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A theoretical investigation is carried out for plasmons in a weakly disordered array of quantum
wires, consisting of a finite number of quantum wires arranged at an equal distance from each
other. The array of quantum wires is characterized by the fact that the density of electrons of one
«defect» quantum wire was different from that of the other quantum wires. It is assumed that the
defect quantum wire can be arranged at an arbitrary p osition in the array. The existence of a local
plasmon mode, whose properties differ from those of usual modes, is found. It is pointed out that
the local plasmon mode spectrum is slightly sensitive to the position of the defect quantum wire in
the array. At the same time the spectrum of usual plasmon modes is shown to be very sensitive to
the position of the defect quantum wire.

PACS: 73.20.Mf, 78.67.Lt

1. Introduction

Quasi-one-dimensional electron systems (1DESs) or
quantum wires (QWs) are artificial structures in which
the motion of charge carriers is confined in two trans-
verse directions but is essentially free (in the effective
mass sense) in the longitudinal direction [1–3].
Usually QWs are produced by adding an additional
one-dimensional confinement of a two-dimensional
electron system (2DES). This additional confinement
is, in general, weaker than the strong confinement of
the original 2DES [4]. One of the motivations for
studying QWs is the fact that the charge-carrier mobil-
ity is higher than in the 2DESs on which they are built.
The reason for this is that the impurity content and dis-
tribution around QWs can be selectively controlled,
producing enhanced mobility [5].

Collective charge-density excitations, or plasmons,
in QW are objects of physicists’ great interest.
Plasmons in QW have been investigated previously
both theoretically [5–9] and experimentally [10–12].
In those papers it was shown that plasmons in QWs
possess some new unusual dispersion properties. First,
the plasmon spectrum depends strongly on the width
of the QW. Second, 1D plasmons are free of Landau
damping [6,9] in the whole range of wave vectors.

From the point of view of practical application the
so-called weakly disordered arrays of low-dimensional
systems are the objects of interest. Recently the
plasmons in weakly disordered superlattices, formed
of a finite number of equally spaced two-dimensional
electron systems, have been investigated theoretically
[13–16]. The weakly disordered superlattice is charac-
terized by the fact that all 2DESs possess equal elec-
tron densities except one («defect») 2DES, whose
electron density differs from that of the other 2DESs.
It was found that the plasmon spectrum of such a
superlattice contains a local plasmon mode, whose
properties differ from those of other plasmon modes.
The existence of a local plasmon mode is completely
analogous to the existence of the local phonon mode,
first obtained by Lifshitz in 1947 for the problem of
the phonon modes in a regular crystal containing a sin-
gle isotopic impurity [17]. Notice that practically all
the electromagnetic energy flux of plasmons corre-
sponding to the local mode is concentrated in the vi-
cinity of the defect 2DES. At the same time, the op-
portunity of using the peculiarities of the plasmon
spectrum to determine the parameters of defects in the
superlattice was pointed out in Ref. 16.

This paper deals with the theoretical investigation
of plasmons in a finite weakly disordered array of
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QWs, containing one defect QW whose one-dimen-
sional density of electrons differs from that of the
other QWs. We suppose that the defect QW can oc-
cupy an arbitrary position in the array. We show that
the plasmon spectrum in the weakly disordered array
of QWs is characterized by the existence of a local
plasmon mode whose electromagnetic field is localized
in the region of defect QW. We find that the position
of the defect QW in the array does not affect strongly
the spectrum of the local plasmon mode but it exerts a
significant influence on the spectrum of other plasmon
modes. At the same time, when the defect QW is ar-
ranged inside the array, the plasmon spectrum con-
tains modes whose dispersion properties do not depend
on the value of the electron density in the defect QW.

This paper is organized as follows. In Sec. 2 we de-
rive the dispersion relation for plasmons in a weakly
disordered array of QWs. In Sec. 3 we present the re-
sults of a numerical solution of the dispersion relation
and discuss the dispersion properties of plasmons in
the weakly disordered array of QWs. We conclude the
paper with a brief summary of results and possible ap-
plications (Sec. 4).

2. Dispersion relation

We consider a weakly disordered array of QWs
consisting of a finite number M of QWs, arranged at
planes z = ld (l = 0,..., M – 1 is the number of QW, d
is the distance between adjacent QWs). We suppose
that all QWs possess equal 1D electron densities N
except one defect QW whose electron density is equal
to Nd. So, the density of electrons in lth QW can be
expressed as N N N Nl d pl� � �( )� . Here p is the
number of defect QW arranged at the plane z = pd,
and �pl is the Kronecker delta. The QWs are consid-
ered to be placed in a uniform dielectric medium with
dielectric constant �. We use such a simple model (in
which the dielectric constants of the media inside and
outside the array are equal) to avoid the appearance of
a surface plasmon mode. We consider the motion of
electrons to be free in the x direction and considerably
confined in the directions y and z. At the same time we
suppose that the width of all QWs is equal to a in the
y direction and equal to zero in the z direction.

In other words, each QW can be represented as a
square quantum well with infinite barriers at y = – a/2
and y = a/2 and a zero thickness in the z direction.
Meanwhile we take into account only the lowest
subband in each QW. In that case the single-particle
wave function for the electron can be written in the
form:
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Here E0 is the energy of the subband bottom (for sim-
plicity we may put E0 = 0), and m* is the effective
mass of the electron.

To obtain the spectrum of collective excitations we
start with a standard linear-response theory in a ran-
dom phase approximation. To obtain the collective ex-
citation spectrum we consider �n(r), which is the de-
viation of the electron density from its equilibrium
value. After using the standard linear-response theory
and the random phase approximation, �n( )r can be re-
lated to the perturbation as
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 is the Fermi distribution function,
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are the external and Hartree potentials, respectively.
For our system Eq. (2) can be rewritten in the form
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Note that the Hartree potential can be expressed in
terms of the perturbation [6] as

V d
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Using equations (3) and (5), we get thr following
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and K0(x) is the zeroth-order modified Bessel func-
tion of the second kind. Collective excitations of the
QW array exist when Eq. (6) has a nonzero solution
VH in the case when the external perturbation
Vex � 0. Hence, the intrasubband plasmon dispersion
relation takes the form

det| |, ,�l l
l

l lU�
�

�� �� 0. (7)

It should be noted that for M = 2 the dispersion rela-
tion (7) coincides with the dispersion relation for
plasmons in the double-layer QW system obtained
in [6].

3. Numerical results

Figure 1 shows the intrasubband plasmon spectrum
(solid lines) in a weakly disordered array of QWs in
the case p = 0. The y axis gives the dimensionless fre-
quency 	 	0 (	 �0

2 2 22� Ne m a* is the plasma fre-
quency), and the x axis gives the dimensionless wave
vector q ax

* (a m e* *� ��2 2 is the effective Bohr ra-
dius). For comparison the dispersion curves for the
plasmons in a single QW with electron densities Nd
and N are depicted by dashed curves 1 and 2, respec-
tively. As the model of QW we use a GaAs
heterostructure with the effective mass of electrons
m* = 0.067m0 (m0 is the free electron mass) and the di-
electric constant � = 12.7.

As is seen from Fig. 1, the intrasubband plasmon
spectrum in the finite array of QWs contains M
modes. Thus, the number of modes in the spectrum is
equal to the number of QWs in the array [13]. Notice
that with an increase of the wave number qx the
plasmon frequency 	 increases likewise.At the same

time, the propagation of plasmons in the weakly disor-
dered array of QWs is characterized by the presence of
a local plasmon mode (LPM). In the case where the
electron density in the defect QW is less than the elec-
tron density in the other QWs (N Nd � ), the LPM
lies in a lower-frequency region in comparison with
the usual plasmon modes (Fig. 1,a). Accordingly, if
N Nd � , the LPM lies in a higher-frequency region in
comparison with the usual modes (Fig. 1,b) [13]. It
should be emphasized that in the limit q dx � �, when
the Coulomb interaction between electrons in adja-
cent QWs is neglible, the LPM dispersion curve is
close to the dispersion curve for the plasmons in a sin-
gle QW with electron density Nd. In this case the dis-
persion curves for usual plasmon modes in the limit
q dx � � are gradually drawn together and are close
to the dispersion curve for the plasmon in a single QW
with electron density N.

Now we consider the dependence of the plasmon
spectrum on the value of the 1D electron density in
the defect QW. Figure 2 presents the dependence of
the plasmon frequency on the ratio N Nd in the case
of a fixed value of the wave vector qx and for different
positions of the defect QW in the array. As is seen
from Fig. 2, the frequency of the LPM increases when
the value of ratio N Nd is increased. At the same time
the spectrum of the usual plasmon modes is character-
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Fig. 1. Dispersion curves of plasmons (solid curves) in a
weakly disordered array of QW with parameters M = 5, d =
= 15 a*, a = 20 a*, p = 0 for two values of the electron den-
sity in the defect QW: Nd/N = 0.5 (a), Nd/N = 1.5 (b).



ized by these features. For p = 0 (Fig. 2,a) as the value
of the ratio N Nd is increased, the frequency of all
the usual plasmon modes increases as well. In other
words, for N Nd � all of the dispersion curves lie in a
lower-frequency region as compared with the disper-
sion curves of plasmons in the QW array with equal
electron densities in all the QWs (ordered array of
QWs). Correspondingly, in the case N Nd � , all the
dispersion curves of plasmons in the weakly disor-
dered array of QWs lie in a higher-frequency region in
comparison with the plasmons in the ordered array of
QWs. However, when p = 1 (Fig. 2,b) the frequency
of one of the usual plasmon modes (curve 2) becomes
practically independent of the ratio N Nd . In the case
p = 2 (Fig. 2,c) there are already two plasmon modes

(curves 1 and 3) which possess such a distinctive fea-
ture.

Figure 3 presents the dependence of the plasmon
frequency 	 	0 upon the number of the defect QWp,
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Fig. 2. Dependence of the plasmon frequency upon the ra-
tio Nd/N when qxa* = 0.04, M = 5, d = 15 a*, a = 20 a*
and for three cases of the defect QW position in the ar-
ray: p = 0 (a), p = 1 (b), p = 2 (c).
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ent values of the amount of QWs in the array: M = 7 (a),
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for different values of M. This dependence is depicted
by separate dots. Solid horizontal lines denote the
plasmon mode frequencies in the ordered array of
QWs. As can be seen from Fig. 3, the LPM spectrum
is weakly dependent upon the position of the defect
QW in the array. However, the spectrum of usual
plasmon modes is more sensitive to the position of the
defect QW in the array. Notice that at every value of
M, when the defect QW is arranged inside the array of
QWs (1 � p � M – 2), the usual plasmon mode spec-
trum contains modes (shown by five-point stars),
whose frequency does not depend upon the value of
the electron density in the defect QW. At the same
time, the maximum quantity of such modes is ob-
served in the case where the defect QW lies at the very
center of the array.

To explain the above-mentioned features of the
plasmon modes, we consider the spatial distribution of
the Hartree potential VH. Figure 4 shows the depend-
ence of the Hartree potential VH upon the z coordi-
nate for the LPM (solid curves). This dependence is
presented for different positions of the defect QW in
the array. The y axis gives the dimensionless Hartree
potential V q z V qH

x
H

x( , ) ( , ), ,0 0 0 , and the x axis
gives the dimensionless z coordinate z/a*. For com-
parison the spatial distribution of the Hartree poten-
tial for the lowest-frequency plasmon mode in the or-
dered array of QWs is depicted by dashed curves.
Vertical dash-and-dot lines denote the positions of
QWs in the array. Here the vertical solid bold line
corresponds to the position of the defect QW in the ar-
ray. As is evident from Fig. 4,a,b,c the absolute value
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Fig. 4. Spatial distribution of the Hartree potential
VH(qx, 0, z) over the z coordinate for the local plasmon
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VH(qx, 0 ,z) over z coordinate for mode 4 (see Fig. 2) in
the case when qxa* = 0.05, Nd/N = 0.5, M = 5, d =
= 15 a*, a = 20 a* and for different positions of the defect
QW in the array: p = 0 (a), p = 1 (b), p = 2 (c).



of the Hartree potential in the vicinity of the defect
QW exceeds considerably the absolute values of the
Hartree potentials in the vicinity of the other QWs.
This implies that practically the whole flux of LPM
electromagnetic field energy is concentrated in the vi-
cinity of the defect QW. The weak dependence of the
LPM spectrum on the position of the defect QW can
be accounted for by that peculiarity.

To explain the fact that usual plasmon mode spec-
tra are sensitive to the position of the defect QW in
the array, let us consider, for example, the spatial dis-
tribution of the Hartree potential for mode 4 (see
Fig. 2). This dependence is represented in Fig. 5 for
different positions of the defect QW in the array. The
dashed curves present the distribution of the Hartree
potential for mode 4 in the case of the ordered array of
QWs. As one can see from a comparison of Fig. 5,a,b,c,
the spatial distribution of the Hartree potential
changes when the position of the defect QW in the ar-
ray is varied. Thus, the changing of the Hartree poten-
tial causes the variation of the plasmon frequency.

Figure 6 presents the spatial distribution of the
Hartree potential for plasmon modes whose frequen-
cies are slightly sensitive to the value Nd. As is seen
from Fig. 6,a,b,c, these plasmon modes possess one
particular feature. Thus the spatial distribution of the
Hartree potential corresponding to the spectra of these
modes in a weakly disordered array of QWs either dif-
fers insignificantly from that in the ordered array of
QWs (Fig. 6,a) or coincides with it exactly (Fig. 6,b,c).
At the same time, the absolute value of the Hartree
potential in the vicinity of the defect QW is neglible.
Thus, in that case the value of the electron density in
the defect QW does not exert a substantial effect on
the plasmon spectrum.

4. Conclusion

In conclusion, we have calculated the plasmon
spectrum of a finite, weakly disordered array of QWs
which contains one defect QW. It is found that a local
plasmon mode whose properties differ from those of
other modes exists in the plasmon spectrum. We point
out that the LPM spectrum is slightly sensitive to the
position of the defect QW in array. That phenomenon
can be explained by the fact that practically the whole
flux of the LPM electromagnetic energy is localized in
the vicinity of the defect QW. At the same time, the
position of the defect QW exerts an influence on the
spectrum of usual plasmon modes. It is shown that un-
der certain conditions there can exist plasmon modes
whose spectrum does not depend upon the density of
electrons of the defect QW. The spatial distribution of
the Hartree potential for those modes has the feature
that the absolute value of the Hartree potential in the

vicinity of the defect QW is neglible. Therefore, the
defect QW does not exert a significant influence on
the dispersion properties of the plasmon modes.

To conclude, it should be emphasized that the
above-mentioned features of the plasmon spectra can
be used for the diagnostics of defects in QW struc-
tures. Hence, the LPM properties can be used for de-
termination of the electron density in the defect QW.
At the same time, the properties of the usual plasmon
modes can be used to determine the position of the de-
fect QW in the array.
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