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Electron accumulation layer in ultrastrong magnetic field 
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When a three-dimensional electron gas is subjected to a very strong magnetic field, it can reach a quasi-one-
dimensional state in which all electrons occupy the lowest Landau level. This state is referred to as the extreme 
quantum limit (EQL) and has been studied in the physics of pulsars and bulk semiconductors. Here we present 
a theory of the EQL phase in electron accumulation layers created by an external electric field E at the surface 
of a semiconductor with a large Bohr radius such as InSb, PbTe, SrTiO3 (STO), and particularly 
in the LaAlO3/SrTiO3 (LAO/STO) heterostructure. The phase diagram of the electron gas in the plane of the 
magnetic field strength and the electron surface concentration is found for different orientations of the magnetic 
field. We find that in addition to the quasi-classical metallic phase (M), there is a metallic EQL phase, as well 
as an insulating Wigner crystal state (WC). Within the EQL phase, the Thomas–Fermi approximation is used 
to find the electron density and the electrostatic potential profiles of the accumulation layer. Additionally, 
the quantum capacitance for each phase is calculated as a tool for experimental study of these phase diagrams. 

PACS: 71.10.−w Theories and models of many-electron systems; 
73.20.Qt Electron solids; 
75.70.−i Magnetic properties of thin films, surfaces, and interfaces. 

Keywords: Wigner crystal state, extreme quantum limit, ultrastrong magnetic field, Thomas–Fermi approxi-
mation. 

 
1. Introduction 

When a degenerate electron gas at low temperature T  is 
subjected to an ultrastrong magnetic field, its properties 
undergo dramatic changes. Particularly, when the external 
field B  is so strong such that 

 
2 1/3

, ,c F B
e nE k Tω
κ

    (1) 

the cyclotron energy becomes the dominant energy scale in 
the system. Here *= /c eB m cω  is the cyclotron frequency, 

*m  is the effective mass, 2 2/3 / 2FE n m≈   is the Fermi 
energy at = 0B , Bk T  is the thermal energy, κ  is the die-
lectric constant, and n is the three-dimensional concentra-
tion of electrons. When Eq. (1) is satisfied, we say that the 
system is in the “extreme quantum limit” (EQL). 

Under the influence of a magnetic field B , the kinetic 
energy of electrons in the direction perpendicular to B  is 
quantized into Landau levels. In the EQL, the gap between 
adjacent levels becomes very large and electrons occupy 
the lowest Landau level only. As a result, the energy of the 
electron gas depends only on the momentum in the direc-
tion parallel to B , creating a quasi-one-dimensional state. 
It has been proposed that under such conditions, various 

instabilities such as charge density waves, spin density 
waves, or Wigner crystallization occur [1–4]. 

What conditions are necessary to reach the EQL exper-
imentally? From Eq. (1), it follows that in order for the gas 
to remain metallic, one must have 3 1na  . Here 

 2 2*= /a m eκ  (2) 

is the effective Bohr radius of the material. Additionally, 
the strong magnetic field condition, c FEω  , requires 

3 1nλ  , where we have introduced = /c eBλ   as the 
magnetic length. Combining 3 1na   and 3 1nλ  , we 
find that in order to reach the EQL, we require aλ . At 
10 T, 10λ ≈  nm, and so we require materials in which 

10a  nm. There are special materials such as InSb and 
Hg1 x− CdxTe in which a ranges between 60 120−  nm, so 
that the EQL is achievable at reasonable magnetic fields 
[5–7]. In particular, bulk transport studies of InSb have 
found an experimental phase diagram that consists of 
a metal, EQL, and insulator phase [7]. 

Another material in which the EQL may be reached is 
bulk SrTiO3 (STO). STO is a semiconductor with a rela-
tively heavy effective mass * = 1.5 em m  [8], but a dielectric 
constant that becomes very large, 4= 2 10κ ⋅ , at liquid heli-
um temperatures [9,10]. As a result, the Bohr radius of 
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STO becomes = 700a  nm. This should create an ideal 
situation to study the EQL and several studies of the bulk 
magnetic properties of the material have been conducted 
[11–14]. Despite such effort, attempts to observe the EQL 
in bulk STO have not met much success, presumably due 
to disorder effects [14]. 

Much attention has been devoted in recent years to 
LaAlO3/SrTiO3 (LAO/STO) heterostructures in which the 
“polar catastrophe”[15,16] creates an electric field that 
causes a high mobility electron gas to form at the interface. 
Recent magnetotransport studies of these structures have 
reported integer quantum Hall effect steps in xyρ  that may 
be evidence of the gas approaching the EQL [17–19]. 

In this paper, we study the conditions under which one 
can observe the EQL in electron accumulation layers in 
semiconductors with a given dielectric constant κ  and 
Bohr radius a. Such an accumulation layer can be created 
in many ways. One example already mentioned is the polar 
catastrophe in LAO/STO heterostructures which creates 
an accumulation layer at the interface. Other common 
techniques include ionic liquid gating [20] of the semicon-
ductor surface and δ-doping by donors in the bulk of the 
sample [21]. In all such cases the end result is an external 
electric field E along the direction perpendicular to the 
surface that causes electrons to accumulate near the surface 
(see Fig. 1). We can always relate E  to the surface concen-
tration N  of electrons in the accumulation layer by 

 4= .eNE π
κ

 (3) 

In our discussion below, all results are expressed through 
the surface concentration N rather than the external field E. 

Within the EQL phase we calculate the Thomas–Fermi 
profiles of the electron density and electrostatic potential 
as a function of the distance from the surface. By compar-

ing the parameters found in the EQL metal with those of 
the quasi-classical metal (M), we determine the strength of 
the magnetic field at which the electrons enter the EQL. 
On the other end, these parameters are compared to those 
of the Wigner crystal (WC) phase at a large magnetic field 
to find the upper limit of the magnetic field at which the 
EQL metal is still valid. Figure 2 summarizes our results 
for the case of ⊥B E  as a phase diagram in dimensionless 
units of 0/B B  and 2Na . Here 

 2 3 2 3*0 = / ( )B m e c κ   (4) 

is the magnetic field such that = aλ . To preserve the uni-
versality of Fig. 2 for different semiconductor parameters, 
we introduce the material specific constant 

 
*

= .em
m
κ

κ  (5) 

In this notation, 5 2
0 = (2.5 10 )B −⋅ κ  T. 

Let us discuss what is achievable experimentally. The 
strongest static magnetic fields available in laboratories are 
approximately max 45B   T, from which it follows that 

 4 2
max 0/ 1.8 10B B −≈ ⋅ κ . (6) 

Given the values of κ  and a in STO at liquid helium tem-
peratures, we find 4= 1.3 10κ ⋅ , and so max 0/B B ≈ κ , while 
for InSb, 3= 1.1 10κ ⋅  and 3/4

max 0/B B ≈ κ . These values 
are indicated in Figs. 2 and 4 by the dashed and dotted 
lines respectively. 

Fig. 1. (Color Online) Schematic energy diagram of an accumula-
tion layer in a lightly doped n-type semiconductor, where ε  is the 
energy and x  measures the distance from the surface. Electrons 
(blue/dark grey layer) are attracted to the surface by an external 
electric field E , where they form the accumulation layer with 
a characteristic width d . In the bulk of the semiconductor, the 
Fermi level Fε  lies near the bottom of the conduction band. 

 

Fig. 2. (Color online) Phase diagram of the electron gas for 
⊥B E in the dimensionless plane of 0/B B  and the surface con-

centration 2Na  plotted in a log–log scale. The regions are the 
quasi-classical metal (M), the metallic EQL phase (EQL), and the 
insulating Wigner crystal state (WC). The dashed line indicates 
the ratio max 0/B B  in STO, while the dotted line is the same quan-
tity in InSb. See Eqs. (2), (4), and (5) in the text for the definitions 
of a, 0B , and κ . 
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Below we focus on STO. Figure 3 presents that phase 
diagram for ⊥B E  in STO at liquid helium temperatures. 
The lower EQL border defined by Eq. (20) intersects maxB  
in STO at a concentration 128 10N ⋅  cm 2− . Surface con-
centrations as low as 121 10⋅  cm 2−  with high mobility have 
been achieved in modified LAO/STO interfaces and δ-dop-
ed STO [17,19], so that the lower critical magnetic field is 
reachable. Additionally, this range of surface concentra-
tions 12 12= 1 10 8 10N ⋅ − ⋅  cm 2−  corresponds to bulk concent-
rations /N d  ranging between 173 10⋅  cm 3−  and 18 31 10 cm ,−⋅  
where according to the data [22] a reasonably large mobili-
ty can be maintained making the EQL achievable in this 
range of concentrations. Here d  is the characteristic width 
of the accumulation layer. 

The rest of the paper is organized as follows. In Sec. 2 
the new density profile ( )n x  in the EQL is derived using 
the Thomas–Fermi approximation and the critical magnetic 
field at which the gas enters the EQL is found. In Sec. 3 we 
finish constructing the phase diagram for different direc-
tions of magnetic field and arrive at Figs. 2 and 4. In Sec. 4 
we calculate the quantum capacitance in all phases and 
present the plot of the effective width of the inverse ca-
pacitance as a function of the magnetic field ( )B T  in 
Fig. 6. In Sec. 5 we show how our results map to the prob-
lem of heavy atoms in ultrastrong magnetic fields which 
has been intensely studied in astrophysics. 

2. Thomas–Fermi theory of the accumulation layer 

2.1. Quasi-classical metal 

In an accumulation layer, an electric field E  applied 
perpendicular to the the surface causes electrons to accu-
mulate with a three-dimensional concentration ( )n x , where 
x  is the distance measured from the surface. Here we as-

sume that the semiconductor is such that the Fermi level in 
the bulk of the material lies at the bottom of the conduction 
band, and the electron concentration tends to zero at large 
distances. This can be true if the semiconductor is lightly 
doped by donors [23]. This problem was first solved in the 
absence of a magnetic field by Frenkel [24], and we repeat 
his argument below. 

In order to find the density profile, we make use of the 
Thomas–Fermi approach in which the local potential ( )xϕ  
is related to the local chemical potential ( )xµ  such that 

( ) ( ) = = 0Fe x xϕ +µ ε . In a normal metal, the chemical 
potential is related to the density such that 

 
2

2 2/3
0 0

( ) = [3 ( )] .
2

x n x
m

µ π
  (7) 

Here we use the subscript 0 to denote quantities when B = 0. 
When the dielectric response is linear, the potential and 
density are related through Gauss’s law, such that 

 
2

0
02

4= ( ).
d e n x
dx
ϕ π

κ
 (8) 

Combining Eqs. (7) and (8) with the above equilibrium 
condition, we obtain the Thomas–Fermi equation 

 
3/22 7/2 1/2

0 0
2 2

2= .
/ /3

d
e a e adx a
ϕ ϕκ   

   
   π

 (9) 

The solution of this equation that satisfies the condition 
lim ( ) = 0
x

x
→∞

ϕ  is known to be 

 
3

0 1 4
0

( ) = ,
( )

e ax C
x d

ϕ
κ +

 (10) 

and the associated density is 

 
3

0 2 6
0

( ) =
( )

an x C
x d+

 (11) 

where 2
1 = (225 / 8) 278C π   and 2 = (1125 / 8) 442C π  . 

To determine the characteristic width 0d , we use the 
definition of the two-dimensional electron density 

 
0

= ( )N n x dx
∞

∫ . (12) 

Combining Eqs. (11) and (12) we find that for the quasi-
classical metal 

 
1/5

0 3 2
1= ,d C a

Na
 
 
 

 (13) 

where ( )1/5
3 = 225 / 8 2.45C π  . 

2.2. Extreme quantum limit 

The main purpose of this paper is to understand how the 
above distribution changes when the gas is subjected to 
such strong magnetic fields that it is in the EQL. 

Fig. 3. (Color online) Phase diagram for ⊥B E in STO at liquid 
helium temperatures. The diagram is presented in a log-log scale. 
All regions and borders are identical to those in Fig. 2 
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As stated above, when in the EQL, the kinetic energy in 
the direction perpendicular to the field is quantized and 
electrons occupy the lowest Landau level. This means that 
the density of electrons in the direction perpendicular to 
the field is fixed by the density of the lowest Landau level 

21/ (2 )πλ . In addition, the magnetic field aligns the spins 
in the direction of the field, lifting the spin degeneracy. 
The remaining direction has a density determined by the 
wavevector k . We can relate the maximum value of this 
wave vector to the three dimensional density of electrons by 

 2
1 = ( ).

2
k n x 

 π  πλ
 (14) 

As a result, the local chemical potential changes from 
Eq. (7) to 

 
2

2 2 2( ) = [2 ( )] .
2

x n x
m

µ π λ
  (15) 

Proceeding in the same way as before, we arrive at the 
EQL Thomas–Fermi equation 

 
2 3/2 1/2

1/2
2 4 1/2

2= .
( )

d e
dx a
ϕ

ϕ
π λ κ

 (16) 

The solution gives the potential 

 
4

4 4

( )
( ) = ,

x dex C
a

λ
−

ϕ
κ λ

 (17) 

and density as 

 
2

5 4

( )
( ) = ,

x d
n x C

a
λ

−

λ
 (18) 

where 2
4 = 1/ (18 ) 0.006C π   and 3

5 = 1/ (6 ) 0.005C π  . 
Using Eq. (12), the characteristic width is determined to be 

 4 1/3
6= ( ) ,d C Na

λ
λ  (19) 

where 3 1/3
6 = (18 ) 8.23C π  . 

This result is valid when 0<d d
λ

. We find then that the 
magnetic field compresses the accumulation layer closer to 
the surface. Equating Eqs. (13) and (19), and going back to 
the magnetic field, we find that the EQL is achieved when 

 2 4/5
1 7 0> = ( ) ,cB B C B Na  (20) 

where 3/2
7 6 3= ( / ) 6.15C C C ≈ . If 0 1< < cB B B , ( )n x  

obeys Eq. (11) until ( ) = cxµ ω  where the gas enters the 
EQL. The distance from the surface at which this occurs is 
given by 

 1/2
l ( ) .x a≈ λ  (21) 

At this distance, the remaining electrons are in the EQL 
and the electron density is sharply cut off. 

We emphasize that the direction of the magnetic field 
has played no role in our discussion so far. Therefore, we 

see that our boundary given by Eq. (20) is independent of 
the field direction. This line is shown in both Figs. 2 and 4. 
For 1cB B , these diagrams lose their universality and we 
discuss them separately in the following section. 

3. Phase diagrams for different magnetic field 
directions 

Below we address the role of the magnetic field direc-
tion and complete the phase diagrams Figs. 2 and 4. Let us 
assume that the electric field is strong enough such that 

2 > 1Na . The Thomas–Fermi approximation is only valid 
as long as the electrons can be treated semiclassically. We 
can make this condition quantitative by requiring that 

 
0

1 ( ) > 1xk x dx
∞

π ∫  (22) 

which is a generalization of the 1d particle in a box. This 
condition depends on the direction of the magnetic field 
relative to the electric field, and so below we consider sep-
arately the two cases B E  and ⊥B E . 

3.1. Magnetic field parallel to electric field 

When B E , 2 2( ) = 2 ( )xk x n xπ λ . From this we find that 
the approximation breaks down when 

 2
2 0= = (2 ).cB B B Naπ  (23) 

Fig. 4. (Color online) Phase diagram of the electron gas for B E  
in the dimensionless plane of 0/B B  and the surface concentra-
tion 2Na  plotted in a log–log scale. The regions are the quasi-
classical metal (M), the metallic EQL phase (EQL), and the insu-
lating Wigner crystal state (WC). The dashed line indicates the 
ratio max 0/B B  in STO, while the dotted line is the same quantity 
in InSb. See Eqs. (2), (4), and (5) in the text for the definitions of a, 

0B , and κ . Numerical values of N  and B  for STO at liquid heli-
um temperatures can easily be recovered from comparison of 
Figs. 3 and 4. 
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This is the boundary between regions EQL and WC in 
Fig. 4. As the magnetic field is increased beyond this val-
ue, the Thomas–Fermi approximation becomes invalid 
everywhere. Instead, the electron gas forms a WC consist-
ing of single electron cylinders of radius λ and height L  
(see Fig. 5(a)). The height of the cylinders can be deter-
mined as follows. At the border 2cB , the electron gas is 
confined to the first sub-band of a triangular potential well. 
The kinetic energy is then 

 
2

2=
2

K
mL
  (24) 

while its potential energy is = / 2U eEL , where E  is relat-
ed to N  by Eq. (3). Equating the kinetic and potential en-
ergies we find that 

 1/3= ( / 2 ) .L a Nπ  (25) 

The height of the cylinders L  should agree parametri-
cally with the size of the accumulation layer d

λ
 along the 

EQL–WC phase boundary Eq. (23). Let us confirm this. 
Along the boundary, we know that Eq. (23) gives 2= 1/ ,N λ  
so that 2 1/3= ( )L aλ . If instead we are coming from the 
EQL region, we use Eq. (19) and find that 2 1/3= ( )d a

λ
λ . 

Equation (25) is the same as the width of the first sub-
band wave functions obtained for an inversion layer in 
an electric field E  [25,26]. However, contrary to the inver-
sion layer where electrons are delocalized in the plane per-

pendicular to the field E , electrons here are strongly local-
ized by the magnetic field in a cylinder of size λ. This is 
also the simplest case of quantum screening [27–29]. 

3.2. Magnetic field perpendicular to electric field 

If ⊥B E , = 1/xk λ . As a result, we find instead of 
Eq. (23) that the Thomas–Fermi approximation fails when 

2 2
0> ( )B B Na . We show below that the EQL phase forms 

a WC at a somewhat smaller field 

 
2 2

0
3 2 2

( )
.

ln ( )
c

B Na
B

Na
≈  (26) 

This is the boundary given in Fig. 2. 
The structure of the WC phase for ⊥B E  is markedly 

different than when B E . We can imagine the electrons as 
cylinders of radius λ oriented along B  which lie on their 
sides in the plane of the surface (See Fig. 5(b)). 

To describe the WC, one can imagine that E  is replaced 
by a uniform positive surface charge density eN  which is 
partitioned into Wigner–Seitz (WS) cells with charge e, 
length L , and width = 1/w NL so that each cell contains 
exactly one electron. We assume that the energy of each 
WS cell is approximately given by the sum of the kinetic 
energy Eq. (24), and the electrostatic energy 

2 2= ( / ) ln ( )U e L NL− κ . Optimization of this energy with 
respect to L  gives 

 
2 .

ln ( )
aL
Na

  (27) 

As the magnetic field is reduced, it is natural to assume 
that the WC–EQL transition occurs when the electron is 
the same size as the WS cell. Setting =w λ , and using 
Eq. (27), we arrive at the border Eq. (26). We see that the 
logarithmic term in the denominator of Eq. (26) resembles 
those obtained previously for the metal–insulator transition 
in the bulk of a doped semiconductor in a strong magnetic 
field [7,30]. 

Up until now our theory is generic and is valid for 
any semiconductor material with a linear dielectric constant. 
In STO, however, the dielectric response becomes nonline-
ar at sufficiently high surface concentrations [31]. It was 
shown the dielectric response becomes nonlinear when 

 
2

2 2 3/2
1

0

1= = .c
aNa N a

a

 
  ≈ κ
 κ  

  (28) 

Here 
0

3.9a   Å is the lattice constant in STO. We see in 
Figs. 2 and 4 that at this concentration, maxB  is such that 
the gas is still in region M, where the magnetic field only 
acts to cut the tail of the distribution. Thus, the EQL phase 
is unachievable experimentally when the dielectric re-
sponse is nonlinear and so we limit Figs. 2 and 4 to 

2 3/2<Na κ . 

Fig. 5. (Color Online) Schematic of the electron structure in 
the WC phase for B E  (a) and ⊥B E (b). Each electron 
(red/dark grey) forms a cylinder of radius λ  oriented along the 
direction of the magnetic field on the surface (yellow/light grey) 
inside the semiconductor. 
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4. Magnetocapacitance 

In this section we calculate the capacitance of an accu-
mulation layer as a function of the magnetic field for all 
phases. Our results can be used as tools for an experi-
mental study of Figs. 2 and 4. For the setup we imagine 
that the accumulation layer is either created by the electric 
field of a metallic gate, or by a built in electric field E  to 
which a metallic gate adds a relatively small field E′. Ex-
amples of such devices include the gating of an intrinsic 
semiconductor by an ionic liquid and the application of 
a metallic gate to the top LAO surface in the LAO/STO 
heterostructure. In both cases one can study the differential 
capacitance per unit area = ( ) /C d eN dV , where V  is the 
gate voltage. The inverse capacitance 1C−  may be written 
as the sum of the inverse geometrical capacitance and the 
inverse quantum capacitance 

 1 4
= .q

q
d

C− π

κ
 (29) 

Below we calculate qd  for our phases M, EQL, and WC in 
both B E  and ⊥B E  cases. 

Let us discuss some of these results. In Sec. 2 the 
Thomas–Fermi potential profiles were found for the metal-
lic M and EQL phases. From Eq. (10), we find that in re-
gion M the potential difference from = 0x  to =x ∞  at 
a given concentration is 

 
1/5

2 4/5225( ) = ( ) .
8

eN Na
a

π ϕ π  κ 
 (30) 

Taking the derivative /d dNϕ  and using Eq. (29), one 
finds 

 0( ) = .
5q

d
d M  (31) 

In the EQL we know that the potential is instead given 
by Eq. (17) where dλ  is given by Eq. (19). Proceeding in 
the same way, we find that the EQL changes the capaci-
tance to 

 ( ) = .
3q

d
d EQL λ  (32) 

Equations (31) and (32) are not surprising. In both cas-
es, qd  is the width of the accumulation layer in the direc-
tion of the electric field E , up to some numerical prefactor. 
To put another way, the effective width of the quantum 
capacitor is the width of the accumulation layer. 

In order to find the point at which the capacitance tran-
sitions from that of the quasi-classical metal to the EQL 
metal, we equate Eqs. (31) and (32). We find then that the 
EQL becomes observable in capacitance measurements at 

3/2
1 1= (5 / 3)c cB B′ , which is slightly larger than Eq. (20). 

At this field we should see the effects of the EQL begin to 
emerge, and so we use this as the field at which the gas 
transitions. 

Equations (31) and (32) are valid for both B E  and 
⊥B E  cases. As the magnetic field is increased, the two 

cases separate because of their different WC structure. We 
first discuss the B E  case. 

As the magnetic field is increased, we see from Eq. (32) 
that qd  will decrease. When 2= cB B  (Eq. (23)), a Wigner 
transition occurs and the gas enters the WC region. In this 
state, the width of the accumulation layer in the direction 
of E  is approximately given by Eq. (25) and no longer 
depends on the magnetic field. In order to find the value of 
the capacitance, we combine Eqs. (23) and (32) and find 

 8 2 1/3(WC ) =
( )

q
ad C

Na


 (33) 

where 1/3
8 = ( / 6) 0.81C π ≈ . 

In the ⊥B E  case, the transition to the WC phase hap-
pens at a much larger B  given by Eq. (26). At this value of 
the field, the width of the accumulation layer is such that 

1/qd Na . If the field is increased further, then qd  con-
tinues to decrease as the negative energy due to correlation 
effects of the WC begin to dominate [32]. However at such 
large fields, the distance between electrons may become 
comparable to the distance between the WC and the gate, 
and the coupling of electrons to their image charge be-
comes the dominant factor in the determination of the ca-
pacitance [33]. Despite this, such magnetic fields are too 
high to reach experimentally, and so we refrain from any 
further discussion of this limit. 

We summarize these results in Fig. 6 as a plot of 
(nm)qd  vs. ( )B T  for STO samples with a surface concen-

tration 12 –2= 10 cmN . At this concentration, the transition 
into the EQL occurs when 1= 18 TcB B′ ≈  while the EQL–WC 
transition occurs at 2= 46 T.cB B ≈  We see then that the 
EQL phase is within the realistic range of magnetic fields 
and so capacitance measurements at this concentration 
provide an opportunity in which the first border will be 
observed. However if one wishes to see the splitting be-
tween the two directions, one needs to go to lower concen-
trations than 12 –2= 10 cmN . 

Fig. 6. Log–log plot of (nm)qd  as a function of ( )B T  for the 
phases of Figs. 2 and 4 in STO at liquid helium temperatures with 
a surface concentration 1 22  = 10 cm .N −  The region in which qd  
is the same for both B E  and ⊥B E is illustrated by a thick line. 
The numbers in parentheses correspond to equations in the text. 
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5. Heavy atoms in pulsars 

So far, we have restricted our discussion to electron ac-
cumulation layers in semiconductor materials with such 
large Bohr radii that the EQL is achievable experimentally. 
For atoms, the EQL is achieved when the magnetic field is 
larger than 5

0 = 2.34 10B ⋅  T and is completely unattainable 
in a laboratory setting. However, in rotating neutron stars, 
or pulsars, the magnetic fields at the surface range from 

8 910 10−  T [34], so that the EQL can be achievable even 
for atoms. The effect of the large magnetic field on the 
structure of the surface layer of neutron stars has been 
studied extensively [35]. 

It is believed that within the surface of neutron stars 
there exists a layer enriched by iron atoms [36]. Motivated 
by this, Kadomtsev studied heavy atoms in ultrastrong 
magnetic fields, where he used an EQL Thomas–Fermi 
equation which is the spherically symmetric analog of our 
Eq. (16) [37,38] He found that the EQL Thomas–Fermi 
description of the atom is valid as long as the magnetic 
field is in the range 

 4/3 3

0

BZ Z
B

   (34) 

where Z  is the nuclear charge of the atom. When 
4/3

0/B B Z , the magnetic field has only a perturbative 
effect on the atomic structure, while for 3

0/B B Z , the 
atom is elongated along the direction of the magnetic field. 
We will now show that there exists a mapping between the 
nuclear charge Z  and the surface concentration N  showing 
that the 4/3Z  and 3Z  borders are in agreement with those 
we found for the EQL phase when B E . 

We can imagine that within the accumulation layer, 
electrons are bound at a distance d  away from the surface 
by the positively charged plane with charge density eN . 
We can think that this plane consists of positive squares 
(nuclei) of length d  and charge 

 2= .Z Nd  (35) 

At the lower critical field 1cB , we know that the character-
istic width of the gas is given by Eq. (13). Using Eq. (35) 
we find that the nuclear charge at this field is 2 3/5= ( )Z Na . 
From here, we find then that the lower critical field 1cB  
given by Eq. (20) is related to the nuclear charge by 

 2 4/5 4/31

0
= ( ) =cB

Na Z
B

 (36) 

in agreement with the lower border of Eq. (34). On the other 
hand, we know that if the magnetic field is applied parallel 
to the electric field, the Thomas–Fermi approximation fails 
when 2= cB B , where 2cB  is given by Eq. (23). At this field 
strength, the width of the layer d  is given by Eq. (19), 
from which it follows that 2 2 5/3 4/3

0= ( ) ( / )Nd Na B B . 
Solving this equation for B , and using Eq. (23), we find 
that the EQL region ends when 

 3

0
=B Z

B
 (37) 

in agreement with Kadomtsev’s second border. 
Note that in our comparison, we have used the case of 

B E . In a heavy atom, the magnetic field can be both par-
allel and perpendicular to the electric field of the nucleus. 
However, we know from Sec. 3 that when the B E , the 
Thomas–Fermi approximation fails at a smaller B  than for 
the case of ⊥B E . It is for this reason that the mapping from 
the accumulation layer to the heavy atoms needs B E . 

Let us conclude with a discussion about the structure 
of the atom when 3

0/B B Z . At such fields all electrons 
are in the lowest Landau level and occupy a single sub-
band in the direction of the field B . From the above map-
ping, it would seem natural to expect the structure to be si-
milar to a WC where the same limits apply. Actually, due 
to the strength of the Coulomb field of the point charge Z , 
the electrons instead compress into a single uniformly 
charged cylinder of radius 1/2=R Zλ  and height 

3= / ln( / )L a Z B Z . The compression of the cylinder is 
stopped by the kinetic energy 2 2/ (2 )mL  along the direc-
tion of B . One can think that in our Fig. 4, the atom be-
comes “frozen” at the EQL–WC border when 3

0/B B Z . 

6. Conclusion 

In this paper, electron accumulation layers induced by 
an electric field perpendicular to the surface are studied for 
semiconductors with a large Bohr radius under the influ-
ence of a very strong magnetic field. Phase diagrams in the 
plane of magnetic field strength and two-dimensional elec-
tron concentration are found for two orientations of mag-
netic field with respect to the electric field (Figs. 2–4). 
Each diagram is found to have three phases: the quasiclass-
ical metal, the extreme quantum limit electron gas, and the 
Wigner crystal. We showed that in the case of STO, with 
the largest known Bohr radius = 700a  nm, all of these 
phases may be reached in the available magnetic fields. 
We calculate the width of the accumulation layer for all of 
the phases and predict how the quantum capacitance of the 
accumulation layer changes with the magnetic field when 
we cross from one phase to another. This provides a tool 
with which the phase diagrams can be studied experimen-
tally with the help of magneto-capacitance measurements. 
In the future, it will be interesting to explore the transport 
properties of the extreme quantum limit of STO accumula-
tion layers. 

Above we assumed that the spectrum near the bottom of 
the conduction band in STO consists of a single isotropic 
band with an effective mass of * 1.5 em m≈ . In reality, the 
band structure of STO consists of three degenerate 3d or-
bitals of the Ti atoms which are split by the spin-orbit in-
teraction and the tetragonal distortion of STO at low tem-
peratures [8,39]. At concentrations 18< 10n  cm 3− , only the 
lowest band is occupied and Shubnikov–de Haas oscilla-
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tions measurements show the band has an effective mass of 
(1.5 1.8) em−  [8]. It was mentioned above that with surface 
concentrations 12 –210 cmN   one can explore the EQL 
with the available magnetic fields. Such N  correspond to 
bulk concentrations 17 3 18 310 1 m cm0c  n − −

  , where the 
approximation of an effective mass of * 1.5 em m≈  is justi-
fied. 
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