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In a film with large dielectric constant κ the electric field of an electron spreads inside the film before exiting 
the film at large distances of order of κd (d is the film width). This leads to the logarithmic Coulomb repulsion 
between electrons and modifies the shape of the Coulomb gap in the density of localized states in a doped film. 
As a result the variable range hopping conductivity in such a film has a peculiar temperature dependence, where 
the domain of the ln σ(T) ∝ (T0/T)p dependence, with the index p  0.7, is sandwiched between the two domains
with p = 1/2. 

PACS: 74.81.Fa Josephson junction arrays and wire networks; 
05.60.Gg Quantum transport; 
74.81.Bd Granular, melt-textured, amorphous, and composite superconductors. 

Keywords: Coulomb gap, thin film, hopping conductivity. 

Variable range hopping (VRH) is the generic mecha-
nism of the low-temperature transport in systems with lo-
calized electron states. When electrons repel each other via 
the Coulomb potential energy 

2
( ) = ,eV r

rκ
(1) 

where κ  is the dielectric constant of the solid, the density of 
localized states ( )g E  has the soft Coulomb gap. As a result 
the VRH conductivity σ  obeys the Efros–Shklovskii (ES) 
law [1,2] 
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both in two-dimensional (2D) and three-dimensional (3D) 
cases. Here the characteristic temperature 

2

0 = CeT
aκ

(3) 

(we use the energy units for the temperature T ), a is the 
localization length of electrons and C  is the numerical co-
efficient [2]. 

This paper deals with the situation when the Coulomb 
interaction between electrons has a more complicated form. 
We consider a thin film with the thickness d a  and 

the large dielectric constant 1κ . The film is surrounded 
by the media with much smaller dielectric constant, for 
example, just by the air with ext = 1κ . 

The energy of the Coulomb repulsion of two electrons 
in the film was calculated exactly in Ref. 3. Here we pre-
sent only asymptotic results with their physics interpreta-
tion. Let us assume that the film is defined by the surfaces 

= / 2z d±  and one electron is at = = = 0z x y . Then at di-
stances r d  its electric field (induction) spreads isotro-
pically. At larger distances the electric field lines are forc-
ed by the large κ  to stay inside the film, so that the field 

spreads along the radius 2 2= x yρ +  of the cylindrical 
coordinate system with the same z  axis. At dρ κ  electric 
field lines exit from the film and eventually spread uni-
formly over the whole 4π body angle again. 

Let us discuss the potential energy of repulsion of two 
electrons in the film. At the distance dρ κ  two electrons 
interact via the “external” Coulomb interaction 

2
( ) = .eV ρ

ρ
(4) 

On the other hand, in intermediate range of distances 
d dρ κ   

( ) = 2 ln ,d
dV  κ

ρ ε  ρ 
 (5) 
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where 2= /d e dε κ . Finally at even smaller distances 
dρ  we arrive at the “internal” Coulomb interaction 

 
2

( ) = 2 ln ,d
eV r

r
+ ε κ

κ
 (6) 

which differs from Eq. (1) by the logarithmically large 
energy accumulated when the second electron is moved 
from infinity to = dρ . The resulting potential energy ( )V ρ  
is plotted as a function of ρ in Fig. 1 in all three ranges. 

Let us assume that the film is uniformly doped by a con-
centration of donors DN  and compensated by smaller con-
centration of acceptors so that low-temperature transport is 
due to VRH on donors. How does the two-dimensional 
electrostatics affect ES law? 

This question was first addressed in Ref. 4 for another 
object, a weakly disordered two-dimensional gas, for ex-
ample, in a silicon inversion layer. In this case, according 
to Ref. 5 localized states have an exponentially large local-
ization length. Large localized states play the dual role in 
this theory. First, VRH conductivity is related to long dis-
tance hopping between those of them which are close to 
the Fermi level. Second, all other large localized states 
according to Ref. 4 contribute to the large effective dielec-
tric constant which keeps the electric lines of a charge in 
the plane of the two-dimensional gas. In order to calculate 
VRH conductivity the authors of Ref. 4 used an intuitive 
shortcut avoiding discussion of the Coulomb gap. The au-
thors found two ranges of the temperature dependence of 
the VRH conductivity ( )Tσ . At very low temperatures 
where the characteristic length of the hop hr  is much larger 
than dκ  they arrived at ES law with = 1κ  and at higher 
temperature range where hd r dκ   they obtained acti-
vated conductivity. 

In this paper, we calculate the VRH conductivity in 
the framework of our simpler model where large κ  is of 

the lattice origin or is a result of close three-dimensional 
metal-insulator transition. In this way we avoid the contro-
versial subject of the 2D metal-insulator transition [6]. We 
follow the “orthodox” ES logic [1,2] deriving first the Cou-
lomb gap and then the conductivity. Let us first formulate 
our results moving from high to lower temperatures. 

At high temperatures /dT a dε  the VRH hopping 
conductivity is determined by the “internal” ES law 
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which at high enough temperatures coincides with Eq. (2). 
It is followed by the range of intermediate temperatures 
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with “activated” VRH conductivity 
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where the “activation energy” 

 1( ) = lnd
d

T dT T
a

 κ
ε  ε 

, (10) 

of the intermediate regime is weakly temperature depend-
ent. If one approximates Eq. (9) as 

 0( ) = exp ,
p

pT
T

T

   σ σ −     
 (11) 

the power 

 1= 1 .
ln ( / )d

p
T d a

−
κ ε

 (12) 

Close to = /dT a dε  we get = 1 1/ lnp − κ . For example, at 
= 40κ  one gets = 0.7p . 
At even smaller temperatures /dT a dε κ  we arrive at 

the “external” ES law 

 
1/2ext

0
0( ) = exp ,

T
T

T
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 (13) 

where ext 2
0 = /T Ce a . Thus, the “activated” VRH conduc-

tivity (9) is sandwiched between the two different ES re-
gimes of ( )Tσ , the “internal” one, Eq. (7), at the high-tem-
perature side, and the “external” one, Eq. (13), on the low-
temperature side. The two low-temperature regimes (9) 
and (13) are in agreement with Ref. 4. The new high-
temperature “internal” ES regime exists only if d a . 

The experimental literature on the VRH conductivity in 
thin films is controversial (see Refs. 7, 8 and references 
therein). How large is the film dielectric constant and how 
important is contribution of large localized states [4] in most 

Fig. 1. A schematic plot of the potential energy of repulsion 
of two charges located inside the film with a large dielectric con-
stant as a function of the distance ρ between electrons. Equation 
numbers describing different segments of this plot are shown next 
to each segment. 
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of cases is not clear. On the insulating side of the super-
conductor-insulator transition in ultrathin quench-condens-
ed Ag, Bi, Pb and Pd films [7] VRH data agree with 
Eq. (11) with = 2 / 3p . On the other hand, for relatively thick 
TiN films [8] the crossover from 1/ 2p   to 1p   is ob-
served with the decreasing temperature. Finding an expla-
nation for this crossover is challenging [8] because one 
would normally expect that the ES law emerges at the low-
temperature limit. Our theory shows that in relatively thick 
film with the decreasing temperature one can see the cross-
over from the “internal” ES law to the activated transport. 
This may explain results of Ref. 8. 

In order to simulate a film with a large dielectric con-
stant one can make a two-dimensional array of isolated 
metallic islands overhanging each other [9,10]. Although 
these arrays were originally designed as arrays of Joseph-
son junctions they perfectly simulate a large dielectric con-
stant in the normal state. Indeed, such array keeps electric 
lines in its plane if the capacitance between two islands is 
larger than the capacitance of each island to the ground. As 
a result such a normal array in presence of some disorder 
should show activated VRH discussed above. 

Before switching to the derivation of our results we 
would like to dwell on the related theoretical paper [11] 
which deals with the VRH transport of point like vortexes 
responsible for the low-temperature resistance of a super-
conductor film in the external magnetic film. Two vortexes 
interact via the logarithmic potential at small distances, 
while again at large distances their interaction follows the 
“external” Coulomb potential [12], so that one could expect 
to see the two low-temperature ranges discussed above, 
the “activated” regime and the “external” ES law. However, 
Ref. 11 argues that ES approach is not valid in this case 
because “logarithmic interaction grows without bound with 
particle separation” and, therefore, “single-particle energies 
can not be defined” so that “multi-vortex hopping domi-
nates the above single-particle effects”. The multi-particle 
estimate [11] leads to Eq. (11) with 2 / 3 < < 4 / 5p . This is 
close to what we got for p at = 40κ . 

In contrary to the above statements of Ref. 11 Fig. 1 
clearly shows that the repulsion energy vanishes at infinity 
similarly to the standard Coulomb potential (4). Thus, 
there is no problem to introduce a single particle energy for 
a system of localized electrons interacting with the pair-
wise potential ( )V ρ . We can proceed with the ES argument 
and study the new shape of the Coulomb gap in the density 
of states (DOS) of single-particle excitations and eventual-
ly the VRH conductivity. We return to the discussion of 
the role of multi-particle processes in the end of this paper. 

Below we calculate the zero temperature DOS ( )g ε  fol-
lowing Refs. 1, 2, 13. In the ground state of the system we 
define the single electron energy iε  of an occupied donor i  
as the energy necessary to extract an electron from this 
state to the state with the energy right at the Fermi level at 
infinity. The single-electron energy jε  of an empty in the 

ground state donor j  is defined as the energy necessary to 
bring to it an electron from a state at infinity with the ener-
gy right at the Fermi level Fε . By the definition of the 
ground state > >j F iε ε ε . Another stronger stability con-
dition can be formulated for each pair of occupied and 
empty states as follows 
 ( ) > 0.j i ijV rε − ε −  (14) 

Here ( )ijV r  is the repulsion energy of two electrons on 
sites i  and j  and ( )ijV r−  is the Coulomb energy of attrac-
tion of the electron which moved to the site j  by the hole it 
has left at the site i . In other words, this term describes the 
exciton effect. Eq. (14) requires that any two states close in 
energy to Fε  should be far enough in the space. This limits 
the density of states (DOS) close to the Fermi level. For 
the Coulomb potential the result for the DOS is known and 
we do not repeat derivations from [1,2,13], but list the re-
sults. 

The “external” Coulomb potential (4) limits two-dimen-
sional density of states at the level 

 4
2( ) =g

e
ε

ε
π

. (15) 

For the “internal” Coulomb potential (6) we get 

 
3 2

6
3( ) = ,dg

e
κ ε

ε
π

 (16) 

where the factor d  converts the three-dimensional DOS to 
the two-dimensional one. Apparently the asymptote (15) is 
valid at large distances, i.e., at small energies ε and the 
asymptote (15) describes small lengths or large energies. 
Let us now derive the DOS for the intermediate range of 
distances and energies. To this end we have to calculate the 
number of states in the band of the width 2ε around Fε . 
Using Eqs. (14) and (5) we get ln ( / ) <d dε κ ρ ε. This 
means that in this energy band there is no more than one 
state in the disc with radius 

 ( ) = exp .
d

d
 ε

ρ ε κ − ε 
 (17) 

This leads to the following estimate of the DOS for 
lnd dε ε ε κ  : 

 
2 2

1 1 2( ) = exp .
( ) ( ) d

g
d

 ε
ε  ερ ε ε κ ε  
  (18) 

DOS (18) matches DOS (15) at = dε ε  and Eq. (16) at 
lndε = ε κ  (see Fig. 2). At large energies the parabolic 

range of the Coulomb gap, Eq. (16), is limited by the total 
width of the impurity band 2 1/3

max = / lnD de Nε κ + ε κ . At 
maxε ε  the DOS decreases (see the dashed line in Fig. 2) 

similarly to the three-dimensional DOS of the classical 
impurity band (see Ch. 14 of Ref. 2). 
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Now we can apply the calculated above DOS in order 
to estimate the exponential term of the VRH conductivity 
of the film at different temperatures. This estimate closely 
follows the original Mott's approach [14]. We define an en-
ergy band around the Fermi level and estimate contribution 
of this band to the VRH conductivity. Then we can opti-
mize result with respect of the band width. This calcula-
tions are quite straightforward and we will not go through 
them here. Results are already formulated in the beginning 
of our paper. 

Let us return to the multi-electron effects on ES law. 
For the standard Coulomb potential (1) they were studied 
in Refs. 2, 13, 15, 16. It was shown that they may change 
only the coefficient C in Eq. (2). Here we only briefly re-
mind what was done. In 3D case a small energy single-
electron excitation strongly interacts with dipole moments 
of surrounding compact electron-hole excitations forming 
together with them a composite charged multi-electron ex-
citation, the electronic polaron. Polarons being charged part-
icles obey stability criterion Eq. (14), have the Coulomb 
gap and lead to ES law. The only difference is that coeffi-
cient C can be somewhat larger because every hop of 
a single-electron excitation in 3D is accompanied by the 
tunnelling depolarization of many polaron pairs. A simple 
estimate showed that the total length of these small hops is 
of the order of the length of the main long ES VRH hop. 
This gives no more than the factor 2 in the expression for C. 
In 2D number of dipole excitations in the polaron atmos-
phere is of order one and polaron effects provide only 
small corrections to C. 

We estimated similar effects in the framework of the 
complex potential of this paper (Eqs. (4)–(6)). It turns out 
that in the low-temperature range polaron effects provide 
only small corrections to C in Eq. (13). On the other hand, 
for the two higher temperature ranges (Eqs. (9) and (2)) the 
situation is similar to the 3D case studied in Refs. 2, 13, 16. 

Namely, at these temperatures multi-electron effects may 
add a numerical coefficient in the exponential. For Eq. (9) 
this means that 1T  may become twice larger. Thus, multi-
electron effects do not change the power p in Eq. (11). 
This conclusion is in disagreement with Ref. 11 which 
assumes that even in 2D the total length of small hops is 
much larger than the ES hop and, therefore, overestimates 
importance of the multi-electron effects. 

Above we discussed only the ohmic transport in a weak 
electric field. If the electric field is so strong that / 2eEa T  
one can replace T by the effective VRH temperature 

/ 2eEa  in Eqs. (2), (9), (11) and (13) to obtain non-ohmic 
current-voltage characteristics [17] (see also [4,18]). For 
the intermediate activated regime we then arrive at the cur-
rent-voltage characteristics 0 0exp ( / ) pJ J E E∝ − , where p 
is close to unity. This result is in agreement with the earlier 
theory [19] of the VRH transport of pinned vortexes in 
superconductors under the influence of a strong current. 

Until now we dealt with a film. Now let us briefly dis-
cuss the similar physics in a long cylindrical nano-wire or 
nano-rod with radius d  made from a semiconductor with a 
large dielectric constant 1κ , for simplicity, in the air 
environment. Here again the electric field of an electron at 
distances r d  spreads isotropically, then stays inside 
nano-rod for a distance 1/2< =x dξ κ  along the cylinder 
axis, and then leaks from the cylinder and eventually spreads 
isotropically in the air at large enough r . Thus, the poten-
tial energy of repulsion of two electrons again changes 
from the very short range “internal” Coulomb interaction (4) 
to the very long range “external” Coulomb interaction (1) 
with the large intermediate range of x , where interaction 
has the one-dimensional character. The interaction in this 
range was studied [20,21] for an ion channel in a lipid mem-
brane, where the cylindrical pore with radius d  is filled by 
water with = 81κ  and is surrounded by lipids with = 2κ . 
Translated to our problem the potential energy of two elec-
trons located at the nano-rod axis at the intermediate dis-
tance x  from each other is well approximated by 

 0( ) = [exp( / ) 1],V x eE xξ − ξ −  (19) 

where 2
0 = 2 /E e dκ  (see Sec. VIII of Ref. 21). Using this 

potential for repulsion of two electrons in the nano-rod and 
following the Coulomb gap based derivation similar to one 
used above for a film (or the shortcut approach of Ref. 4) 
one can calculate the temperature dependence of the VRH 
conductivity of the nano-rod in the intermediate tempera-
ture range. The result is the strict activation regime with 
the temperature independent activation energy 0=aT eE ξ. 
It is, of course, sandwiched between the two ES laws, the 
“internal” one on the high-temperature side and the “exter-
nal” one Eq. (13) on the low-temperature side. 

I am grateful to T. Baturina, A.M. Goldman, A. Kame-
nev, D.E. Khmelnitskii and A.I. Larkin for useful discus-
sions. 

Fig. 2. Schematic plot of the DOS of localized electrons limited 
by Coulomb interaction of electrons as a function of energy. 
Equation numbers describing different segments of this plot are 
shown next to each segment. Dashed line shows beginning of 
the DOS decline at large energies. 
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