*(T)$ демонструє характерний для плівок YBCO максимум при $T_{pair} \approx 110$ К. Із зростанням x максимум при T_{pair} розмивається, але з'являється різко виражений максимум $\Delta^*(T)$ в області високих температур, за яким слідує лінійна ділянка з додатним нахилом. Така залежність $\Delta^*(T)$ є типовою для магнітних надпровідників та, найбільш ймовірно, обумовлена впливом власного магнітного моменту Pr ($\mu_{Pr} \approx 4\mu_B$).

PACS: 74.72.Кf, Псевдощелевая фаза;
74.72.Вk Купраты на основе Y;
74.40.+k Флуктуации.

Ключевые слова: Флуктуационная проводимость, псевдощель, избыточная проводимость, монокристаллы YPrBCO.

1. Введение

Изучение псевдощели (ПЩ) продолжает оставаться одним из наиболее актуальных направлений физики высокотемпературных сверхпроводников (ВТСП) [1-3]. Несмотря на большое количество накопленных результатов, до сих пор неясными остаются как природа ПЩ, так и вопрос о ее роли в формировании сверхпроводящего состояния в ВТСП. Одними из наиболее интересных материалов для изучения ПЩ являются соединения YBa2Cu3O7-6 (YBCO), что обусловлено возможностью широкого варьирования их состава путем замены иттрия его изоэлектронными аналогами либо изменения степени кислородной нестехиометрии. Особый интерес в этом аспекте представляют соединения с частичной заменой иттрия (Y) на празеодим (Pr). PrBa₂Cu₃O_{7-б} (PrBCO) является диэлектриком, но изоструктурным по отношению к YBCO [4,5]. В PrBCO, независимо от содержания кислорода, носители заряда локализуются в энергетической зоне Ференбахера-Райса (ФР) [6]. Поэтому допирование Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} (YPrBCO) празеодимом, с одной стороны, приводит к постепенному подавлению сверхпроводимости с ростом x, а с другой, позволяет сохранять практически неизменными параметры решетки и кислородный индекс 7-б изучаемого образца [7,8].

Однако в YPrBCO температура сверхпроводящего перехода T_c с ростом x уменьшается монотонно, в отличие от немонотонной зависимости T_c от (7-б) в YBCO [4]. Из резистивных измерений [4,7] и измерений эффекта Холла [4] следует, что при $x \le 0,2$ монокристалл YPrBCO демонстрирует поведение, аналогичное наблюдаемому в пленках YBCO. Однако при $x \ge 0,3$ температурная зависимость удельного сопротивления $\rho(T)$ приобретает S-образную форму, типичную для слабодопированных монокристаллов YBa2Cu3O7-6 с характерным термоактивационным прогибом [9], а при x > 0.7YPrBCO становится изолятором [4,7,10]. Считается [5,11], что это происходит в результате взаимодействия дырок с электронами 4f-оболочки Pr, что в конечном итоге приводит к локализации носителей заряда в ФР зоне [6]. Как уже отмечалось, кристаллическая ячейка PrBCO имеет фактически те же размеры, как и YBCO [4,5]. Поэтому допирование Pr не приводит к заметному изменению кристаллической структуры образца, а также к изменению содержания кислорода, что позволяет изучить изменение свойств ВТСП непосредственно при изменении плотности носителей заряда n_f.

В данной работе, используя развитый нами подход в модели локальных пар (ЛП) [3,12], было исследовано влияние Pr в широком интервале концентраций ($0 \le x \le 0,5$) на температурные зависимости флуктуационной проводимости (ФЛП) и псевдощели в монокристаллах $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$, в которых плотность носителей заряда n_f и T_c уменьшаются при увеличении содержания Pr [5,7,11]. Существенным обстоятельством является то, что Pr имеет собственный магнитный момент $\mu_{Pr} \approx 3,58\mu_B$ [13] и $\mu_{Pr} \approx 2\mu_B$ в соединении PrBCO [14]. Поэтому исследование влияния примесей Pr на условия и режимы реализации как ФЛП, так и ПЩ состояния в таких соединениях [15,16] играет важную роль для выяснения механизмов взаимовлияния сверхпроводимости и магнетизма в ВТСП, что важно для окончательного выяснения природы как ПЩ, так и высокотемпературной сверхпроводимости в целом. Изучение взаимовлияния сверхпроводимости и магнетизма в ВТСП — одна из наиболее актуальных задач современной физики конденсированного состояния [1,3], особенно после открытия железосодержащих сверхпроводников [17].

2. Эксперимент

Монокристаллы YBa2Cu3O7-6 выращивали по раствор-расплавной технологии [18]. Для получения кристаллов с частичной заменой Y на Pr (Y1-xPrxBa2Cu3O7δ) в начальную шихту добавляли Pr₅O₁₁ в соответствующем процентном соотношении. Режимы выращивания и насыщения кристаллов кислородом были такими же, как и для нелегированных монокристаллов ҮВСО [18]. В качестве начальных компонентов для выращивания кристаллов использовали соединения Y2O3, BaCO3, СиО и Pr₅O₁₁. Для измерений отбирались образцы с размерами 1×2×7 мм, где меньший размер соответствовал направлению вдоль оси с. Токовые контакты монтировали с торцов образца, чтобы обеспечить равномерное растекание тока. Потенциальные контакты изготавливались в виде тонких полосок поперек образца. Все контакты осуществлялись с помощью серебряной пасты. Сопротивление в ав-плоскости измеряли по стандартной четырехзондовой методике на постоянном токе до 10 мА. Температуру образца определяли платиновым терморезистором.

Температурные зависимости удельного сопротивления $\rho_{ab}(T) = \rho(T)$ в *ab*-плоскости мнокристаллов $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ показаны на рис. 1. Видно, что, как отмечено выше, по мере увеличения содержания Pr сопротивление образцов возрастает, а критическая температура понижается, что согласуется с литературными данными [7–11]. При этом сами зависимости $\rho(T)$ испытывают переход от типично металлических к *S*-образным, с характерной большой положительной кривизной экспериментальных кривых [9–11]. Подобное поведение температурной зависимости $\rho(T)$ также характерно для слабодопированных монокристаллов YBCO [9,19].

Согласно теоретической модели NAFL (Nearly Antiferromagnetic Fermi-Liquid model) [20], линейная зависимость $\rho(T)$ при высоких температурах отвечает нормальному состоянию образца, которое характери-

Рис. 1. (Онлайн в цвете) Температурные зависимости удельного сопротивления ρ_{ab} монокристаллов $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ при различной концентрации празеодима *x*: 0 (*1*); 0,19 (*2*); 0,23 (*3*); 0,34 (*4*); 0,43 (*5*). Пунктир — экстраполяция нормального сопротивления $\rho_N(T) = aT + \rho_0$ в область низких температур. На вставке показана методика определение *T** по зависимости ($\rho - \rho_0$)/*aT* = 1 (*x* = 0,43).

зуется стабильностью поверхности Ферми (ПФ). Ниже характеристической температуры $T^* >> T_c$ зависимость $\rho(T)$ отклоняется от линейной в сторону меньших значений, что приводит к возникновению избыточной проводимости,

$$\sigma'(T) = \sigma(T) - \sigma_N(T) = \left[1/\rho(T)\right] - \left[1/\rho_N(T)\right]. \quad (1)$$

 $\rho_N(T) = aT + \rho_0$ дает сопротивление образца в нормальном состоянии, экстраполированное в область низких температур [20–24]. Соответственно ρ_0 определяется пересечением этой линейной зависимости с осью *Y*. T_c определялась экстраполяцией линейной части резистивного перехода к значению $\rho(T_c) = 0$. Из анализа избыточной проводимости определялись температурные зависимости ФЛП и ПЩ в каждом монокристалле. Было исследовано семь образцов с *x* равным 0, 0,19; 0,23; 0,34; 0,43; 0,48; 0,5. Однако образцы с *x* = 0,48 и *x* = = 0,5 демонстрируют термоактивационную зависимость $\rho(T)$, и не рассматриваются. Все образцы были проанализированы в рамках развитой нами модели ЛП [3,12]. В работе рассматриваются результаты, полученные для

образца YBa₂Cu₃O_{7- δ} (x = 0) и допированного празеодимом Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} с x = 0,43, а затем производится сравнение с результатами, полученными для всех остальных образцов. Параметры анализа для всех образцов приведены в табл. 1 и 2.

3. Обсуждение результатов

3.1. Флуктуационная проводимость

Рассчитанная по формуле (1) зависимость $\sigma'(T)$, в координатах ln σ' or ln ε , показана на рис. 2. (O) — YBa₂Cu₃O_{7- δ} (a), (**①**) — Y_{0,57}Pr_{0,43}Ba₂Cu₃O_{7- δ} (б). Здесь $\varepsilon = (T - T_c^{mf}/T_c^{mf}\varepsilon$ — приведенная температура и T_c^{mf} (табл. 1) — критическая температура в приближении среднего поля [3,25], которая определяется экстраполяцией линейного участка зависимости $\sigma'^{-2}(T)$ до его пересечения с осью температур [3,9,12].

Видно, что для x = 0 в интервале от температуры Гинзбурга $T_G \approx 91,75$ К (ln $\varepsilon_0 \approx - 8,2$), до которой $\sigma'(T)$ подчиняется флуктуационным теориям [25,26], и до температуры кроссовера $T_0 \approx 91,81$ К (ln $\varepsilon_0 \approx -6,98$) эксперимент хорошо экстраполируется флуктуационным вкладом теории Асламазова–Ларкина (АЛ) для 3D систем [3,22]:

$$\sigma_{AL3D}' = C_{3D} \frac{e^2}{32h\xi_c(0)} \varepsilon^{-1/2}$$
(2)

(пунктирные прямые *1* на рис. 2). Соответственно, выше T_0 , до $T_{01} \approx 93,9$ К (ln $\varepsilon_{01} \approx -3,7$), — флуктуационным вкладом Маки–Томпсона (МТ) теории Хиками–Ларкина (ХЛ) [23]:

$$\sigma'_{\rm MT} = \frac{e^2}{8dh} \frac{1}{1 - \alpha/\delta} \ln\left((\delta/\alpha) \frac{1 + \alpha + \sqrt{1 + 2\alpha}}{1 + \alpha + \sqrt{1 + 2\delta}}\right) \epsilon^{-1} \quad (3)$$

(рис. 2, сплошная кривая 2). Здесь d = c = 11,67 Å — размер элементарной ячейки YBCO вдоль оси c, $\alpha = 2[\xi_c(0)/d]\epsilon^{-1}$ — параметр связи,

$$\delta = \beta \frac{16}{\pi h} \left[\frac{\xi_{\rm c}(0)}{d} \right]^2 k_B T \tau_{\phi} \tag{4}$$

— параметр распаривания, $\tau_{\phi}\beta T = \pi h/8k_B\varepsilon_0$ — время фазовой релаксации флуктуационных пар. Множитель $\beta = 1,203(l/\xi_{ab})$, где l — длина свободного пробега и ξ_{ab} — длина когерентности в плоскости *ab*, учитывает приближение чистого предела [12,23].

Таблица 1. Параметры Y_{1-x}Pr_xBa₂Cu₃O_{7-б} монокристаллов

x	ρ _(100 K) , мкОм см	<i>Т</i> _{<i>c</i>} , К	$T_c^{\rm mf}$, K	<i>ТG</i> , К	<i>Т</i> ₀ , К	<i>Т</i> ₀₁ , К	ΔT_{fl} , K	$\xi_{c}(0), \text{\AA}$	$d_{01},$ Å
0	44,87	91,67	91,73	91,75	91,81	93,9	2,15	0,356	4,12
0,19	98,88	78,52	81,13	81,41	82	84,99	3,58	1,4	6,44
0,23	141,16	66,6	67,5	67,6	68,02	74,03	6,43	1,0	3,18
0,34	197,7	50,53	51,51	51,73	54,4	57,91	6,18	2,77	7,86
0,43	268,46	38,5	39,67	39,9	41,16	46,16	6,26	2,24	5,51

Рис. 2. (Онлайн в цвете) Зависимость $\ln \sigma'$ от $\ln \varepsilon$ для Y1Ba₂Cu₃O_{7- δ} (O) и Y_{0,57}PrO,43Ba₂Cu₃O_{7- δ} (**①**) в сравнении с флуктуационными теориями : I — АЛ вклад; 2 — МТ вклад. Вертикальными стрелками обозначены значения $\ln \varepsilon$, отвечающие температурам T_G , T_0 и T_{01} .

Зависимость $\ln \sigma'$ (ln ε) для монокристалла с x = 0.43(•) также показана на рис. 2 и хорошо описывается как АЛ, так и МТ теорией. Видно, что, как и в ҮВСО, при $T = T_0 \approx 41,16$ К (ln $\varepsilon_0 \approx -3,3$) четко наблюдается размерный 3D-2D (АЛ-МТ) кроссовер (рис. 2), а в интервале от T_0 до $T_{01} \approx 46,16$ К (ln $\varepsilon_{01} \approx -1,8$) эксперимент экстраполируется уравнением (3). Аналогичные зависимости $ln\sigma'$ (lnɛ) получены и для всех других образцов с параметрами, приведенными в табл. 1. Из таблицы видно, что допированние Pr приводит к заметному, почти в три раза, увеличению температурного интервала сверхпроводящих (СП) флуктуаций $\Delta T_{fl} = T_{01} - T_G$ с одновременным существенным (более чем в шесить раз) увеличением длины когерентности. Наиболее вероятно это происходит за счет усиления магнитного взаимодействия в $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ с ростом x. Следует также отметить, что PrBCO, являясь диэлектриком, образует дефекты в проводящей матрице YBCO [6-8,10,11]. Это может объяснять как резкое увеличение $\rho(T)$ (рис. 1), так и немонотонное увеличение как $\xi_c(0)$, так и d_{01} (табл. 1) с ростом х.

Таким образом, на зависимости $\sigma'(T)$ можно выделить четыре характеристические температуры. Рассмотрим их на примере Y_{1-x} Pr_xBa₂Cu₃O_{7- δ} с x = 0. Соответственно, это $T_c^{\text{mf}} = 91,73$ К, ниже которой реализуется область критических флуктуаций в ВТСП [3,23-25], температура Гинзбурга $T_G = 91,75$ К (ln $\varepsilon 0 = -8,2$), до которой работают флуктуационные теории при приближении температуры к T_c [25,26], температура 3D-2D (АЛ–МТ) кроссовера $T_0 \approx 91,81$ К (ln $\varepsilon_0 = -6,98$) и $T_{01} \approx$ \approx 93,9 К (ln ε_{01} = -3,7). Как уже отмечалось, поведение ВТСП в значительной мере определяется исключительно короткой длиной когерентности $\xi_c(T) = \xi_c(0) \varepsilon^{-1/2}$. которая существенно меняется с температурой. Ниже То вблизи T_c , где $\xi_c(T) > d$, взаимодействие флуктуационных куперовских пар (ФКП) происходит во всем объеме сверхпроводника. Это 3D режим. То есть, как и все другие ВТСП, вблизи T_c Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} трехмеризуется [3,12,23,24]. Выше T_0 уже $d > \xi_c(T)$. Очевидно, что $(T_0) =$ $=\xi_c(0)\varepsilon_0^{-1/2} = d$. Таким образом, T_0 определяет величину $\xi_c(0) = d\sqrt{\epsilon_0}$ [3,12,23]. Для Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} с x = 0, $T_c = 91,67$ К и $T_0 \approx 91,81$ К получим $\xi_c(0) = d\sqrt{\varepsilon_0} = d\sqrt{\varepsilon_0}$ $= 0.356 \pm 0.05$ Å, то есть, как отмечено выше, ξ_c (0) очень мала, что характерно для оптимально допированных монокристаллов ҮВСО [27]. Отметим, что в ҮВСО $\xi_{ab}(0) \sim 15 \, \xi_c(0) \, [1-4,9], \, \text{и в данном случае } \xi_{ab}(0) \approx 5 \, \text{Å},$ т.е. имеет достаточно разумную величину. При увеличении содержания Pr величина $\xi_c(0)$ быстро возрастает (табл. 1), что коррелирует с уменьшением Тс, и при $x > 0.4 \xi_c(0)$ приобретает значения, типичные для слабодопированных ВТСП [1-3,9]. Таким образом, увеличение концентрации Pr, которое, как отмечено выше, не влияет на концентрацию кислорода в образце, практически приводит к такому же росту $\xi_c(0)$, как и уменьшение допирования ҮВСО кислородом.

Итак, $\xi_c(T)$ быстро уменьшается с ростом *T*, и при $T > T_0$, где $\xi_c(T) < d$, корреляционное взаимодействие ФКП во всем объеме ВТСП прекращается [24]. Однако по-прежнему $\xi_c(T) > d_{01}$, где d_{01} — расстояние между внутренними проводящими плоскостями CuO₂ в ВТСП купратах [3,12,23]. Поэтому в интервале $T_0 - T_{01} \xi_c(T)$ по-прежнему связывает плоскости CuO₂ джозефсоновским взаимодействием [23,24]. Это приводит к формированию при $T > T_0$ двумерной ФЛП [23,24], которая экстраполируется 2D МТ уравнением (3) (рис. 2). Наконец, при $T > T_{01} \xi_c(T)$ становится меньше d_{01} , Соответственно, все носители заряда находятся внутри проводящих плоскостей, не связанных теперь никаким

x	<i>Т</i> *, К	$\Delta^*(T_c)_{exp}, K$	$\Delta^*(T_c)_{\text{theor}}, (K)$	<i>T</i> _{max} , (К)	$2\Delta^*(T_c)/kT_c$	ϵ_{c0}^*
0	141	234	229	110	5	0,14
0,19	152	177,1	173	107	4,4	0,18
0,23	163	166,5	166	105	5	0,43
0,34	223	116	116,2	141	4,6	0,74
0,43	263	97	96,25	226	5	0,6

Таблица 2. Параметры анализа псевдощели в Y_{1-x}Pr_xBa₂Cu₃O_{7-б} монокристаллах

Low Temperature Physics/Физика низких температур, 2017, т. 43, № 7

корреляционным взаимодействием [23,24]. Поэтому, как видно на рис. 2, выше T_{01} флуктуационные теории не описывают эксперимент. Таким образом, T_{01} определяет область СП флуктуаций, $\Delta T_{fl} = T_{01} - T_G$, выше T_c . Фактически это температура, до которой, согласно теории [28], сохраняется жесткость фазы параметра порядка Δ сверхпроводника, что подтверждается экспериментом [29,30]. Другими словами, в интервале T_c - T_{01} ФКП ведут себя в значительной степени как сверхпроводящие пары, но без дальнего порядка (так называемые «shortrange phase correlations» [28,31,32]).

Очевидно, что $\xi_c(T_{01}) = d_{01}$. Соответственно, должно выполняться равенство: $\xi_c(0) = d_{01}\sqrt{\varepsilon_{01}} = d\sqrt{\varepsilon_0}$, что позволяет определить d_{01} , поскольку $\xi_c(0)$ уже известно [3,12]. Отсюда получим, что при x = 0 $d_{01} = 4,12$ Å (табл. 1), что хорошо коррелирует с данными структурных измерений YBa₂Cu₃O_{7- δ}, где $d_{01} = (3, 5 - 4, 5)$ Å [33,34]. Однако для *x* = 0,43 (*T_c* = 38,5 К и *T*₀₁ ≈ 46,16 К In $\varepsilon_{01} = -1,8$) получим $d_{01} = 5,51$ Å. То есть допирование Рг приводит к увеличению эффективного расстояния между проводящими плоскостями в $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ при увеличении х. Одновременно, как уже отмечалось, заметно возрастает и область СП флуктуаций $\Delta T_{fl} = T_{01} - T_{01}$ $-T_G$, от 2,15 К (x = 0) до 6,26 К (x = 0,43) (табл. 1). Также следует отметить, что выше T_{01} зависимость $\sigma'(T)$ заметно отклоняется вверх, образуя горб над теоретической МТ кривой (рис. 2). Похожую зависимость $\sigma'(T)$ мы наблюдали при изучении ФЛП в железосодержащем магнитном сверхпроводнике EuFeAsO_{0.85}F_{0.15} [35]. Следовательно, можно утверждать, что поскольку допирование Pr не приводит к изменению количества кислорода в образце, все обнаруженные эффекты, включая и увеличение $\xi_c(T)$, предположительно можно объяснить увеличением влияния магнетизма в Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} с ростом х.

3.2. Анализ температурной зависимости псевдощели

При анализе ПЩ мы полагаем [1-3,9,12], что отклонение сопротивления образца в сторону меньших значений, наблюдаемое при $T \leq T^*$ (рис. 1), обусловлено формированием в ВТСП локальных пар (сильно связаных бозонов, ССБ), подчиняющихся теории бозеэйнштейновской конденсации (БЭК) [31]. По мере уменьшения температуры при $T = T_{\text{раіr}}$ локальные пары трансформируются во флуктуационные куперовские пары, подчиняющиеся теории БКШ [25]. Это предположение является основным в ЛП модели [3]. В результате, согласно (1), в интервале $T^* > T > T_c$ возникает избыточная проводимость, определяемая уравнением

$$\sigma'(\varepsilon) = \frac{e^2 A_4 \left(1 - \frac{T}{T^*}\right) \left(\exp\left(-\frac{\Delta^*}{T}\right)\right)}{\left(16\hbar\xi_c(0)\sqrt{2\varepsilon_{c0}^* \operatorname{sh}(2\varepsilon/\varepsilon_{c0}^*)}\right)},$$
 (5)

где $(1 - T/T^*)$ определяет число ЛП, сформированных при $T \le T^*$, а $\exp(-\Delta^*/T)$ определяет число ЛП, разрушаемых флуктуациями при $T_{pair} > T > T_c$ [3,12].

Соответственно, уравнение для параметра Δ^* , который мы отождествляем с ПЩ, имеет вид [3]

$$\Delta^{*}(T) = T \ln \frac{e^{2} A_{4} \left(1 - \frac{T}{T^{*}}\right)}{\sigma'(T) 16\hbar\xi_{c}(0) \sqrt{2\epsilon_{c0}^{*} \operatorname{sh}(2\epsilon/\epsilon_{c0}^{*})}}, \quad (6)$$

где $\sigma'(T)$ — измеряемая в эксперименте избыточная проводимость.

Поскольку Т* независимым образом определяется из резистивних измерений, а T_c^{mf} , є и $\xi_c(0)$ из ФЛП анализа, неизвестными параметрами в (5) и (6) остаются параметр теории [36] $\epsilon_{c0}^* = (T_{c0}^*/T_c^{\text{mf}} - 1) = 1/\alpha$ и скэйлинговый коэффициент А4. Для нахождения необходимых параметров изучаемые образцы при всех значениях х обрабатывались по одинаковой методике, которую мы рассмотрим на примере образца с x = 0,43. Следуя [36], рассмотрим зависимость $\sigma'^{-1}(\varepsilon)$, чтобы определить ε_{c0} (вставка к рис. 3). Предполагаем, что, как и в ҮВСО, величина σ'^{-1} , обратная избыточной проводимости, будет экспоненциально зависеть от є в некотором интервале температур выше T₀₁ [3,36]. Следовательно, зависимость $\ln \sigma'^{-1}$ от є должна быть линейной в этом интервале температур. Видно, что в интервале $\varepsilon_{c01} - \varepsilon_{c02}$ $(T_{c01} - T_{c02} = (72, 2 - 100, 2)$ K), обозначенном ln ε_{c01} – - ln ε_{c02} на рис. 3, ln $\sigma^{-1}(\varepsilon)$ аппроксимируется линейной зависимостью ln $\sigma^{-1} = \ln \sigma^{-1} + \alpha \varepsilon$ (пунктир). Как извест-

Рис. 3. (Онлайн в цвете) Зависимость $\ln \sigma'$ от $\ln \varepsilon$ (**①**) для монокристала $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ с x = 0,43 в интервале температуры от T^* до T_c^{mf} . Пунктирная кривая — расчет по уравнению (5) с параметрами, приведенными в тексте; $\ln \varepsilon_{c01}$ и $\ln \varepsilon_{c02}$ ограничивают интервал экспоненциальной зависимости $\sigma'^{-1}(\varepsilon)$. На вставке: зависимость $\ln (1/\sigma')$ от ε (**①**), пунктир — прямая, обратный наклон которой $1/\alpha$ определяет $\varepsilon_{c0}^* = 1,67$.

но [3,36], величина, обратная наклону α этой линейной зависимости, как раз и определяет $\varepsilon_{c0}^* = 1/\alpha = 1,67$ (табл. 2). Из таблицы видно, что с увеличением *x* значения ε_{c0}^* возрастают от 0,14 (*x* = 0) до 1,67 (*x* = 0,43). Такое же увеличение ε_{c0}^* наблюдалось нами и при увеличении числа слоев PrBCO в сверхрешетках и гетероструктурах YBCO–PrBCO [12] и, скорее всего, обусловлено увеличением влияния магнетизма при увеличении концентрации Pr [6].

Для определения коэффициента A_4 мы строим экспериментальную кривую (рис. 3, (O)) во всем интервале температур от $T^* = (236 \pm 2)$ К и до $T_c^{\text{mf}} = 39,67$ К и аппроксимируем ее уравнением (5) [3,9,12]. Расчетная кривая (пунктирная кривая на рис. 3) строится по уравнению (5) с определенными из эксперимента параметрами $T^* = 236$ К, $T_c^{\text{mf}} = = 39,67$ К, $\varepsilon_{c0}^* = 1,67$, $\xi_c(0) = 2,24$ Å и $A_4 = 14$. Совмещение производится в области 3D АЛ флуктуаций, где ln σ' от ln ε есть прямая с наклоном $\lambda = -1/2$ [3,12,27]. Видно, что предложенное нами уравнение (5) (кривая I) хорошо описывает экспериментальную зависимость $\sigma'(\varepsilon)$, что дает основание для использования коэффициента A_4 и других параметров для расчета ПЩ по формуле (6).

Следует подчеркнуть, что для построения пунктирной кривой на рис. 3, помимо приведенных выше параметров, необходимо знать величину $\Delta^*(T_c^{\text{mf}}) \approx \Delta^*(T_c) = \Delta$ [37], которая также подставляется в (5) при нахождении А4. Для определения $\Delta^*(T_c)$ необходимо построить экспериментальные данные в координатах ln σ' от 1/*T* (рис. 4, (**0**)) и сопоставить ln $\sigma'(1/T)$ с теорией, используя (5) (рис. 4, сплошные кривые) [3]. Наилучший результат получается, когда соотношение БКШ $D^* = 2\Delta^*(T_c)/k_BT_c = 5$ (кривая *l*), что отвечает

Рис. 4. (Онлайн в цвете) Зависимость In σ' от 1/*T* для монокристала $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ в интервале температур от *T** до T_c^{mf} при x = 0,43 (**①**). Сплошная кривая *I* определяется уравнением (5) для $D^* = 2\Delta^*(T_c)/k_BT_c = 5$. Сплошные кривые 2 и 3 получены для $D^* = 3$ и $D^* = 7$ и приведены для сравнения.

пределу сильной связи и характерно для YBCO [1,3,17]. Для сравнения на рис. 4 также представлены теоретические кривые 2 и 3, для которых $2\Delta^*(T_c)/k_BT_c = 3$ и $2\Delta^*(T_c)/k_BT_c = 7$ соответственно. Видно, что в этом случае кривые, рассчитанные по (5), не отвечают эксперименту. Соответствующие параметры, полученные аналогичным образом для всех остальных образцов, приведены в табл. 1 и 2.

Зависимости $\Delta^*(T)$, полученные по уравнению (6) для x = 0 (кривая 1), x = 0,23 (2) и x = 0,43 (3), с соответствующим каждому образцу набором параметров, используемым и при анализе уравнению (5), показаны на рис. 5. При $x = 0 \Delta^*(T)$ резко возрастает в диапазоне $T^* > T > T_{\text{pair}}$, демонстрируя максимум при $T_{\text{pair}} \approx 110$ К (кривая 1). Также надо отметить четко выраженный минимум при T_{01} , обозначенный на рис. 5 стрелками. Это означает, что в области СП флуктуаций ниже $T_{01} \Delta^*(T)$ всегда резко возрастает. Такая зависимость является типичной для высококачественных тонких пленок YBCO с различной концентрацией кислорода [3] и оптимально допированных монокристаллов YBCO [27]. T_{pair} соответствует температуре перехода БЭК-БКШ, при которой локальные пары, трансформируются в ФКП [1-3,31,38,39]. На рис. 5 также показаны зависимости $\Delta^*(T)$ для образцов с x = 0,23 (кривая 2) и x = 0,43(кривая 3). Видно, что так же, как и в соединениях YBCO-PrBCO [12], в данном случае допирование празеодимом приводит к уменьшению Т_с, тогда как Т* возрастает. Одновременно максимум при Tpair размывается, $\Delta^*(T_{\text{pair}})$ уменьшается, и, в конечном итоге, максимум при T_{pair} исчезает. Однако уже при x = 0,23 появляется максимум при более высоких температурах, величина которого быстро увеличивается с ростом x. При x = 0,43наблюдается ярко выраженный максимум при $T_{\rm max} \approx$ ≈ 226 К, ниже которого следует линейный участок с положительным наклоном (рис. 5, кривая 3). Такая зависимость подобна аналогичной зависимости $\Delta^*(T_{\text{pair}})$, наблюдаемой в железосодержащих сверхпроводниках (пниктидах) [12,35].

Чтобы в этом убедиться, на рис. 6 проведено сравнезависимости полученной $\Delta^*(T)$, ние для Y0 57Pr0 43Ba2Cu3O7-6 в этой работе, с результатами ПШ анализа для пниктидов SmFeAsO_{0.85} [3] и EuFeAsO_{1-x}F_x [35]. Видно, что наклон линейного участка и его длина, определяемая температурами T_S и T_{SDW}, практически одинаковы для всех образцов. Этот результат подтверждает магнитную природу возникающего в немагнитном YBCO максимума при допировании Pr. Таким образом, можно с большой долей вероятности утверждать, что обнаруженная нами эволюция зависимости $\Delta^*(T)$ в Y_{1-x} Pr_xBa₂Cu₃O_{7- δ}, наблюдаемая с ростом *x*, обусловлена усилением магнитного взаимодействия в монокристалле. Этот вывод представляется разумным, поскольку, как уже отмечалось, Pr имеет собственный магнитный момент $\mu_{Pr} \approx 3,58 \ \mu_B \ [13,14].$

Рис. 5. (Онлайн в цвете) Зависимости Δ^*/k_B от *T* для монокристалла $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$, рассчитанные по (6) для x = 0(1), x = 0,23 (2) и x = 0,43 (3).

В пникнидах *T_S* — это температура структурного перехода из тетрагональной в орторомбическую фазу. *T_{SDW}* — температура, соответствующая антиферромагнитному упорядочению спинов железа и переходу в режим волн спиновой плотности (SDW) [17,35]. Таким образом, можно предположить, что при допировании Pr YBCO становится магнитным сверхпроводником, в котором при достижении определенной концентрации Pr также имеют место как структурный при T_S, так и антиферромагнитный при *T_{SDW}* переходы. Отметим, что аналогичное изменение температурной зависимости ПЩ с появлением «магнитного» максимума при высоких Т обнаружено нами при увеличении числа слоев PrBCO в сверхрешетках и гетероструктурах YBCO-PrBCO [12]. Следовательно, полученный результат позволяет сделать вывод о том, что взаимодействие между локальными парами и магнетизмом (магнитными флуктуациями) имеет одинаковую природу во всех ВТСП, где наблюдается сосуществование сверхпроводимости и магнетизма. Определенную роль при этом могут играть специфические механизмы квазичастичного рассеяния, обусловленные присутствием в системе структурной и кинематической анизотропии [40-42].

Следует также отметить, что в области СП флуктуаций ниже T_{01} как при допировании YBCO Pr, так и в железосодержащих ВТСП, $\Delta^*(T)$ демонстрирует одинаковое поведение (рис. 6). Это поведение в деталях иллюстрирует рис. 7, где показаны зависимости $\Delta^*(T)$ для x = 0 (кривая 1) и x = 0,43 (кривая 2) вблизи T_c . При уменьшении T всегда наблюдается минимум при T_{01} , после котрого следует достаточно резкий рост $\Delta^*(T)$, затем максимум между T_0 и T_G и далее минимум в T_G . После T_G наблюдается скачкообразный рост $\Delta^*(T)$, отвечающий переходу ВТСП в область критических флуктуаций при $T \le T_c^{mf}$ [12,27,43]. Осциляции $\Delta^*(T)$ между T_0 и T_G , наблюдаемые при x = 0, наиболее веро-

Рис. 6. (Онлайн в цвете) $\Delta^*(T)/\Delta_{\text{max}}$ как функция T/T^* для монокристала $Y_{0,57}$ Pr_{0,43}Ba₂Cu₃O_{7-δ} и железосодержащих сверхпроводников SmFeAsO_{0,85} [3] и EuFeAsO_{1-x}F_x [35]. Длина линейного участка между температурами T_s и T_{SDW} и его наклон практически одинаковы для этих образцов.

ятно, являются спецификой поведения данного образца. Никаких осцилляций на аналогичном монокристалле YBCO с $T_c = 91,1$ К в указанном интервале температур не обнаружено [27]. Таким образом, можно сделать вывод, что в области СП флуктуаций перед резистивным переходом все ВТСП демонстрируют одинаковое поведение, независимо от наличия или отсутствия магнитных ионов в образце.

4. Заключение

Проведены детальные измерения удельного сопротивления $\rho(T)$ монокристалла $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ при увеличении содержания празеодима x от x = 0 до x = 0,43. Показано, что увеличение x приводит к замет-

Рис. 7. (Онлайн в цвете) Псевдощель Δ^*/k_B в монокристалле $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$, построенная как функция температуры для x = 0 (*1*) и x = 0,43 (*2*) вблизи T_c . Верхняя и правая шкалы отвечают x = 0,43.

ному увеличению $\rho(T)$ и температуры открытия псевдощели T^* , а также к резкому уменьшению T_c . Впервые в монокристалле Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} с разным содержанием Pr были проанализированы температурные зависимости избыточной проводимости $\sigma'(T)$ и ПЩ, извлекаемые из резистивних измерений с помощью модели локальних пар [3]. Показано, что независимо от допирования избыточная проводимость $\sigma'(T)$ в интервале $T_{c} < T < T_{01}$ хорошо описывается флуктуационными теориями: 3D теорией Асламазова-Ларкина (2) и 2D теорией Хиками-Ларкина (МТ вклад) (3). Это область флуктуационной проводимости, или СП флуктуаций, определяемая температурой T_{01} , где флуктуационные куперовские пары ведут себя в значительной степени как сверхпроводящие пары, но без дальнего порядка [28,31,32]. Увеличение содержания Pr приводит к заметному увеличению области СП флуктуаций и одновременному, более чем в шесть раз, увеличению длины когерентности $\xi_c(0)$ (табл. 1). Таким образом, как и в классических сверхпроводниках, длина когерентности растет при уменьшении T_c .

При x = 0 температурная зависимость ПЩ $\Delta^{*}(T)$ оказалась подобной аналогичной зависимости, наблюдаемой для оптимально допированных ҮВСО, с максимумом в районе $T_{\text{pair}} \approx 110$ К (рис. 5). С ростом х величина ПЩ уменьшается, и максимум при T_{pair} постепенно исчезает. В то же время при x > 0,2 на зависимости $\Delta^{*}(T)$ возникает максимум при более высоких температурах, четко выраженный при x = 0,43, за которым следует линейный участок с положительным наклоном, характеризуемый температурами T_S и T_{SDW}. (В железосодержащих ВТСП, T температура перехода из тетрагональной в орторомбическую фазу, а T_{SDW} — температура антиферромагнитного упорядочения и перехода в режим волн спиновой плотности SDW [12,17,35].) Сравнение полученной при x = 0,43 зависимости $\Delta^*(T)$ с результатами ПЩ анализа для пниктидов SmFeAsO_{0.85} [3] и EuFeAsO_{1-x} F_x [35] показывает, что наклон линейного участка и его длина, определяемая температурами T_S и T_{SDW}, практически одинаковы для всех образцов. Этот результат указывает на магнитную природу возникающего в немагнитном ҮВСО максимума при допировании Pr. Таким образом, можно с большой долей вероятности утверждать, что обнаруженные нами изменения зависимостей ln σ' (ln ε), а также эволюция зависимости $\Delta^*(T)$ в $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$, наблюдаемые с увеличением содержания Pr, обусловлены усилением магнитного взаимодействия в монокристалле. Полученные результаты подтверждает сделанный нами в [12] вывод о том, что природа механизма взаимовлияния между сверхпроводящими и магнитными флуктуациями в интервале температур от Т* до T_c , скорее всего, одинакова во всех магнитных сверхпроводниках.

Показано, что и переход в СП состояние, независимо от наличия или отсутствия магнетизма, всегда происходит по одному и тому же закону (рис. 7). На всех кривых $\Delta^*(T)$ ниже T_{01} наблюдается резкий рост ПЩ с максимумом между T_0 и T_G . Затем следует минимум в T_G и резкий рост $\Delta^*(T)$ при $T \leq T_c^{\text{mf}}$, отвечающий переходу в область критических флуктуаций. Такое поведение $\Delta^*(T)$ обнаружено нами на всех без исключения ВТСП [30]. Поскольку допирование Pr не приводит к изменению количества кислорода в образце, все обнаруженные эффекты, предположительно, можно объяснить увеличением влияния магнетизма в $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ с ростом содержания Pr.

- A.A. Kordyuk, Fiz. Nizk. Temp. 41, 417 (2015) [Low Temp. Phys. 41, 319 (2015)].
- 2. R. Peters and J. Bauer, Phys. Rev. B 92, 014511 (2016).
- A.L. Solovjov, Superconductors-Materials, Properties and Applications.: Pseudogap and Local Pairs in High-T_c Supeconductors, A.M. Gabovich (ed.) Rijeka: InTech, (2012) ch. 7, p. 137.
- 4. A. Matsuda, K. Kinoshita, T. Ishii, H. Shibata, T. Watanabe, and T. Yamada, *Phys. Rev. B* **38**, 2910 (1988).
- Y.X. Jia, J.Z. Liu, M.D. Lan, and R.N. Shelton, *Phys. Rev. B* 47, 6043 (1993).
- 6. R. Fehrenbacher and T.M. Rice, *Phys. Rev. Lett.* **70**, 3471 (1993).
- J.-M. Triscone, Q. Fischer, O. Brunner, L. Antognazza, A.D. Kent, and M.G. Karkut, *Phys. Rev. Lett.* 64, 804 (1990).
- 8. Y. Yu, G. Cao, and Z. Jiao, Phys. Rev. B 59, 3845 (1999).
- A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, Z.F. Nazyrov, S.N. Kamchatnaya, and D.M. Sergeyev, *Phys. B: Condenc. Matter* 493, 58 (2016).
- R.V. Vovk, G.Ya. Khadzhai, and O.V. Dobrovolskiy, *Appl. Phys. A* **117**, 997 (2014).
- A.K. Pradhan, S.J. Hazell, J.W. Hodby, C. Chen, A.J.S. Chowdhury, and B.M. Wanklyn, *Solid State Commun.* 88, 723 (1993).
- A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, R.V. Vovk, H.-U. Habermeier, H. Lochmajer, P. Przysłupski, and K. Rogacki, *Phys. Rev. B* 94, 224505 (2016).
- H. Nagasawa and T. Sugawara, J. Phys. Soc. Jpn. 23, 701 (1967).
- M. Guillaume, P. Fisher, B. Roessli, A. Podlesnyak, J. Schefer, and A. Furrer, *J. Appl. Phys.* 75, 6331 (1994).
- A.I. Chroneos, I.L. Goulatis, and R.V. Vovk, *Acta Chim. Slov.* 54, 179 (2007).
- А.Л. Соловьев, В.М. Дмитриев, ФНТ 32, 756 (2006) [Low Temp. Phys. 32, 576 (2006)].
- 17. M.V. Sadovskii, Phys.-Uspe. 51, 1201 (2008).
- M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, and N.N. Chebotaev, *Fiz. Nizk. Temp.* **32**, 746 (2006) [*Low Temp. Phys.* **32**, 571 (2006)].
- Y. Ando, S. Komiya, K. Segawa, S. Ono, and Y. Kurita, *Phys. Rev. Lett.* 93, 267001 (2004).

- 20. B.P. Stojkovic and D. Pines, Phys. Rev. B 55, 8576 (1997).
- 21. R.V. Vovk, G.Ya. Khadzhai, I.L. Goulatis, and A. Chroneos, *Physica B: Condensed Matter* **436**, 88 (2014).
- 22. L.G. Aslamazov and A.L. Larkin, *Phys. Lett. A* 26, 238 (1968).
- 23. S. Hikami and A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).
- 24. Y.B. Xie, Phys. Rev. B 46, 13997 (1992).
- P.G. De Gennes, Superconductivity of Metals and Alloys W.A. Benjamin, INC., New York–Amsterdam (1966), p. 280.
- L.M. Ferreira, P. Pureur, H.A. Borges, P. Lejay, *Phys. Rev. B* 69, 212505 (2004).
- A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, S.N. Kamchatnaya, and D.M. Sergeev, *Current Appl. Phys.* 16, 931 (2016).
- V.J. Emery and S.A. Kivelson, *Nature* (London) **374**, 434 (1995).
- J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic, *Nature* 398, 221 (1999).
- K. Kawabata, S. Tsukui, Y. Shono, O. Mishikami. H. Sasakura, K. Yoshiara, Y. Kakehi, and T. Yotsuya, *Phys. Rev. B* 58, 2458 (1998).
- 31. M. Randeria, Nat. Phys. 6, 561 (2010).
- 32. L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010).
- 33. R.J. Cava, Science 243, 656 (1990).
- M. Asta, D. de Futaine, G. Ceder, M. Asta, D. de Fontaine, G. Ceder, E. Salamons, and M. Kraichtman, *J. Less. Common Metals* 168, 39 (1991).
- A.L. Solovjov, L.V. Omelchenko, A.V. Terekhov, K. Rogacki, R.V Vovk, E.P. Khlybov, and A. Chroneos, *Mat. Res. Express*, 3, 076001 (2016).
- B. Leridon, A. Défossez, J. Dumont, J. Lesueur, and J.P. Contour, *Phys. Rev. Lett.* 87, 197007 (2001).
- 37. J. Stajic, A. Iyengar, K. Levin, B.R. Boyce, and T.R. Lemberger, *Phys. Rev. B* 68, 024520 (2003).
- 38. R. Haussmann, Phys. Rev. B 49, 12975 (1994).
- J.R. Engelbrecht, A. Nazarenko, M. Randeria, and E. Dagotto, *Phys. Rev. B* 57, 13406 (1998).
- R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy Z.F. Nazyrov, I.L. Goulatis, and V.V. Kruglyak, *Modern Phys. Lett. B* 25, 2131 (2011).
- D.D. Balla, A.V. Bondarenko, R.V. Vovk, M.A. Obolenskii, and A.A. Prodan, *Fiz. Nizk. Temp.* 23, 1035 (1997) [*Low Temp. Phys.* 23, 777 (1997)].

- A.V. Bondarenko, V.A. Shklovskij, R.V. Vovk, M.A. Obolenskii, and A.A. Prodan, *Fiz. Nizk. Temp.* 23, 1035 (1997) [Low Temp. Phys. 23, 1281 (1997).
- 43. А.А. Варламов, А.И. Ларкин, *Теория флуктуаций в* сверхпроводниках, Добросвет, Москва (2005).

Pseudogap and fluctuation conductivity in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ single crystals with different praseodymium content

A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, and S.N. Kamchatnaya

In present work the effect of praseodymium doping on the excess conductivity $\sigma(T)$ and the pseudogap (PG) $\Delta^*(T)$ in Y_{1-x}Pr_xBa₂Cu₃O_{7- δ} single crystals with Pr concentration change from x = 0 to x = 0.43 are investigated. It has been established that as the value of x increases, the resistance of the samples increases, and the critical temperature T_c decreases. In this case, the shape of the $\rho(T)$ curves varies from the metallic ($x \le 0.34$) to the typical for underdoped YBa2Cu3O7-6 single crystals with a characteristic thermal activation deflection (x > x)0.34). Regardless of the value of x, near $T_c \sigma'(T)$ it is well described by the fluctuation theories of Aslamazov-Larkin and Maki-Thompson, demonstrating the 3D-2D crossover with increasing temperature. The crossover temperature T_0 makes it possible to determine the coherence length along the c axis, $\xi_c(0)$. At $x = 0, \Delta^{*}(T)$ shows a maximum characteristic for YBCO films at $T_{\text{pair}} \approx 110$ K. As x increases, the maximum at T_{pair} is blurred out, but a pronounced maximum $\Delta^*(T)$ appears in the high-temperature region, followed by a linear section with positive slope. This dependence $\Delta^*(T)$ is typical for magnetic superconductors and is most likely due to the influence of the intrinsic magnetic moment Pr ($m_{Pr} \approx 4\mu_B$).

> PACS: 74.72.Kf Pseudogap regime; 74.72.Bk Y-based cuprates; **74.40.+k** Fluctuations.

Keywords: fluctuation conductivity, pseudogap, excess conductivity, YPrBCO single crystals.