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A review of peculiarities of magnetic properties and spin kinetics of a heavy-fermion Kondo lattice revealed 
by electron spin resonance (ESR) experiments and their theoretical analysis is given. Among the issues discussed 
in some detail are the renormalization of spin kinetics coefficients due to the Kondo effect, formation of the col-
lective spin modes of the Kondo ions and wide-band conduction electrons, unexpected behavior of ESR parame-
ters as functions of temperature and magnetic fields. Special attention is focused on the possible role of the Kon-
do effect for the ESR signal existence at low temperatures. 

PACS: 76.30.Kg Rare-earth ions and impurities; 
71.27.+a Strongly correlated electron systems; heavy fermions; 
75.40.Gb Dynamic properties (dynamic susceptibility, dynamic scaling). 
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1. Introduction

Heavy fermion compounds like 2 2YbRh Si  and 
2 2YbIr Si  have very peculiar magnetic, thermal, transport 

and spin kinetics properties. They are determined by the 
interplay of the strong repulsion of 4f electrons on the rare-
earth ion sites, their hybridization with wide-band conduc-
tion electrons and the influence of the crystalline electrical 
field. Experimental observations are consistent with a me-
tallic behavior with very heavy charge carriers having the 
properties of a Landau Fermi liquid (LFL). With decreas-
ing of temperature these materials experience the Kondo 
effect. At very low temperatures a long-range antiferro-
magnetic (AF) order appears with 70 mKNT =  in 

2 2YbRh Si , which is suppressed by an external magnetic 
field at the quantum critical point (QCP) with 

0.06 T,cH =  0.T →  Near the QCP at higher magnetic 
fields and up to surprisingly high temperatures, a new 
phase appears exhibiting non-Fermi-liquid (NFL) behav-
ior. In this temperature region also some features of ferro-
magnetic fluctuations were observed. The electrical resis-
tivity in 2 2YbRh Si  linearly increases with temperature and 
the Sommerfeld coefficient of the electronic specific heat 
diverges logarithmically upon cooling down to 0.3 K. The 
phase diagram based on these experimental findings is 
presented in Fig. 1 [1]. 

The discovery of electron spin resonance (ESR) in the 
2 2YbRh Si  compound at temperatures below the thermo-

dynamically determined Kondo temperature ( 25 K)KT =  

became a great surprise for the condensed matter physics 
community [2]. According to the common belief, based on 
the single ion Kondo effect, the ESR signal should not be 

Fig. 1. (Color online) Experimental phase diagram of 2 2YbRh Si  
for c⊥H  from [1]. KT  and H∗  mark the crossover from local
moment to heavy fermion behavior, derived from the zero-field 
specific heat and low-temperature magnetization. LFL and NFL 
denote the Landau Fermi-liquid and non-Fermi-liquid regions, 
respectively. The broad pink line specifies the position of crossover 
in the isothermal Hall resistivity, isothermal magnetostriction, 
magnetization and longitudinal resistivity. AF means the antiferro-
magnetic phase. 
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observable by at least two reasons. Firstly, the magnetic 
moments of the Kondo ions should be screened by the 
conduction electrons at temperatures below ;KT  secondly, 
the ESR linewidth was expected to be of the order of ,KT  
i.e. 500 GHz. The experimental results were completely 
opposite: at X-band (9.4 GHz) and 1.6 KT =  a linewidth of 
0.3 GHz was observed (see Fig. 2 from [3], see also [4]) 
and the ESR intensity corresponds to the participation of 
all Kondo ions with a temperature dependence following a 
Curie–Weiss law [5]. In addition, the angular dependence 
of the resonant magnetic field reflects the tetragonal sym-
metry of the crystal electric field at the position of the Yb 
ion with extremely anisotropic g factors 3.56,g⊥ =  

0.17g =


 at 5 KT =  [2]. Similar results were obtained 
later for 2 2YbIr Si  [6,7], and the main features of the ESR 
phenomenon were confirmed for 2 2YbRh Si  at very high 
frequencies up to 360 GHz [8]. This discovery stimulated 
considerable efforts, both theoretical and experimental, in 
order to understand the nature of the ESR existence and 
Kondo lattice systems in general. 

The first attempt was made by Zvyagin et al. using a 
model of metallic systems with multichannel Kondo mag-
netic impurities [9] and the Anderson lattice model [10] 
correspondingly, relating them to the actual compound on 
a qualitative level. Abrahams and Wölfle [11,12] studied 
the ESR in heavy-fermion systems using a Fermi-liquid 
description in the framework of the Anderson model, 
where the local magnetic moment is that of a quasi-
localized f electron. Schlottmann [13] suggested an expla-
nation of the ESR signal existence based on the Kondo 
lattice model with an isotropic interaction between the 

conduction electrons and the Kondo ions. However, both 
of these approaches do not take into account the strong 
spin orbital interaction and the crystal electric field (CEF) 
effects which result in the anisotropy of the Kondo interac-
tion similar to that of the Zeeman energy. On the contrary 
a semi-phenomenological theory presented by Huber [14] 
takes into account the anisotropy of the static and dynam-
ical susceptibilities. The author was able to describe the 
ESR data in Yb heavy-fermion compounds, especially 
their angular dependence, but the analysis did not touch the 
problem of the ESR signal existence, assuming it a priori. 

This paper presents a short review of magnetic properties 
and spin kinetics of a heavy-fermion Kondo lattice including 
a problem of the ESR existence. This analysis is based on a 
model of localized 4f electrons coupled to the wide-band 
conduction electrons as a starting point. It was found that the 
key ingredient of the ESR signal existence in a heavy-fer-
mion Kondo lattice in the NFL state is a formation of a col-
lective spin mode of quasi-localized f electrons and wide-
band conduction electrons even in a strongly anisotropic 
system. In opposite to a common belief, it was found that the 
Kondo effect can support the ESR existence. 

2. Crystal electric field and magnetic susceptibility 

The angle resolved photoemission spectroscopy 
(ARPES) measurements on 2 2YbRh Si  revealed a very 
narrow 4f band near the Fermi energy [15]. It is an addi-
tional argument confirming the quasi-localized nature of 
the f-electron motion (in the case of absolutely localized 
electrons their width of energy band as a function of the 
wave vector reduces to zero). So, it was reasonable to in-
vestigate the energy spectra, g factors of the ground state 
and the static magnetic susceptibility of the 3Yb +  ions in 
the 2 2YbRh Si  and 2 2YbIr Si  compounds with localized 
f electrons. A full solution of this problem was given in the 
papers [16–18]. Here we describe a scheme of calculations 
and the main results. 

A free 3Yb +  ion has the electronic 134f  configuration 
with one term 2 .F  The spin-orbit interaction splits the 2F  
term into two multiplets: 2

7/2F  with   7/2J =  and 2
5/2F  

with   5/2,J =  where J  denotes the total momentum 
= +J L S with L  and S as the orbital and spin momentum 

of the ion. The excited multiplet 2
5/2F  is separated from 

the ground one 2
7/2F  by about 1 eV. Since this value is 

much larger than the energy of the crystal electric field, we 
consider the ground multiplet only. The potential of the te-
tragonal crystal field for an ion can be written as 

 ( ) ( )0 0 0 0 4 4 0 0 4 4
2 2 4 4 4 4 6 6 6 6 .V B O B O B O B O B O= α +β + + γ +  (1) 

The crystal field parameters are .q
kB  The operators q

kO  and 
coefficients ,α  ,β  γ  are standard and given in the book by 
Abragam and Bleaney [19]. To define energy levels and 
wave functions of the 3Yb +  ion one has to diagonalize the 
matrix of the operator (1) on the states of the ground 

Fig. 2. Representative ESR spectrum in 2 2YbRh Si  at 1.6 KT =  
(from [3]). 
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multiplet 2
7/2.F  As a result, the crystal field splits the low-

er multiplet into four Kramers doublets. Inelastic neutron 
scattering (INS) experiments give the following values for 
the excited energy levels in 2 2YbRh Si : 1 17 meV,∆ =  

2 25 meV,∆ =  3 43 meV∆ =  relative to the ground doublet 
[20]. These results together with mentioned ARPES and 
ESR data gave an opportunity to find the single set of te-
tragonal CEF parameters for 3Yb +  ion in 2 2YbRh Si , pre-
sented in the Table 1 [18]. 

The Zeeman energy of the Yb ion ZJH  for the ground 
multiplet 2

7/2F  can be expressed via the total momentum 
of the ion. Using the Lande g factor 8/7,Jg =  we have 

 Z ( 2 ) ,J B i i J B i
i i

H g= µ = µ∑ ∑L + S H J H  (2) 

where H  is the external magnetic field and Bµ  is the Bohr 
magneton. The calculations of the static magnetic suscep-
tibility can be performed in a straightforward way. In the 
case of low enough temperatures B kk T ∆  we have the 
standard expressions for two following contributions to the 
magnetic susceptibility C VV:χ = χ + χ  

02
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∑
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Here N is the density of the Yb ions in the crystal. Indexes 
,n  ,ν  ′ν  denote the Kramers doublets and their correspond-

ing components; lν  is the ground Kramers doublet. The 
first term, (C),αβχ  corresponds to the Curie susceptibility 
proportional to the inverse temperature, while the second 
term, (VV),αβχ  corresponds to the Van Vleck susceptibil-
ity, which does not depend on temperature. According to 
the tetragonal symmetry from all the Curie constants sur-
vive two ones only: 0

||C  and 0 .C⊥  
Before a comparison of these results with an experiment, 

one should take into account their renormalization due to 
interaction of the Yb ions with conduction electrons and 
their indirect exchange interaction via these electrons, so-
called RKKY interaction. One could expect, that the tem-
perature dependence should become a Curie–Weiss type: 

 ||,
, ||,

||,
(VV).

C
T

⊥
⊥ ⊥

⊥
χ = + χ

+ θ

 (4) 

Here ||,⊥θ  are the Weiss constants. 

It is appropriate to mention at this point, that there is a 
different approach to calculations of the static magnetic 
susceptibility in these materials, so-called a locally quan-
tum critical scenario [21,22]. One of the hallmarks of this 
local criticality is a generalized Curie–Weiss law, which 
for a wave-vector-dependent magnetic susceptibility can 
be written in the form 

 ( ), CT
Tα α

χ =
+ θq

q  (5) 

with an exponent 1.α <  In particular, experimental results 
for the 2 2YbRh Si  magnetic susceptibility in the tempera-
ture region 0.3 K < T < 10 K was related to this scenario 
for 0,=q  with 0.6,α =  0θ =  [22]. 

Figure 3 shows the experimental results for the static 
magnetic susceptibility in 2 2YbRh Si  in the temperature 
region 0.02 K 3.6 KT< <  from [22] together with a fitting 
according formulas (4) and (5). The fitted constants in (4) 
were 6 3 12.31 10 m mol KC − −

⊥ = ⋅ ⋅ ⋅  and 0.22 K⊥θ =  (solid 
line). One can see that the temperature dependence of 
magnetic susceptibility is better described in the frame of a 
simple and transparent local model of the 3Yb +  ions in the 
crystal electric field in comparison with a sophisticated 
scenario of the local quantum criticality. However, in spite 
of the success of this entirely local approach for the static 
magnetic susceptibility of 2 2YbRh Si , such a model is in-
sufficient for a proper theoretical understanding of the dy-
namical susceptibilities as observed by ESR. In the follow-
ing sections this problem will be considered by taking into 
account an interaction of the 3Yb +  ions with wide-band 
conduction electrons and their collective response to the 
resonant magnetic alternating field (the bottleneck regime). 
This interaction will be considered in details, including a 
role of the Kondo effect in a formation of the collective 
spin modes. 

Table 1. Crystal electric field parameters q
kB  (meV) for 3Yb +  

ion in 2 2YbRh Si  [18] 

0
2B  0

4B  4
4B  0

6B  4
6B  

22.4 −6.6 ±29.6 −2.3 ±63.9 

 

Fig. 3. (Color online) Fitting of the magnetic ac-susceptibility 
data [22] by expression (4) (solid line) and by (5) (dashed line) 
with parameters given in the text (from [16]). 
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3. Dynamical magnetic susceptibility 

3.1. Theoretical model 

To consider the spin dynamics in the Kondo lattice un-
der discussion we use the model including the kinetic en-
ergy of conduction electrons, the Zeeman energy, the Kon-
do interaction between Yb ions and conduction electrons, 
and the coupling between the Yb ions via conduction elec-
trons (RKKY interaction) [23–30]. The physics of low-
energy spin excitations at temperatures 200 KT   can be 
described by the lowest Kramers doublet. It means that the 
Zeeman energy (2) has to be projected onto this state. 
Within the ground Kramers doublet, described by the wave 
functions of the type , ,l ↑ ↓  the Zeeman energy can be 
represented by the effective spin Hamiltonian with an ef-
fective spin 1/2:S =  

 
( ) ;

, 2 .

yx z
ZS x i y z ii

i

J x y J z

H g B S B S g B S

g g l J iJ l g g l J l

⊥

⊥

 = + +  

= ↑ + ↓ = ↑ ↓

∑




 (6) 

Here the z axis is along the crystal symmetry and we have 
introduced .BB H= µ  We can see that starting from the 
Zeeman energy with the isotropic Lande g factor, we came 
to the anisotropic expression. 

The Kondo exchange coupling of the rare-earth ion 
with the conduction electrons occurs due to the hybridiza-
tion of their wave functions at the ion site. An exchange 
integral can be written in the form 

 
2

* 4 1( , ) ( , ) ( ,..., ,..., )f i n
ii

eA ′ ′= ψ Ψ ×
′−∑∫k k r k r r r

r r
  

 4 1 1( , ) ( ,..., ,..., ) ... .i f n nd d d′ ′ ′×ψ Ψr k r r r r r r  (7) 

Here ( , )ψ r k  is the Bloch wave function of the conduction 
electrons. The wave function of the 4f electrons 4 fΨ  is 
represented by the determinant constructed from the one-
electron wave functions of the type 4 3( ) ( ).m

fR r Y r  Expand-

ing the Bloch functions and 1
i

−′−r r  in spherical harmon-
ics, one can obtain ( , )A ′k k  as an expansion in multipoles. 
The small parameter of this expansion is the value 

4 1,F fk r〈 〉   the product of the wave vector of the conduc-
tion electron at the Fermi surface and an average radius of 
the 4f electron. The Kondo interaction corresponding to the 
zero order of this expansion is isotropic and can be written 
in the form 

 ( )0 0 1 ,KJ i i J i i
i i

H A A g= = −∑ ∑S σ J σ  (8) 

where iσ  is the spin density of the conduction electrons at 
the ion site. The next terms of the expansion in multipoles 
are much smaller, and we neglect them. The projection of 

the isotropic Kondo interaction (8) involves the same ma-
trix elements of the total momentum J as in the case of the 
Zeeman energy. Hence, after projection onto the ground 
Kramers state the total Kondo interaction can be expressed 
via the g factors, given above 

 
( ) ||

0 || 0 ||

;

1 1
, .

y yx x z z
K i i i ii i

i

J J

J J

H J S S J S

g g
J A g J A g

g g

⊥

⊥ ⊥

 = σ + σ + σ  

− −
= =

∑
 (9) 

The same arguments can be used to reveal the anisotro-
py of the RKKY interaction between the Kondo ions. Alt-
hough this interaction appears in the second order of the 
Kondo interaction (8), it is convenient to consider it inde-
pendently. Starting with the isotropic exchange Hamiltoni-
an for two Kondo ions ex ex ,ij ij i jH I= J J  we arrive after 
projection to the effective anisotropic exchange interaction 

 
( )

( ) ( )

||
ex

22 ||ex ex
||

1 ;
2

, .

y yx x z z
ij i j i ji j ij

ij

ij J ij J ijij

H I S S S S I S S

I g g I I g g I

⊥

⊥
⊥

 = + +  

= =

∑
 (10) 

This expression was given earlier in [31]. As a matter of 
fact all these results are simply consequences of the well-
known Wigner–Eckart theorem. 

The kinetic energy of the conduction electrons and their 
Zeeman energy can be written as 

 
( )

, ;

e .j

c Z j
j

i
j

H c c H g

c c

+
ν ν σ σ

ν

′− +
′ ′ ′νν ν ν

′ ′νν

= ε =

=

∑ ∑

∑

k k k
k

k k r
k k

kk

Bσ

σ s
 (11) 

The energy band of conduction electrons is assumed sym-
metric about the Fermi surface, and their energy relative to 
the Fermi level εk  is running within limits ( , ).W W−  Here 

,c+νk  c νk  are the creation and annihilation operators of the 
conduction electrons with the wave vector and spin projec-
tion ( , ),νk  gσ  denotes their g factor, ′ννs  are the matrix 
elements of the electron spin operator for 1/2.s =  The 
Kondo interaction in this representation takes the form 

 ( )1
2K j j

j
H J S c c S c c+ + − +

⊥ ′ ′↑ ↓↓ ↑
′

= + +∑ k kk k
kk

  

 ( ) ( )
|| e .jiz

jJ S c c c c ′−+ +
′ ′↑ ↓↑ ↓

+ − 
k k r

k kk k  (12) 

Here .yx
j j jS S iS± = ±  

3.2. Spin dynamics 

The most detailed ESR experiments with the 2 2YbRh Si  
samples were performed for the static and alternating mag-
netic fields oriented perpendicular to the crystal symmetry 
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axis, since the g factor along this axis is very small 
( 0.2).g <


 So, as a first step we consider in detail the spin 
dynamics of the system for this case with the z axis along 
the static magnetic field. After a unitary transformation to 
a new coordinate system, the Hamiltonian takes the form 

0 ex:KH H H H= + +  

 

( )
( )

( )

0

ex

,

,

1 .
2

z z
i i

i
y yx x z z

K i i i i i i
i

y yx x z z
ij i j i j ij i j

ij

H c c B g S g

H J S S J S

H I S S S S I S S

+
ν ν ⊥ σ

ν

⊥

⊥

= ε + + σ

 = σ + σ + σ  

 = + +  

∑ ∑

∑

∑

k k k
k





 (13) 

The ESR response is given by the transverse (relative to z 
axis) dynamical susceptibility for a total magnetization of 
the Yb ions and conduction electrons 

 ( ) ( ); , , .sαβ
αβ

χ ω = χ ω α β = σ∑  (14) 

Partial susceptibilities ( )αβχ ω  can be represented by the 
Green functions 

2

2

, ,

, .

ss s

s

g S S g g S

g g S g

− + − +
⊥ σ ⊥ σ

− + − +
σ σ ⊥ σσ σ

χ = − χ = − σ

χ = − σ χ = − σ σ
 (15) 

Here A B  is the Fourier transform of the retarded 
commutation Green function 

 [ ]
0

exp ( ) ( ), (0) .A B i dt i t A t B
∞

= − ω∫  (16) 

,S  σ  are the total spin operators of Yb ions and conduction 
electrons; ( ),x yS S iS± = ±  ( )x yi±σ = σ ± σ , respectively, 
and ...  means the statistical average at temperature T. 

The Green functions can be calculated by the perturba-
tion method. As a result a set of coupled equations appears 
which is convenient to write in matrix form 

 
2

2

0

0

z
ss s ss s

zs s

g Sa a
a a g

⊥σ σ

σ σσ σ σσ σ

 
χ χ    =    χ χ   σ 

 

 (17) 

with 

 

2

2

, ,

, .

z
ss s ss s s

z
s s ss

ga a g S
g

g
a g a

g

⊥
σ ⊥ σ

σ

σ
σ σ σ σ σσ

⊥

= ω−ω +Σ = λ − Σ

= σ λ − Σ = ω−ω +Σ
  

  (18) 

Here ( )/ ,J J g g⊥ ⊥ σλ = +


 /4( ),zS g B T⊥= − + θ  
/2,z g Bσσ = − ρ  ρ is the conduction electron density of 

states at the Fermi surface. The resonance frequencies of 
Yb ions and conduction electrons, containing the first order 

Knight shifts due to the Kondo and RKKY interactions are 
given by 

 
( ) 4 ,

.

z z
s

z

g B J S

g B J S

⊥ ⊥

σ σ ⊥

ω = + σ + θ

ω = +
 (19) 

Here θ is the Weiss temperature due to the RKKY interac-
tion in a molecular field approximation 

 1 .
4 ij

j
Iθ = ∑   (20) 

The imaginary part of the kinetic coefficient Im( )ss ssΓ = Σ  
describes the spin relaxation of Yb ions toward conduction 
electrons, which remain in a thermodynamically equilibri-
um state (the Korringa relaxation rate). The Overhauser 
relaxation rate (conduction electrons relax toward Yb spin 
system, being in the equilibrium with the thermal bath) is 
described by the kinetic coefficient Im( ).σσ σσΓ = Σ  Calcu-
lations of these coefficients up to the third order in the 
Kondo interaction give [24] 

 
( )

( ) ( )

2 2 2 2
|| ||

2 2 2
|| ||

3 8 ln / ,
4

3 8 ln / ,
8

ss T J J J J W T

g T
J J J J W T

g T

⊥ ⊥

σ
σσ ⊥ ⊥

⊥

π  Γ = ρ + + ρ 
ρπ  Γ = + + ρ + θ

 (21) 

where W  is a half of the band width of the conduction 
electrons. Besides, for a correct analysis of a stationary 
solution one has to take into account the spin relaxation of 
Kondo ions and conduction electrons toward the thermal 
bath (“lattice”). Correspondingly, the relaxation rates ,ssΓ  
σσΓ  in equations (18) should be replaced by ss sLΓ +Γ  and 

Lσσ σΓ + Γ , respectively. 

4. Collective spin modes of localized moments and 
conduction electrons 

An equilibrium state approximation for the conduction 
electron spin system is not valid to study the ESR response 
of the samples with a high concentration of Kondo ions. It 
is especially the case for a Kondo lattice. Instead, one has 
to treat the coupled kinetic equations (17) for both magnet-
ic moments of Kondo ions and conduction electrons. Two 
additional kinetic coefficients sσΣ  and sσΣ  couple the ki-
netic equations of motion for the transverse magnetizations 
of localized moments and conduction electrons. Their im-
aginary parts represent additional relaxation rates: 

( ) ( ) ( ) ( )

( ) ( ) ( )2

1 ln / ,
4

1 ln / .
2

s

s

g T J J J J J W T
g T

TJ J J J J W T

⊥
σ ⊥ ⊥ ⊥

σ

σ ⊥ ⊥ ⊥

ρπ  Γ = + +ρ + + θ

π  Γ = ρ + +ρ + 

 

 

  (22) 

To study the ESR response of the total system we have to 
find solutions of the system (17). The poles of the total 
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dynamical susceptibility are determined by the condition 
0.ss s sa a a aσσ σ σ− =  As the result we obtain two complex 

roots: their real parts represent resonance frequencies, their 
imaginary parts represent the corresponding relaxation 
rates. We are interested in a solution close to the Kondo 
ion resonance frequency .sω  

The coupling between the two systems is especially im-
portant if the relaxation of conduction electrons toward the 
Kondo ions is much faster than to the lattice and the reso-
nant frequencies are close to one another (a relaxation 
dominated “bottleneck” regime): 

 ( ) ,ss sL L sσ σΓ Γ + Γ ω −ω . (23) 

In the case of an isotropic system and equal Larmor 
frequencies g g g⊥ σ= =



 the ESR linewidth in the bottle-
neck regime is greatly narrowed due to conservation of the 
total magnetic moment. In this case the operator of the 
total spin commutes with the isotropic Kondo interaction 
and the latter disappears from the effective relaxation rate 
(see the review by Barnes [32]). Similar conclusions can 
be made, if the real parts of the kinetic coefficient sσΣ  and 

sσΣ  satisfy the conditions (23) (a field dominated bottle-
neck regime). In the opposite case of a strongly anisotropic 
Kondo interaction the results in the second order in the 
Kondo interaction do not show any sufficient narrowing of 
the ESR linewidth in the bottleneck regime [33]. 

The third order of the perturbation theory for the relaxa-
tion rates contain terms proportional to ln( / ),W T  what 
gives a divergent contribution at low temperatures 0.T →  
It is especially important for the antiferromagnetic type of 
the Kondo interaction ( , 0).J J⊥ >



 The same terms appear 
in the scattering amplitudes of conduction electrons by mag-
netic impurities, what results in the Kondo effect in a resis-
tivity. This phenomenon is also of a crucial importance for 
the ESR experiments. To reveal it one has to improve the 
perturbation theory for the spin relaxation rates. 

5. Renormalization of the spin relaxation rates 

To develop a satisfactory theory in the low-temperature 
regime one has to remove the logarithmic divergences by 

summing somehow the higher order terms in the perturba-
tion expansion. Abrikosov [34] carried out a summation of 
the leading logarithmic terms for the resistivity applying 
the Feynman diagrams technique to the s–d model. Later 
Anderson [35] proposed another method known as “Poor 
Man’s Scaling” that allows one to extend the lowest order 
perturbation results to sum the leading order logarithmic 
terms on the basis of the Dyson equation. The main idea of 
the “Poor Man’s Scaling” approach is to take into account 
the effect of the high-energy excitations on the low energy 
physics by a renormalization of coupling constants. Here 
we use this idea starting from the second order of the per-
turbation theory in the operator form suggested by 
Bogolubov and Tyablikov which was developed for the 
case of a degenerate ground energy level [36]. We apply it 
for the Kondo interaction in the form (12) in the absence of 
the external magnetic field 

 ( )( ) ( )1
0 0 .K K K K KH P H PH P H E H PH P P−δ = − − − −   

  (24) 

Here P is a projecting operator of exited states onto the 
space of wave functions of the ground energy level. Substi-
tuting the explicit expression of the Kondo interaction, we 
obtain products of the Yb spin operators of the type .i jS Sβα  
In the case i j≠  we obtain the RKKY interaction which 
was already taken into account by exH  (10). In the case 
( , 1/2)i j S= =  these products can be reduced to linear 
forms of spin operators: 

 

( )
( ) ( )

2

2 2

1 1 1, , ,
2 2 4
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2
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z z z
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z z
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S S S S S S S

S S S S S S S

S S S S S

+ − − +

+ − − − −

+ + −

= + = − =

= = = − =

= − = −

 (25) 

The terms, which do not contain the Yb spin operators, can be 
related to renormalized conduction electrons energy. The rest 
operator of the second order contribution for the j-site is 
the following: 

_____________________________________________________ 

 

{ }
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 δ = + +   ε − ε

= −
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∑ ∑
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k k k kk k k k k k
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( )
( ) ( )

2

2 4 2 2 2 41 4 1 3 1 1 1 3..

,

2 .F c c c c c c c c c c c c+ + + + + + +
↓ ↑ ↓ ↑ ↓ ↓↑ ↑ ↓ ↑ ↓ ↑

= − − −

k

k k k k k kk k k k k k k k

 (26) 

________________________________________________ 

We reduce the fourfold products of the creation and an-
nihilation operators of conduction electrons to quadratic 

forms using the following type of approximations for terms 
diagonal in spin projections: 
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( )
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1 .
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≈ δ +

+δ =
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 (27) 

Here fk  is the Fermi function. For nondiagonal terms we 
make similar approximations 
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 (28) 

The result of these approximations is the following: 
_____________________________________________________ 
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 (29) 

________________________________________________

The operator structure of this result is exactly the same as 
the starting Kondo interaction (12). The divergent contri-
bution to Jδ  at 0T →  comes from the first term in the se-
cond line in (29). Taking into account the relation 
1 2 ( ) tanh( /2 ),f T− ε = ε  we make the following approxima-
tion for this function: tanh x x≈  ( 1),x <  and tanh 1x ≈  
( 1).x >  An approximate result for the sum in the second 
line in (29) is the following: 
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∫

∫ ∫

k

k kk

 (30) 

Here ρ is the density of states at the Fermi surface; the 
populated level is expected to be 2 2 .Tε <  The main con-
tribution comes from the second integral in the range 
2 .T W< ε <  The other terms can be neglected in a compar-
ison with the divergent one. As the result we have the fol-
lowing equations for the contribution of the second order: 

 ||2
|| ||ln , .

2
JWJ J J J

T J⊥ ⊥
⊥

 δ = ρ δ = δ 
 

 (31) 

As the next step we divide the conduction electrons band 
into the low and high energy states 

 0 , ,W W W< ε < < ε <k k  (32) 

where ,W  W  are the initial and the running half of the 
bandwidth, respectively. Using the Anderson’s idea, we 
want to incorporate the contribution of the high-energy 
levels into renormalized values of ,J⊥  ||.J  According to 
(31) it gives the following relations: 

 
2 2
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|| ||

ln ln ln ,
2 2

.

W W WJ J J
T T W

J J J J

⊥ ⊥

⊥ ⊥

     δ = − = ρ     
     

δ = δ

 (33) 

These two equations represent the scaling law. From calcu-
lations (30) it follows that equations (33) are valid only for 
the range (2 ).T W W< <  The projection of the original 
Kondo interaction (12) on the low-energy states yields a new 
Hamiltonian of the same operator structure, but with renor-
malized coefficients. For a solution of the equations (33) we 
start from the second one. A simple integration gives 

 2 2
|| const.J J⊥ − =  (34) 

This relation was obtained first by Anderson for 0T =  [35]. 
Since this equation does not depend on the value of the 
bandwidth, we choose the original values: 2 2

||const .J J⊥= −  
As the next step we take a small difference .W W W− = δ  It 
is convenient to introduce dimensionless values U J⊥ ⊥= ρ  
and || ||.U J= ρ  Then according to (33) and (34) we have 
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W W WU U U
W W
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 + δ δ
δ = ≈ 

 

− = = ρ −

 (35) 

After substitution of the second equation into the first 
one we obtain a closed differential equation, which can be 
easily integrated: 
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 (36) 
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Here U


  is the final result of the renormalization process. 
Let us introduce the values 

|| ||
GK

0 0 0

1arccot , exp arccot .
2

U UWT
U U U

    
ϕ = = −          



 (37) 

Then the final result of the renormalization process can be 
presented in the following form: 

 || 0 0
1cot , .

sin
U U U U⊥= ϕ =

ϕ
   (38) 

Since the Zeeman Hamiltonian of Yb ions (6) has the same 
operator structure as the Kondo interaction (9) with param-
eters, satisfying the relation || ||/ / ,g g J J⊥ ⊥=  we accept the 
same relation between the renormalized g factors 

 || || ||/ / / .g g J J U U⊥ ⊥ ⊥= =   

   (39) 

The characteristic temperature GKT  is obviously independ-
ent of the initial and the running values of parameters, repre-
senting a universal energy scale to govern all the low tem-
perature physics involving the ground Kramers doublet. All 
physical quantities can be expressed in terms of the ratios 

GK( / ).T T  For the isotropic case with g g⊥ =


 the character-
istic temperature GKT  reduces to the well-known formula 
for the Kondo temperature iso

GK ( /2)exp ( 1/ ).T W J= − ρ  
This formula follows from the logarithmic approximation; 
a more accurate result for the isotropic case is 

1/2( ) exp ( 1/ )KT JW J− ρ  [37]. It is appropriate to mention 
that the scaling equations (33) can be represented in an 
alternative form, if to introduce a variable ln ( / ).t W W=  
Then from (33) we have 

 

2 2
|| ||

|| 2
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WU U U t U U U t
W

dU dUU U U
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⊥ ⊥ ⊥ ⊥

⊥
⊥ ⊥

δ
δ = = δ δ = δ

= =

 (40) 

In this form the scaling equations were given by Belov 
et al. [25]. 

The temperature-dependent parameters are logarithmi-
cally divergent at GK:T T→  || GK, 1/ ln ( / ),U U T T⊥

 

  the 
perturbative scaling approach begins to break down. Con-
sequently, all results derived by this method are only valid 
for temperatures above GK.T  

6. The bottleneck regime in presence of the Kondo effect 

Using the expressions (38) for the temperature-
dependent Kondo couplings we find the renormalized ki-
netic coefficients 
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 (41) 

One can see that all kinetic coefficients logarithmically 
diverge at GK:T T→  to the leading order in logarithmic 
terms they are of the form 
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 (42) 

One could think that such a behavior confirms the common 
belief that the ESR linewidth of Kondo ions is expected to 
be too large for its detection. However, the coupling be-
tween two spin systems makes the situation quite different. 
It is interesting to analyze a solution of the coupled equa-
tions (17) under the condition of the bottleneck regime 
(23), taking into account the renormalization of kinetic 
coefficients. The relaxation rate of the collective spin mode 
with a frequency close to the Kondo-ion resonance now is 
the following: 

 

eff eff
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eff eff
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 (43) 

It is important to consider the asymptotic behavior of an 
effective Korringa relaxation rate eff

ssΓ  and an effective 
spin relaxation rate of conduction electrons to the lattice 

eff
LσΓ  at temperatures approaching to GK.T  In this case their 

expressions are essentially simplified to be written explicit-
ly as functions of temperature: 
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( )

eff 4 2
0 GK

eff

ln / ,
8

2
.

ss

L L

U T T T

g
T

g
σ

σ σ
⊥

π
Γ =

Γ = ρ + θ Γ
 (44) 

This result is remarkable: instead of being divergent ac-
cording to (42), the effective Korringa relaxation rate is 
greatly reduced and goes to zero at GK.T T→  Although the 
Kondo interaction is strongly anisotropic, the Kondo effect 
leads to the common energy scale GKT  regulating the tem-
perature dependence of different physical quantities. As a 
result of this common energy scale, all divergent terms in 
the kinetic coefficients (41) experience their complete mu-
tual cancelation in the collective spin mode even in the 
case of a strongly anisotropic system. The effective relaxa-
tion rate of the conduction electrons to the lattice is also 
greatly reduced, becoming proportional to temperature 
similar to the usual Korringa relaxation rate. This reduction 
supports the conditions for the bottleneck regime (23). 

It is reasonable to mention that the divergent physical 
values appear due to approximate calculations. Neverthe-
less these divergences indicate strongly increasing values 
and stimulate more accurate calculations. At the same time 
we can conclude that although the used scaling procedure 
did not remove divergent terms from the initial relaxation 
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rates (22), it was able to remove them from the relaxation 
rates of the final solution for the collective modes having 
real physical sense. 

Concerning the broadening of the ESR linewidth which 
is represented by the kinetic coefficient ,sLΓ  one could 
expect an obvious contribution from the distribution of 
effective local magnetic fields due to spin-spin interactions 
of the Yb ions. In particular, the usual magnetic dipole-
dipole interactions yield approximately loc 700 Oe,H∆ ≈  
while the observed ESR linewidth in 2 2YbRh Si  at the X 
and Q bands is ESR 200 OeH∆ ≈  at 5 K.T =  Therefore, it 
is evident that some narrowing mechanism for these type 
of contributions should exist. At the same time, it is well 
known that the broadening of the ESR line by the distribu-
tion of local fields can be reduced in the bottleneck regime 
due to fast reorientation of the Kondo ion spins caused by 
the Korringa relaxation [32], the more as being greatly 
increased due to the Kondo effect. Another reason for the 
relaxation rate sLΓ  can be related to the spin-phonon inter-
actions. At temperatures above a few K the main contribu-
tion comes from the two-phonon processes. The Orbach 
process via the excited energy level at a given crystal field 
splitting ∆ yields the temperature dependence 

 [ ] 1Orb exp ( / ) 1 .sL T −Γ ∆ −  (45) 

This type of contribution does not need any scaling procedure. 
In the case of the ESR resonance frequency of the col-

lective mode, the situation is somewhat different. For a 
single Kondo ion it is well known that besides the usual 
Knight shift of the ESR resonance frequency, the Kondo 
effect results in a divergent logarithmic term. The same 
happens with the resonance frequency of the conduction 
electrons. We have found that all divergent parts of the 
ESR resonance frequency cancel each other in the collec-
tive mode similar to the relaxation rate described above. 
However, the RKKY interaction provides an additional 
local field at the Yb ion and the Weiss constant θ in the 
spin susceptibility. In the molecular field approximation 
involving both the Kondo and RKKY interactions, θ be-
comes also a subject of the Kondo renormalization. As a 
result, the ESR resonance frequency contains a divergent 
logarithmic term even for the collective spin mode. For the 
corresponding effective g factor effg⊥  the following relation 
was obtained for the magnetic field perpendicular to the 
symmetry axis [23]: 

 0eff
0

11 1 arccot cot .
2

Ug U U
T Ug

⊥

⊥

   θ  = + + + − ϕ   
     





 (46) 

Next we consider the variation of the ESR parameters 
with the orientation of the microwave magnetic field hav-
ing the angle η relative to the plane perpendicular to the c 
axis [25]. The static magnetic field is still perpendicular to 
the c axis and microwave field. It was found that the g fac-
tor g⊥ and the relaxation rates (41) do not depend on the 

orientation of the microwave magnetic field. It is obvious 
that the relaxation rate of the collective spin mode given 
by (43) and the resonant frequency are also independent of 
the angle .η  

Concerning the ESR intensity, the situation is quite dif-
ferent. It is known that the intensity is determined by the g 
factor component along the direction of the microwave 
magnetic field: 2 2 2 2

|| sin cos .I g g⊥η+ η  Taking into ac-
count the renormalization of the g-factor components in 
accordance with (39), it was obtained for renormalized 
ESR intensity 

 ( ) ( ) 2 2, 0, 1 sin sin ,I T I T  η = − ϕ η 
   (47) 

where ϕ  is defined by (37). The ratio (0, ) ( /2, )I T I T= π   is 
reduced to 21/ cos ϕ  instead of the values 2 2

||/ 14g g⊥ ≈  and 
2 2

||/ 400g g⊥ ≈  in the cases of 2 2YbIr Si  and 2 2YbRh Si , re-
spectively. 

It is reasonable to expect, that since the all divergent 
terms at GKT T→  were mutually canceled in kinetic coef-
ficients of the collective modes, the obtained result can be 
valid even at temperatures close to the GK.T  

7. Experimental ESR results 

As a matter of fact, the ESR measurements with very 
interesting results were performed first at every step and 
then have stimulated the theoretical investigations de-
scribed in the previous sections. At first, we use the diver-
gent logarithmic term in the g factor (46) to reveal the 
characteristic temperature GK.T  As the starting value for 
the temperature dependence of the g factor was taken tem-
perature-independent experimental result at high tempera-
tures 3.65,g⊥ =  the density of states can be related to the 
band width of the conduction electrons as 1/ .Wρ =  The 
result of the fitting is given in Fig. 4(a) with 0 0.18,U =  

0.2 Kθ ≈  and GK 0.36 K;T =  the latter is by two orders of 
magnitude smaller than the Kondo temperature KT  derived 
thermodynamically [38] and by transport measurements [39]. 
The revealed value GKT  was used to fit the temperature 
and frequency dependences of the ESR linewidth with help 
of equations (43) in order to see whether the theory is self-
consistent: 

 Orb
theor coll const.sLΓ = Γ + Γ +  (48) 

Here const represents the local field distribution which is 
greatly reduced as discussed above. The results are given 
in Fig. 4(b). The fitting of the temperature dependence of 
the ESR linewidth gave 0U  about the same and 198 K.∆ =  
The latter coincides with the first excited energy level of 
the Yb ion [20], confirming that the Orbach processes 
dominate in the spin-phonon relaxation. Having the value 

0 0.18,U =  we can now estimate the Korringa relaxation 
rate without the bottleneck regime. According to equa-
tion (41) this value yields 50 GHzssΓ ≈  at 5 K. Such 
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a linewidth would leave no chance to observe the ESR 
signal, neither at X or Q bands nor at higher frequencies 
without formation of the collective spin mode. 

Next we compare the developed theory with the exper-
imental data for the case of an arbitrary orientation of the 
microwave field with respect to basal plane [25]. The static 
field was always perpendicular to the c axis (η is varying). 
The resonant frequency and the relaxation rate were pre-
dicted to be independent of the angle what is in full agree-
ment with experimental data of 2 2YbRh Si  and 2 2YbIr Si  
(see Fig. 5). The angular dependence of the ESR intensity 
is fitted with the theoretical expression (47). The results of 

the fitting are given in Fig. 5: the intensity of both compounds 
can be described with the same value 2sin 0.5.ϕ ≈  The pa-
rameters 0U  and GKT  could not be determined unambiguous-
ly because the experimental data on the angular dependence 
of the ESR intensity were obtained only for 5 K.T =  

8. Concluding remarks 

The discovery of the electron spin resonance in the 
Kondo lattice with heavy fermions gave not only new op-
portunities to study these interesting materials but also 
stimulated new approaches in understanding of their com-
plicated properties. It is evident that the conception based 
on the single Kondo ion effect does not work in the case of 
Kondo lattice. It is remarkable that the Kondo effect, being 
responsible for a suppression of the ESR signal on para-
magnetic impurities in a metal at low temperatures, crucially 
supports it in the Kondo lattice due to the formation of the 
collective spin mode with a dramatic narrowing of the ESR 
linewidth. It happens even in the case of a strongly aniso-
tropic Kondo interaction in contradiction with the case of a 
small concentration of the Kondo ions as impurities. 

It is interesting to note that there is a deep similarity of 
this phenomenon with another one related to the ESR on 
paramagnetic impurities in superconductors. The first ob-
servations of the ESR have shown a sharp increase of the 
spin relaxation rate after transition into the superconduct-
ing state [40,41]. It was in a full agreement with results of 
the nuclear magnetic resonance (NMR) and the Bardeen–
Cooper–Schrieffer (BCS) theory. The well-known Hebel–
Slichter peak appears due to increasing of the spin relaxa-
tion rate to conduction electrons in consequence of sharp 
increasing of their density of states at the energy gap near 
the Fermi level and a coherence factor of the Cooper par-
ing. However, very soon an unexpected phenomenon was 
observed by ESR on erbium impurities in lanthanum: the 
ESR linewidth was sharply narrowed instead of an increase 
after the transition to the superconducting state [42]. In 
order to understand this phenomenon it was suggested that 
an increase of the coupling between the spin systems of 
impurities and superconducting electrons resulted in a tran-
sition into the bottleneck regime [43]. This idea was 
proved later by the direct analysis using the Feynman dia-
gram technic [44]. In the case of the NMR the bottleneck 
regime cannot appear because of a great difference of elec-
tron and nuclear magnetic moments. As a matter of fact the 
phenomenon of the ESR narrowing in superconductors and 
in the Kondo lattice have a common nature: a formation of 
a collective modes of two spin subsystems due to enhanced 
coupling between them caused on the one hand by a transi-
tion to the superconducting state and by the Kondo effect 
on the other hand. 

It is appropriate to mention some questions still waiting 
their elucidation. In particular, it is not clear how the char-
acteristic temperature for the ground Kramers doublet GKT  

Fig. 4. (Color online) Temperature dependence of Q band (a) g 
factor and (b) ESR relaxation rate Γ  of 2 2YbRh Si  (open cir-
cles) from [23]. Solid lines denote data fitting: effg⊥  (Eq. (46)) 
and theorΓ  (Eq. (48)) with two contributions collΓ  and Orbach

sLΓ  
as indicated. Inset: frequency dependence of theorΓ  (solid line) 
fitted to Γ  (T = 10 K). 

Fig. 5. Variation of the ESR intensity of 2 2YbRh Si  and 

2 2YbIr Si  by changing the angle η  only and keeping the static 
field always perpendicular to the c axis (from [25]). The solid 
lines denote data fitting according to Eq. (47) with the ratio 

( )/ (0).I Iη   The upper and lower graphs show the corresponding 
linewidth H∆  and the g factor ,g⊥  respectively. Details on the 
intensity determination are given in [7]. 
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relates to the thermodynamical Kondo temperature .KT  An 
analysis of the phase transition from the NFL state to the 
AFM state needs additional ESR experiments at very low 
temperatures and magnetic fields and theoretical efforts. 
There is no common understanding of the phase transition 
from the AFM state to the LFL state near the QCP. 
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