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The dependence of radiation-induced dc magnetoconductivity oscillations on the microwave polarization 
is theoretically studied for a two-dimensional system of strongly interacting electrons formed on the surface 
of liquid helium. Two different theoretical mechanisms of magnetooscillations (the displacement and inelastic mod-
els) are investigated. We found that both models are similarly sensitive to a change of circular polarization, but 
they respond differently to a change of linear polarization. Theoretical results are compared with the recent ob-
servation of a photoconductivity response at cyclotron-resonance harmonics. 
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78.67.–n Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures; 
73.25.+i Surface conductivity and carrier phenomena. 
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1. Introduction 

Microwave-induced resistance oscillations (MIRO) and 
zero resistance states (ZRS) of a 2D electron gas which 
were discovered in high quality GaAs/AlGaAs heterostruc-
tures [1–4] subjected to a perpendicular magnetic field have 
attracted much interest. For a quite arbitrary microwave 
(MW) frequency > cω ω  (here cω  is the cyclotron frequen-
cy), these oscillations are governed by the ratio / cω ω . In 
the vicinity of / =c mω ω , where m is an integer, resistivity 
[ ( )xx Bρ ] and conductivity [ ( )xx Bσ ] curves have an asym-
metrical shape. At strong enough power and low tem-
peratures, the minima of these curves positioned near 

/ = 1/ 4c mω ω +  evolve into zero-resistance states. A large 
number of theoretical mechanisms have been proposed to 
explain these magneto-oscillations [5–10] (for a review, 
see [11]), but the subject is still under debate. The ZRS can 
be explained [12] by an assumption that the longitudinal 
linear response conductivity xxσ  is negative in appropriate 
ranges of the magnetic field B, regardless of details of 
a microscopic mechanism. 

Different MW-induced magnetoconductivity oscillations 
and ZRS are observed in the nondegenerate 2D electron 

system formed on the free surface of liquid helium [13,14] 
if the intersubband excitation frequency 2 1 2,1( ) /∆ −∆ ≡ ω  
coincides with the MW frequency ω (here, 1∆  and 2∆  
are the energies of the ground and first excited surface sub-
bands, respectively). The explanation of this 
phenomenon [15,16] is based on nonequilibrium popula-
tion of the second surface subband caused by the MW res-
onance which triggers quasielastic intersubband scattering 
against or along the driving force, depending on the relation 
between 2,1ω  and the in-plane excitation energy cm ω . It 
was found that these oscillations vanished if ω was sub-
stantially different from 2,1ω , which means that the origin 
of these oscillations is different from that of MIRO ob-
served in semiconductor heterostructures. It is interesting 
that states of surface electrons (SEs) with negative xxσ  are 
unstable which experimentally results in redistribution of 
SEs [17]. Under these conditions, the system can form a 
density-domain structure [18] caused by strong Coulomb 
interaction of SEs. 

Two most elaborated mechanisms of MIRO proposed 
for semiconductor systems (“displacement” [5,6] and “in-
elastic” [7,8]) are based on photon-assisted scattering. In 
the displacement model, a displacement of the electron 
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orbit center X' X−  which follows from energy conserva-
tion for photon-assisted scattering by impurities depends 
strongly on the relation between ω  and cm ω . In the ine-
lastic mechanism, photon-assisted scattering to high Lan-
dau levels ( =n' n m− ) changes the electron distribution 
function ( )f ε  near n'ε ≈ ε  [here ( )= 1/ 2n c nε ω +  is the 
Landau spectrum] which affects usual impurity scattering. 
A theoretical analysis [19] indicates that both these mech-
anisms potentially can reveal themselves in the nondege-
nerate system of SEs on liquid helium. Still, observation of 
these effects in this system requires significantly higher 
MW power, because the mass of free electrons M  is much 
larger than the effective mass of semiconductor electrons 
M ∗ ( / 0.06M M∗

 ). 
In recent experiments [20], the amplitude of the MW 

electric field acE  was significantly increased (up to 
10 V/cmacE ≈ ) and / cω ω -periodic dc magnetoconductiv-

ity oscillations induced by the MW were observed in the 
nondegenerate 2D electron system on the surface of liquid 
4He. This proved the universality of the effect of MIRO. 
A preliminary theoretical analysis given there have shown 
that the observation can be explained by an oscillatory cor-
rection to the electron distribution function caused by pho-
ton-assisted scattering (the inelastic model) affected by 
strong internal forces. 

For semiconductor experiments on MIRO, the import-
ant point is the polarization sensitivity or immunity of the 
microwave magnetoresistance response [21]. Theoretical 
models discussed in the literature usually predict different 
microwave polarization sensitivity in the radiation-induced 
oscillations. Therefore, an appropriate experimental study 
can be a test for the theory. For SEs on liquid helium, 
MW-induced magnetoconductivity oscillations were inves-
tigated theoretically [19] only for the linear polarization 
fixed parallel to the dc-electric field. Therefore, additional 
theoretical investigation on polarization dependence of 
MW-induced oscillations is required. 

In this work, we report the theory of dc magnetocond-
uctivity oscillations of SEs on liquid helium induced by the 
MW field of an arbitrary polarization (linear and circular). 
For both displacement and inelastic mechanisms of MIRO, 
photon-assisted scattering of SEs by ripplons (capillary 
wave quanta) is considered using Landau–Floquet states 
which include the MW field in an exact way. This allows 
us to find the polarization dependence of MIRO in a sim-
ple analytical form. Strong Coulomb interaction of SEs is 
taken into account considering an ensemble of electrons 
moving fast in the electric field fE  of the fluctuational 
origin [22,23]. A comparison of our results with observa-
tions [20] indicates that, for a given amplitude of the MW 
field ( 10 V/cmacE ≈ ), the inelastic model results in suffi-
ciently large magnetoconductivity oscillations similar to 
those reported experimentally. 

2. Landau–Floquet states for an arbitrary 
MW polarization 

SEs on liquid helium are bound in a 1D potential well 
formed by the liquid repulsion barrier 0 1 eVU ≈ , image 
attraction potential ( ) = /U z z−Λ , and the potential of a 
pressing electric field eE z⊥ . The image potential is rather 
weak because 2= e ( 1) / 4( 1)Λ − −   and the liquid helium 
dielectric constant   is very close to unity (for liquid 4He, 

1 0.057−  ). Therefore, in the ground subband electrons 
are gliding above the surface at a height of about 100 Å. At 
low temperatures ( 0.5 KT  ), the population of higher 
subbands can be neglected. Here we concentrate on the in-
plane motion of SEs, assuming that the wave function of 
vertical motion ( )h z  is well known, and the intersubband 
excitation frequency 2,1ω  is substantially higher than the 
MW frequency ω. 

We consider the magnetic field B  directed perpendicu-
lar to the electron layer and choose the Landau gauge for 
the vector potential. Then, in the presence of a MW elec-
tric field ( )mw tE  and a dc electric field dcE  directed along 
the x axis, the Hamiltonian of an electron can be written as 

 
2

21 ˆ ˆ=
2 x y dc

eBH p p x eE x
M c

   + + + +  
   

 

 ( ) ( ) ( ) ( ) .x y
mw mweE t x eE t y+ +  (1) 

For this Hamiltonian, the wave equation can be solved 
in an exact way using a generalization of the well-known 
nonperturbative method (for a recent example, see Ref. 24). 
The wave equation can be satisfied by 

 ( )
( )

= , e
i p yyx X t

−ζ
ψ ϕ − − ξ ×   

 ( ) ( ) ( )exp ,i iM x X y t  × ξ − − ξ + ζ − ζ + η   
 

 

 (2) 

where 

 2= y dc

c

cp eE
X

eB M
− −

ω
,  

and the surface area is set to unity. The functions ( )tξ , 
( )tζ  and ( )tη  are found from conditions chosen to reduce 

the wave equation to the conventional oscillator equation. 
After lengthy algebra we arrive at 

 ( ) ( )2 = 0,x
c c mwM M M eE tξ + ω ξ + ω ζ +   (3) 

 ( ) ( ) = 0.y
mwM eE tζ +  (4) 

The function ( )tη  can be written as ( ) ( ) ( )0= Xt t tη η +η , 
where 

 ( ) ( )2 2 2 2
0 = ,

2 2 2
x y

c mw mw c
M M M eE eE Mη ξ + ζ − ω ξ − ξ − ζ − ω ξζ  
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and 

 ( ) ( ) ( ) ( )
0

= 0 .
t

x
X c mwM X t X eE t dt'′η − ω ζ − ζ −   ∫  (5) 

The ( )tξ  represents the classical motion of an electron in 
a magnetic field forced by an ac electric field, while ( )tζ  
represents a 1D electron motion in the field ( ) ( )y

mwE t . 
Thus, instead of ( ),x tϕ  entering Eq. (2), we can use 

usual eigenfunctions ( )n xϕ  of an oscillator Hamiltonian 

 ( ) ( ) ,, = exp ,n X
n nx t x i t

ε 
ϕ ϕ − 

 

  

 
2 2

, 2
e

=
2

dc
n X n dc

c

E
eE X

M
ε ε + +

ω
. (6) 

Therefore, the Landau–Floquet eigenfunctions of the 
Hamiltonian given in Eq. (1) can be represented as 

 ( ) ( ) ( )2/ , ,
, = , e e e ,iXy l F t i x y tB Xn X n x X t − θψ ϕ − − ξ  (7) 

where 

( ) ( ) ( ) ( )
0

= 0 ,
t

x
X ac c

i i iF t MX X eE t' dt M X′− ξ − + ω ζ∫

  

 (8) 

and the exact form of the function ( ), ,x y tθ  independent of
n and X  is not important for the following consideration. 

Specifying ( )mw tE , we shall consider 

 ( ) ( )= cos , = sin ,x y
mw ac mw acE aE t E bE tω ω  (9) 

where acE  is the amplitude of the MW field, and, general-
ly, a and b  are arbitrary parameters. For particular cases, 
we assume that a can be 0 or 1, and b  can be 0 or 1± . In 
this way, we can describe two linear polarizations [parallel 
( = 1a , = 0b ) and perpendicular ( = 0a , = 1b ) to the dc 
electric field] and two circular polarizations ( = 1a , = 1).b ±  
Respectively, we define the polarization index = , , , ,s ⊥ + −  
where the first two symbols ( and ⊥ ) correspond to linear 
polarizations, and the last two symbols (+  and −) corre-
spond to circular polarizations. Now we have 

 
2 2 2

( )
= sin , = cos ,

( )
ac c ac

c

beE a b eE
t t

MM
ω+ ω

ζ ω ξ ω
ωω ω −ω

 (10) 

 
2 2

( )
( ) = sin ,

( )
c c

X
B c

a bXF t i t
l

ω ω + ω
λ ω

ω −ω
 (11) 

where 2 = /Bl c eB , and = /ac BeE lλ ω . Using these defi-
nitions, one can determine the matrix elements for electron 
scattering probabilities. 

3. Scattering probabilities 

At low temperatures, SEs on liquid helium interact with 
capillary-wave excitations (ripplons). The electron-ripplon 
interaction Hamiltonian (ripplons represent a sort of 2D 
phonons) is usually described as 

 ( )†= e ,i
I q qV U Q b b − ⋅

− +∑ q r
q q

q
 (12) 

where †bq  and bq are creation and destruction operators of 
ripplons, qU  is the electron-ripplon coupling [23], 

2
,= / 2 ,q r qQ q ρω  3/2

, /r q qω α ρ  is the ripplon spec-
trum, α and ρ are the surface tension and mass density of 
liquid helium, respectively. 

Scattering probabilities depend on matrix elements 
, , ,(e )i

n' X' n X
− ⋅q r  which now acquire additional time-depend-

ent factors: one factor comes directly from ( )exp XF t   of 
Eq. (7), and another factor ( )exp xiq− ξ  appears because of 
the change of the integration variable 1=x x X+ + ξ . 
Gathering these two factors, one can find 

 ( )sin,
, , ,(e ) = e

i ti s
n' X n X

− β ω +γ− ⋅
′ ×q r q   

 ( )0
2 , ; ,,

(e )iq xx
n' X' n XX X' l qB y

−
−

× δ  , (13) 

where 

( ) ( )2 22 2
, 2 2= ,

( )
c B

s y c x c
c

l
q a b q a b

λω
β ω + ω + ω+ ω

ω −ω
q  (14) 

 
( )
( )

tan = ,x c

y c

q a b
q a b

ω+ ω
γ

ω + ω
  

and ( )0
, ; ,(e )iq xx

n' X' n X
−  are matrix elements in the absence of 

the MW field. Here the first term under the sign of the 
square root of Eq. (14) originates from the factor 
exp [ ( )]XF t , and the second is from ( )exp xiq− ξ . Then, 
using the Jacobi–Anger expansion sine = ( ) eiz ik

kkJ zϕ ϕ∑  
[here ( )kJ z  is the Bessel function], the procedure of find-
ing scattering probabilities can be reduced to a quite usual 
treatment. 

The probability of electron scattering , , 'n X n' X→  
with the momentum exchange q due to ripplon creation (+) 
and destruction (−) can be found as 

 ( ) ( ) ( )
2 2

, 2, , ,
2= n n' qn X n' X' X X' l qB y

w C I x± ±
→ −

π
δ ×qq,



  

 ( ) ( )2
, , , ,

=
,k s n' X' n X r q

k
J k

∞

−∞
× β δ ε − ε − ω± ω∑ q    (15) 

where ( ) 1/2( )= 1/ 2 1/ 2r
q qC U Q n±

±
 + ± q q , ( )rn±q  is the number 

of ripplons with the wave vector ±q, ,n Xε  is from Eq. (6), 
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 ( )
( )

2
,

min , !
( ) =

max , !
n n

n n' q q
n n

I x x
n n'

′−′
×  

 ( )
2

min ,exp ( ) ( ) ,n' n
q qn n'x L x− × −   

 (16) 

( )m
n qL x  are the associated Laguerre polynomials, and 

2 2= / 2q Bx q l  is a dimensionless variable. We note that for 
Landau–Floquet states, matrix elements of Eq. (13) fix the 
displacement of the orbit center to the same value 

2='
y BX X q l−  as that of usual scattering. It is instructive 

also that, considering the MW field in a classical way, we 
still found that the energy exchange in Eq. (15) occurs by 
MW quanta k ω . 

Energies of ripplons ,r qω  involved in one-ripplon scat-
tering processes are usually much smaller than typical 
electron energies, and we can use a quasi-elastic treatment 
of electron-ripplon scattering. Therefore, in the energy 
conservation delta-function, we shall set ,r qω  to zero. 
This allows us to write the whole probability as a sum 

( ) ( )=w w w+ −+q q q  neglecting a small difference between 
( )C +
q  and ( )C −

q . 
Introducing Landau level densities of states, the average 

probability of electron scattering wq  with the momentum 
exchange q, can be found in terms of the dynamic structure 
factor (DSF) ( ),S q Ω  of a nondegenerate 2D electron gas 

 
2

2
,2

=

2
= ( ) ( , ),q

k s y H
k

C
w J S q k q V

∞

−∞
β ω−∑q q



 (17) 

where 1/2
,q q q r qC U Q N , ,r qN  is the ripplon distribution 

function, = /H dcV cE B is the absolute value of the Hall 
velocity which enters the frequency argument due to 

( ) =dc y HeE X' X q V−  , 

 ( ) ( ) ( )/2
,

,

2, = ( ) e ,Ten n' q n n'
n n'

S q I x d g g
Z

−εΩ ε ε ε + Ω
π ∑ ∫ 





  

  (18) 

eT  is the electron temperature, Z


 is the partition function 
for the Landau spectrum nε , and ( )ng− ε  is the imaginary 
part of the single-electron Green’s function. For the Gauss-
ian shape of level densities [25], 

 ( ) ( )2
2

22= exp ,n
n

n n
g

 ε − επ  ε −
Γ  Γ 

   

where nΓ  is the Landau level broadening. For SEs on liq-
uid helium, at low temperatures nΓ  is usually much smaller 
than T  and cω . 

4. The displacement model 

Using Eq. (17), the dc magnetoconductivity xxσ  of SEs 
under MW radiation can be found directly considering the 
current density 

 ( ) 2= =x e e B yj en X' X w en l q w− − −∑ ∑q qqq q .  

Therefore, the effective collision frequency 

 ( )eff
1= y H

H
q w V

MV
ν − ∑ q

q
  (19) 

defines 2 2
effe /xx e cn Mσ ν ω . Expanding Eq. (19) in HV  

yields the linear dc magnetoconductivity in terms of the 
derivative of the DSF = /'S S∂ ∂Ω. The property 
( ) ( ) ( ), = exp / ,eS q T S q−Ω − Ω Ω  allows us to represent 

the effective collision frequency as a sum eff =0= kk
∞

ν ν∑ , 
where 

 ( ) ( )2 2 2
0 0 ,

1= ,0 ,y q s
e

q C J S q
MT

ν β∑ q
q

 (20) 

and 

 
( )

( )
/

2 2 2
,

2 1 e
= ( ) ,

k Te

k y k sq C J S' q k
M

− ω−
ν β ω∑ q q

q





 (21) 

for > 0k . Here we neglected a small term 
/( / ) e ( , )k TeeT S q k− ω ω

  as compared to ( ),S' q kω . In Eq. 
(20), the derivative ( ),0S' q  was transformed employing 
the relationship ( ) ( ) ( ),0 = / 2 ,0eS' q T S q . It is instructive 
that in the nonperturbative method, the MW field affects 
also the usual contribution to the effective collision fre-
quency 0ν  due to the factor 2

0 ,( )sJ β q . 
SEs on liquid helium represent a highly correlated elec-

tron system because the average Coulomb interaction ener-
gy per an electron 2e enπ  (here en  is the electron density) is 
usually much larger than the average kinetic energy T . In 
this case, each electron is affected by a strong internal elec-
tric field fE  of fluctuational origin [26]. The typical value 
of the fluctuational field depends strongly on the electron 
temperature and density: ( )0 3/43 e efE T n . Self-energy 
effects (collision broadening of Landau levels) can be 
combined with the Coulomb effect by considering the DSF 
of an ensemble of electrons moving fast in the fluctuational 
field [22,23]. Therefore, to model the effect of Coulomb 
interaction on MW-induced conductivity oscillations we 
shall use the DSF obtained previously [23] for strongly 
interactions electrons 

 ( )
2

/ ,

,,

2, e T n n'n e
n n'n n'

I
S q

Z
−επ

Ω ×
γ∑



   

 
( ) 2

2
,

exp ,c n

n n'

n' n Ω − − ω −φ   × −
 γ 

 (22) 

where 

 
2 2

2 2
, ,= , = ,

4
n q C

n n' n n' q C n
e

x
x

T
Γ + Γ

γ Γ + Γ φ



 (23) 
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2 2 2
,2 =n n' n n'Γ Γ +Γ , and (0)= 2C BfeE lΓ . In most cases, the 

parameter nφ  can be neglected. Thus, the strong Coulomb 
interaction of SEs results in a broadening of DSF maxima 
which occur at ( ) cn' nΩ→ − ω . In the presence of MW 
radiation of a circular polarization, the employment of 
Eq. (22) gives absolutely correct description of the many-
electron effect on magnetooscillations. For a linear MW 
polarization, this procedure is a reasonable approximation. 

With the exception of the cyclotron resonance (CR) 
condition ( cω →ω), the parameter ,sβ q defined in Eq. (14) 
is small and one can expand the Bessel functions in ,sβ q. In 
this case, the main term of Eq. (20) transforms into the 
well known result of the self-consistent Born approxima-
tion [27]. In spite of small values of ,sβ q, the contribution 
from 1ν  can be substantial because it contains the derivative 
of the function ( ),S q ω  having sharp maxima. Using dimen-
sionless coupling function 2( ) = /c q q BU x U l Λ (its exact 
form is given in Refs. 16, 19) and Eq. (22), we arrive at 

 ( ) ( )/2
1, = 1 e ,TR es s

c

T F B− ωπ ν
ν λ − χ

ω




 (24) 

 ( )
/

2 2
,

, 0

e= ( )
Tn e

q c q q n n'
n n'

F B dx U x x I
Z

∞−ε
− ×∑ ∫



  

 
( )2

3 2
, ,

/ /
exp

( / )
c nc n c

n n' c n n'

mm  ω− ω −φω ω − −φ ω  × −
 γ ω γ 

, (25) 

where 2 4= / 8R Blν Λ π α  is a characteristic collision fre-
quency, =m n' n− , and sχ  is a dimensionless polarization 
factor with the polarization index = , , ,s ⊥ + − . For two 
linear polarizations, 

 
2 2 2 2 2 2

2 2 2 2 2 2
(3 ) (3 )

= , = ,
( ) ( )
c c c c

c c
⊥

ω ω +ω ω ω +ω
χ χ

ω −ω ω −ω


 (26) 

and for two circular polarizations, 

 
2 2

2 2 2
4 ( )

= .
( )

c c

c
±

ω ω±ω
χ

ω −ω
 (27) 

Besides the small factor 2λ , the quantum form of Eq. (24) 
contains two large factors / cT ω  and 2

,( / )c n n'ω γ . It 
should be noted that in the ultra-quantum limit eTω  , 
Eq. (24) with the linear MW polarization =s  transforms 
into the result found previously [19] using the conventional 
perturbation theory, if we set 

 
( )2 2= 4 / 2,mw

ac
N

E
V

ω
π ω→E    

where ( )mwN ω  is the number of photons with the frequency 
ω in the volume V . This confirms the validity of the ap-
proach to description of probabilities of photon-assisted 
scattering using Landau–Floquet states. 

The MW-induced correction to the effective collision 
frequency of noninteracting electrons can be obtained from 
Eqs. (24) and (25) by setting the Coulomb broadening CΓ  
to zero. In this case, ,n n'γ  is independent of qx , and, there-
fore, the derivative of the Gaussian [which can be formed 
in the lowest line of Eq. (25)] can be moved out from the 
integrand. Thus, the shape of MW-induced oscillations near 

/ =c mω ω  represents a simple derivative of a Gaussian. 
Formally, in the limit of strong broadening of the Gaussi-
ans the positions of minima approach the condition 

/ ( ) 1/ 4c B mω ω → + , which agrees with observations. The 
Coulomb interaction broadens the derivative of Gaussians 
and involves it into averaging over qx  because ,n n'γ  of 
Eq. (23) becomes dependent on qx . 

The Eq. (24) indicates that, for two different polariza-
tions described by indexes s and s' , the ratio 1, 1,/ =s s'ν ν
= /s s'χ χ . When changing the parameter / cω ω  the ratio 

/⊥χ χ


 varies from 1.86 ( / = 2cω ω ) to 3 ( / cω ω →∞). 
For circular polarizations, the ratio /+ −χ χ  decreases with m: 
from 9 ( / = 2cω ω  ) to 1 ( / cω ω →∞). Results of numeri-
cal evaluations of 1,sν  obtained for two linear polarizations 
are shown in Fig. 1. Here the main parameters of the SE 
system are the same as those in the experiment [20]. The 
many-electron treatment of the displacement model results 
in the broadening of MW-induced oscillations which agrees 
with experimental data. Still, the amplitude of oscillations 
caused by the MW field directed parallel to dcE  is approx-
imately an order of magnitude smaller than the amplitude 
observed. As expected, the MW field with the perpendicu-
lar polarization ( =s ⊥) results in dc magnetoconductivity 
oscillations having a substantially larger amplitude. 

Fig. 1. An oscillatory contribution to the effective collisions fre-
quency calculated for two different MW polarizations: =s 

 
(dashed) and =s ⊥ (solid). The conditions are the following: 

= 10 V/cmacE , 6 2= 17 10 cmen −⋅ , / 2 = 88.34 GHzω π , and 
= 0.56 KT  (liquid 4He). 
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For the CR condition ( cω ω ), / 1⊥χ χ


  and the 
photoconductivity is immune to a change of linear polari-
zation. In this case, the parameter ,β q  entering the Bessel 
function of Eq. (24) can be simplified as 

 
2

, 2 2( )
c

B
c

ql
ω

β λ
ω −ω

q  . (28) 

As noted previously [28] [in the brief report, there is 
a small misprint in the expression similar to Eq. (28)], 
the parameter ,β q  increases much when cω →ω and, gen-
erally, it is impossible to expand the Bessel functions. 
Moreover, according to the expression for the DSF 
( ),S q kω , sharp Gaussian maxima appear for the all k  at 

= ( ) ck n n′ω − ω , and, if cω →ω, it is necessary to take 
account of the all terms in the sum =0 kk

∞
ν∑ . A formal 

inclusion of a damping parameter in the classical equations 
for ξ  and ζ  can reduce the number of kν  to be taken into 
account. 

Results of numerical calculations are shown in Fig. 2. 
As a damping parameter, here we chosen the classical col-
lision frequency of SEs. This figure illustrates that at a 
fixed value of 0cω−ω ≠ , the sum over k  converges quite 
rapidly. Still, each next term in the sum =0 kk

∞ ν∑  has its 
own extrema which are closer to the point =cω ω. There-
fore, in the vicinity of the resonance, a substantial number 
of mν  should be taken into account. 

As mentioned above, these calculations does not de-
pend on the orientation of the linear polarization of the 
microwave field. On the contrary, for the circular polariza-
tion with =s − , the strong enhancement of the parameter 

,sβ q caused by the CR vanishes and one can restrict calcu-
lations to 1ν  given by Eqs. (24) and (25). For the chosen 

amplitude of the MW field, corresponding oscillatory fea-
tures could not be seen on the scale of Fig. 2. 

Results shown in Fig. 2 are obtained assuming =eT T . 
Still, under the CR condition, the system of SEs on liquid 
helium is strongly heated [29] and the electron temperature 
as a function of cω−ω  usually has a sharp maximum [30]. 
Because 0 1/ eTν ∝ , the wavy variations of ( )xx Bσ  induced 
by photon-assisted scattering are expected to appear at the 
bottom of a broad minimum caused by electron heating. 

5. The inelastic model 

In the displacement model discussed above, it is as-
sumed that the electron distribution function ( )f ε , enter-
ing the average probability of the momentum exchange wq  
and the effective collision frequency effν  of Eq. (19), coin-
cides with the equilibrium distribution function /1e TeZ −ε−



. 
Still, photon-assisted scattering from a level n to a higher 
level n' selected by the condition n n′ε − ε ω  might in-
crease the population of the level n' . Moreover, if the en-
ergy exchange with the medium (in our case, the ripplon 
energy) can be neglected in the energy conservation delta-
function, the sharp structure of the level density ( )ng ε  
could make a sharp shape of ( )f ε  at n'ε ε  which even-
tually results in MW-induced magnetoconductivity oscilla-
tions. This is the inelastic model, introduced in Ref. 7. 

The photon energy ω  and the magnetic field B  usually 
select two Landau levels with n' nε − ε ω . In the ultra-
quantum limit important for SEs on liquid helium, this 
allows us to consider a simple two-level model for obtain-
ing a correction to the distribution function. When analyzing 
the average transition rate up (n n'→ ) and the all transition 
rates down (n n′ → ), we can represent them as integral 
forms ( ...d d 'ε ε∫ ∫ ) similar to that of Eqs. (17) and (18) 
using the Landau level density of states. Then, disregard-
ing the Coulomb interaction, for an energy n''ε ε , it is 
possible to obtain the rate-balance condition 

 ( )
,

2
,

( ) ( )
( ) = ,

( )

n n n
n' R

n n'n'

f ' r '
f

r '

′ε − ω ε
′ε

ν + ε



 (29) 

where 

 ( )
2

, ,( ) =
2n n' s R n n' n

Tr ' P g 'λ
ε χ ν ε − ω



 

is the excitation rate, 

 2 2
, ,

0

= ( ) ( ) ,n n' c q n n' q qP U x I x dx
∞

∫   

 
2 2 2

2 2 2
2 ( )

= = , = ,
( )

c c

c
⊥ ± ±

ω ω +ω
χ χ χ χ

ω −ω


 (30) 

( )2R
n'ν  is the inelastic transition rate from n'  to the all 
<n n'  caused by two-ripplon emission processes [31]. In 

the distribution function ( )nf '′ ε , the subscript n'  indicates 

Fig. 2. Contributions from partial sums max
=0

k
kk ν∑  to effν  nor-

malized vs the magnetic field for a sequence of maxk : from 

max = 1k  to max = 7k  (solid). The conditions are the following: 
= 0.2 KT  (liquid 4He), 6 2= 2 10 cmen −⋅ , and = 0.05 V/cmacE . 
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that its argument 'ε  is close to n'ε . Dimensionless integrals 
,n n'P  describe the strength of the electron-ripplon coupling 

in the presence of a strong magnetic field. 
Here the polarization immunity =⊥χ χ



 appears be-
cause the transition rate ,n n'r  is finite in the limit 0dcE →  
and integration over the angle of the vector q results in 
equal averaging of 2

xq  and 2
yq  entering ,sβ q of Eq. (14) 

(note that the probability of scattering is proportional to 
2
,sβ q). In the displacement model, one have to expand wq  in 

y Hq V  up to a linear term which results in unequal averag-
ing of 2

xq  and 2
yq . This leads to the linear MW polarization 

sensitivity of the displacement model in radiation-induced 
oscillations. 

Direct electron transitions between different Landau 
levels accompanied by one-ripplon creation or destruction 
are practically impossible because the typical value of q  
which follows from energy conservation is much larger 
than 1

Bl
−  (the dimensionless parameter 1qx  ). Still, there 

are transitions from a level n'  to lower levels accompanied 
by emission of pairs of short wavelength ripplons with 

1 ,Bl q q'−′+q q  . According to Ref. 31, ( )2R
n'ν  can be 

written as 

 
1

(2 ) 2 4 2
,2

=0

2= ( 1) ( 2 ),
n'

R
q q r q n' n qn'

nB
W Q N

l

−
ν + δ ε − ε − ω∑∑

q




 

  (31) 

where qW  is the coupling function for two-ripplon scatter-
ing. In terms of continuous variables ′ε  and ε, the ( )2R

n'ν  
varies slow within the width of a Landau level since 

n cΓ ω . This allows us to use the form of Eq. (31) in 
Eq. (29). 

The Eq. (29) reminds the solution of the rate equation 
of a two-level model usually obtained in quantum optics. 
The second term in the denominator of this equation is 
caused by backward electron transitions accompanied by 
emission of a photon. Firstly, we note that in the absence 
of the inelastic decay rate ( )2R

n'ν , the solution satisfies the 
saturation condition ( ) ( )=n' nf ' f 'ε ε − ω  which is quite 
obvious. Secondly, a sharp shape of ( )n'f 'ε  appears when 
the inelastic scattering rate is stronger then the excitation 
rate: ( )2

,
R

n n'n' rν  . In this case, the single-electron treat-
ment yields ( ) ( )n' nf ' g 'ε ∝ ε − ω  because ( )nf ε  can be 
approximately set to the equilibrium function. This is the 
reason why the mechanism discussed here is called the 
inelastic model. 

In the inelastic model, the correction to xxσ  is usually 
obtained from the conductivity equation which contains the 
derivative /f∂ ∂ε . This picture is instructive to see how the 
derivative of maxima appears in the final result. Still, ac-
cording to Eq. (19), the initial form of the effective colli-
sion frequency contains the derivative ( ) = /n' ng g ′′ ε ∂ ∂ε. 
Therefore, in the ultra-quantum limit ( 0n → ), the correc-
tion to the effective collision frequency induced by addi-
tional population of higher Landau levels can be written as 

 ( ) ( ) ( ),2
=1

4
= R c

mw n' n' n' n' n'
n'

T
P d f g g

∞ν ω
′ν ε ε ε ε

π
∑ ∫





. (32) 

Here we neglected the overlapping of different Landau 
levels. The Eq. (32) is obtained in the same way as Eqs. 
(20), (21). The form of mwν  with the derivative /f∂ ∂ε  can 
be found from Eq. (32) using integration by parts [19]. 

Assuming low exitation regime ( ( )2
,

R
n n' nr ′ν ) and in-

serting ( )n'f ε  in Eq. (32), we find 

 ( )
, 0,2 2 2

2
=1 0,

= n' n n'
mw s R c R

n' n' n'n'

P P
T

G

∞
′ν πλ χ ν ω ×

ν Γ
∑   

 
( ) ( )2

2 2
0, 0,

2
exp ,c c

n' n'

n' n'

G G

 ω − ω ω − ω
 × −
  

   

 (33) 

where 2 2 2
, ,= / 4n n' n n' n'G Γ −Γ . The Eq. (33) indicates that, 

in the inelastic model, the shape of MW-induced magne-
toconductivity oscillations represents the derivative of a 
Gaussian similar to that of the displacement model [Eq. (24)]. 
In contrast with the displacement model, additional large 
parameters ( )2/ R

R n'ν ν  and 0,/ nT G  appear in the expression 
for mwν  which makes MIRO more pronounced. 

For experimental conditions [20], the Eq. (33) results in 
conductivity variations near / = ='

c n mω ω  which are 
substantially sharper than those observed. Respectively, 
the amplitude of oscillations is much higher than in the 
experiment. This discrepancy can be attributed to the effect 
of strong Coulomb interaction which broadens the Gaussi-
ans and accordingly reduces the amplitude of oscillations. 
Unfortunately, a strict description of this effect is very dif-
ficult because now the fluctuational electric field affects 
the both ( )n'f ε  and ( )n'g ′ ε . In order to describe the many-
electron effect qualitatively, we can introduce a correction 
to the energy exchange caused by a fluctuational electric 
field ( )f feE X X′ − ⋅q u  (here fu  is a drift velocity) 
and average the both quantities n'f  and n'g ′  over fE , inde-
pendently. This yields an additional broadening of the pa-
rameter 

 
4

2 2 2
0, 0, 2 24( )

n'
n' n' q C

n' q C
G x

x
′

Γ
→ Γ + Γ −

Γ + Γ
 (34) 

which becomes dependent on qx  (the integration variable 
of ,n' n'P ) and q'x  (the integration variable of 0,n'P ). The 
later means that the derivative of Gaussians now enters the 
integrand of the double-integral ...q q'dx dx∫ ∫ , and calcula-
tions become more complicated. Moreover, the averaging 
over the fluctuational field changes the factor 

 
2

2 2 3/2
1

( )
n'

n' n' q Cx
Γ

→
Γ Γ + Γ

 (35) 

reducing electron scattering. As a result, conductivity vari-
ations near / =c mω ω  aquire the broadening which agrees 
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with experimental data. Still, the new factor of Eq. (35) 
leads to a more rapid decrease of the amplitude of oscilla-
tions with m than it is observed. Thus, Eq. (34) gives a 
reasonable approximation describing the effect of Cou-
lomb broadening of conductivity oscillations induced by 
the MW, while the replacement of Eq. (35) is expected to 
be improved in a more accurate treatment. For example, 
the procedure of averaging of mwν , taken in the form con-
taining the derivative /f∂ ∂ε , results in a different re-
placement: 2 2 1/2( )n' n q Cx′Γ → Γ + Γ . 

In the inelastic model discussed here, the amplitude of 
oscillations does not depend on the orientation of the linear 
polarization of the microwave field because =⊥χ χ



. This 
is in contrast with the results found for the displacement 
model and illustrated in Fig. 1. For semiconductor systems, 
the same conclusion was drown previously [8]. Regarding 
the circular polarization, the both mechanisms of MIRO 
give the same dependence on the polarization index =s ±  
described by the factors =± ±χ χ . This dependence on the 
polarization index follows directly from the classical pa-
rameter ( )tξ  entering the Landau–Floquet wave function. 
According to Eq. (10), the amplitude of ( )tξ  depends 
strongly on the sign of b . The most obvious example is 
that the classical CR vanishes if = 1b −  ( =s − ). The differ-
ence between +χ  and −χ  is strong for a few lowest 

= 2, 3, ...m , and it decreases with / cω ω . 
Typical magnetoconductivity oscillations, obtained for 

the inelastic model including the Coulomb interaction as 
described in Eqs. (34) and (35), are shown in Fig. 3. Here 
we considered two circular polarizations. The amplitude of 
oscillations is significantly larger if the polarization vector 
rotates in phase with respect to the cyclotron rotation (in 
our notations =s + ). A similar dependence of MW in-

duced oscillations on a choice of the circular polarization 
were reported for different versions of the displacement 
model applied to a degenerate 2D electron system [32,33]. 
Dependencies of the amplitude of magnetoconductivity 
oscillations on the MW polarization obtained here are valid 
only for small values of the parameter ,sβ q given in 
Eq. (14), when we can neglect multi-photon processes and 
expand the Bessel function 1 ,( )sJ β q . For the system of SEs 
on liquid helium, these conditions are fulfilled if > 1m . 

It should be noted that in a semiconductor 2D electron 
system, the microwave induced resistance oscillations and 
the zero resistance regions are notably immune to the sense 
of circular polarization [34]. This can be regarded as a cru-
cial test for theories. Obviously, the circular polarization 
immunity of the photoconductivity can not be reconciled 
with the displacement and inelastic mechanisms of MIRO. 
On the other hand, for SEs on liquid helium, the many-elec-
tron treatment of the inelastic model results in an oscillation-
amplitude consistent with experimental observations [20]. 
One may assume that magnetoconductivity oscillations ob-
served for SEs on liquid helium and MIRO reported for 
GaAs/AlGaAs heterostructures are caused by different me-
chanisms. Therefore, circular-polarization-dependent meas-
urements of photoconductivity response of SEs at CR har-
monics are of great interest. 

6. Conclusions 

Summarizing, we developed a theoretical approach which 
enabled us to obtain the dependence of MW-induced dc 
magnetoconductivity oscillations on the MW polarization 
in a nondegenerate 2D electron system bound to the free 
surface of liquid helium. Probabilities of photon-assisted 
scattering of surface electrons by capillary-wave quanta 
(ripplons) are shown to be well described using Landau–
Floquet states which include the microwave field and the 
dc electric field in a nonperturbative exact way. The pho-
toconductivity is found expanding the average probability 
of a momentum exchange in the dc electric field. Photon-
assisted scattering affects the magnetoconductivity in two 
different ways by changing directly the momentum ex-
change between SEs and ripplons (the displacement model), 
and changing the distribution function of excited Landau 
levels (the inelastic model). The effect of strong Coulomb 
interaction is described considering an ensemble of elec-
trons moving fast in a quasi-uniform internal electric field 
of the fluctuational origin. 

We found that the ratio of oscillation-amplitudes ob-
tained for MW fields of different polarizations is described 
by a simple analytical form. Contributions of the both the-
oretical models to the photoconductivity of SEs are shown 
to be very sensitive to a change of circular polarization, if 
the parameter / cω ω  is not large. For different circular po-
larizations, the ratio of oscillation-amplitudes is the same 
in the both models. This is caused by the nature of photon-
assisted scattering whose strength depends on the ampli-

Fig. 3. Magnetoconductivity of SEs on liquid helium exposed to 
the MW field with = 10 V/cmacE  calculated for two circular 
polarizations: s = − (dashed) and s = + (solid). Other conditions 
are the same as in Fig. 1 
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tude of classical motion sensitive to a circular polarization. 
On the contrary, the displacement and inelastic models 
respond differently to a change of the direction of the MW 
field having a linear polarization. In the displacement mo-
del, the oscillation-amplitude depends strongly on whether 
the MW electric field is parallel or perpendicular to the dc 
electric field. At the same time, the inelastic model is in-
sensitive to a change of linear polarization. Therefore, an 
experiment with MW fields of different circular polariza-
tions could be a test for photon-assisted scattering, while 
an experiment with different linear polarizations could be 
a test for particular mechanisms of magnetooscillations. 
Numerical calculations performed for experimental condi-
tions [20] indicate that MW-induced dc magnetoconduct-
ivity oscillations observed can be explained by an oscilla-
tory correction to the electron distribution function caused 
by photon-assisted scattering affected by strong Coulomb 
forces. 
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