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The results of numerical simulation of Rayleigh—Benard convection in 3He near the thermody-
namic critical point are presented. The mathematical model including the full Navier—Stokes
equations with two-scale splitting of the pressure and the van der Waals equation of state is ap-
plied. The known experimental data on 3He are used in simulations. On the basis of the calibration
laws the «real» Rayleigh and Prandtl numbers are estimated. It is shown that one should agree
these «real» criteria of similarity in the model and physical media to approach results of simula-
tions to experiments. The Rayleigh number characterising the convection onset is defined from ob-
tained numerical data. This number is shown to be in a good agreement with known experimental
and theoretical values.

PACS: 05.70.Ln

1. Introduction

In the vicinity of the thermodynamic critical point
media named as near-critical fluids display specific
thermodynamic and kinetic properties [1,2]. They
posses an asymptotic discrepancy of the specific heat
at constant pressure, coefficient of isothermal com-
pressibility, and thermal expansion coefficient. In the
other hand, they have the heat diffusion coefficient
tending to zero. These abnormal properties lead to
specific heat transfer and interesting hydrodynamic ef-
fects as compared with a perfect gas.

We will simulate numerically thermal gravi-
ty-driven convection on the basis of the hydrodynamic
consideration with the van der Waals equation of
state. The classical problem of steady-state Ray-
leigh—Benard convection (with bottom heating)
well-known for a perfect gas [3] will be solved for a
near-critical fluid and will be compared with experi-
mental data. Parameters of numerical simulation will
be estimated on the basis of the physical properties of
helium and the approach of the model fluid to the real
one will be fulfilled. The Rayleigh—Benard convec-
tion was simulated in intensive near-critical flows [4],
but we will investigate the onset of convection.

2. Mathematical model of a non-perfect gas

The full Navier—Stokes equations and the equation
of energy for a non-perfect gas with the van der Waals
equation of state are applied. Two-scale splitting of
the pressure into volume-average and dynamic parts is
used [5]. To close the set of equations the integral
mass balance is involved. The governing equations in
dimensionless form are as follows [6]:
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P T b a� 	 	� � �( )1 2, a � 9 8, b � 1 3, (4)

P P M p� � �0
2 , (5)

pdv

V
� � 0. (6)

Here �, U, �D, and T are the density, the velocity, the
strain rate tensor, and the temperature; P, P , and p
are the total pressure, the volume-average, and dy-
namic pressure components; g is the mass force acce-
leration; �, �, and � are the coefficients of dynamic,
bulk viscosity, and heat conductivity; dv is an ele-
mental volume, V is the overall volume. Dimen-
sionless values are without primes. The characteristic
scales are: length �l , velocity �U , time � �l U , strain rate
� �U l , the Earth’s gravity force acceleration �g , the

critical values ��c, �Tc and the values ��0, ��0, �cv0 corre-
sponding to a perfect gas; � � � �B R g� , �R is the perfect
gas constant, ��g is the molar mass. Primes denote the
dimensional values, subscript «c» — the critical va-
lues, subscript «0» — a perfect gas.

The dimensionless parameters (the ratio of specific
heats, characteristic temperature difference, the
Reynolds, Mach, Prandtl, Rayleigh numbers for a per-
fect gas) are
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The total pressure P is decomposed into two parts
(the volume-average P and dynamic p components)
and the parts are normalized using the different scales
( � � �B Tc c� — for P and � ��cU

2 — for p). Splitting and
two-scale representation of the pressure are applied
for successful simulating both acoustic and low-speed
flows with the rather large time steep.

Considering conditions close to the critical isochore
the near-critical features are associated with the tem-
perature distance from the critical point (or reduced
temperature) � � � 	 � �( )T T Tc c. The coefficient � in-
creases as � � 0 and may be fitted to the relation [1]

� � �� � 	1 � , (8)

the coefficient � is supposed to be constant, � is equal
to zero.

The convective motion is characterized by the Ray-
leigh and Prandtl numbers. With approach to the cri-
tical point these criteria of similarity tend to infinity,
while the values of Ra and Pr in the governing equa-
tions based on the perfect-gas parameters remain the

same. To describe near-critical convection completely
we consider the «real» Rayleigh Ra r and the «real»
Prandtl Prr numbers which take the real physical
properties in the vicinity of the critical point into ac-
count. They are signed by subscript «r» and expressed
by the calibration laws (near critical isochore) [7]
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The values Ra r and Prr diverging asymptotically
with approach to the critical point:

Ra Rar � ��	 � �2 , Pr Prr � ��	 � �1 (� � 1),

as � � 0.

3. Physical properties of helium and parameters
of Rayleigh—Benard convection near

the critical point

The critical point in 3He is characterized by para-
meters [8,9] �Tc= 3.3189 K, ��c= 0.0414 g/cm3,
� �Pc 0117, MPa. We will consider Rayleigh—Benard

convection in 3He studied experimentally [8,9] and
will use the physical properties of 3He at reduced tem-
perature 5 10 0 24�   	 � . [10]. To choose model pa-
rameters we need to treat available data.

We take data on the thermal conductivity �� and fit
them to the relation (8) considering the dimensionless
magnitude � � �� � �0, where ��0 is the scale value. The
constants �! � and ��0 are defined giving the optimal
curve

� �� � 	1 0 0149 0645. . (10)

normalized by the scale ��0=1.73.10–4 W/(cm.K).
The curve (10) in compare with experimental points
[10] is plotted in Fig. 1 showing a good agreement
between them.

The data of experiments [10] allow to find the spe-
cific heat at constant pressure cp and the thermal ex-
pansion coefficient " according to the relations in
dimensionless form

c cp v� �, " � � �� 	 � � �c P Tv( ) [( )( ) ]1 1 . (11)

Then one can evaluate the experimental Rayleigh
number including the real physical properties as

Ra Rar pc Z� " ��( )0 . (12)

Here, Z P B Tc c c� � � � �( )� is the compressibility factor.
The classical value of the specific heats for a perfect gas
�0= 1.67 is used. The magnitude of Ra is estimated on
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the basis of the experiments [8,9] and properties of he-
lium far from the critical point. We take the typical
temperature difference �� from the experimental range
and assume for the sake of definiteness that it is 10 �K.
We have �l = 0,1 cm, �g0 = 9,8.102 ñm/s2, �� = 10–5 K,
��0 = 16.7.10–6 g/(ñm.s), ��0 = 1.73.10–4 W/(cm.K),
�cv0 = 3.12.107 erg/(K.g). The experimental Prandtl

numbers Prr are taken from [10] and they allow to
obtain Pr according to (9). Consequently, the values
appropriate to the physical properties are Ra = 9.10,
Pr = 0.501.

The obtained results show some discrepancies be-
tween experimental and model criteria of similarity
which increase with decreasing in �. The reason of
these discrepancies is believed to be due to the equa-
tion of state. The van der Waals form and the other
analytic equations of this type, for example,
Redlich—Kwong one applied in [11], give the fixed
critical exponents different from the experimental
values. The scaled equations of state supported by the
renormalization-group theory [12,13] are known to
ensure the best agreement between the theoretical and
experimental exponents, but they are applicable only
asymptotically when � �� #. We cannot employ any
scaled equation because of a wide range of � in the
present consideration.

We use the van der Waals equation of state setting
the different parameters of simulation at different � to
get the local equality of the experimental and model
«real» criteria of similarity. For example, when � =
= 0.03, the experimental values are Ra r = 1.27.104

and Prr = 12.4. As following from (9), these magni-
tudes correspond to Ra = 45.4, Pr = 0.986 which
should be entered into the governing equations. As
shown in Fig. 2, the experimental and model criteria
of similarity are equal to each other locally at � = 0.03.
Investigating near-critical convection near the other

temperature distance from the critical point one
should estimate parameters Ra and Pr again to be used
in the governing equations. Though the numbers Ra
and Pr do not include the physical properties of he-
lium far from the critical point, they ensure the corres-
pondence of convective process in physical and model
near-critical fluids in the neighborhood of the certain
temperature.

4. Simulation of near-critical Rayleigh—Benard
convection

On the basis of the mathematical model described
above we performed the 2D simulation of steady-state
Rayleigh—Benard convection in helium along the
critical isochore close to experiments in a flat Ray-
leigh—Benard cell (height — 1 mm, diameter —
57 mm) [8,9]. The temperature of the top plate was
kept at a fixed value, the bottom plate was heated
very slowly ensuring a quasi-steady state at every in-
stant.

We simulated a part of the whole cell (a square
with a side 1 mm) containing only a single roll. Con-
ditions at vertical boundaries are assumed to be
non-viscous and adiabatic, at horizontal boundaries
they are viscous and isothermal. The temperature of
the upper surface is 0.33 K above critical, the tempera-

650 Fizika Nizkikh Temperatur, 2003, v. 29, No. 6

V.I. Polezhaev and E.B. Soboleva

–3 –2 –1

0.4

lg �

lg �

0

0.1

0.2

0.3

Fig. 1. Calculated fitting curve of the thermal conducti-
vity � (10) (solid line) and experimental points (marks)
[10] as functions of reduced temperature � in logarithmic
coordinates.
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Fig. 2. The «real» Rayleigh Rar (a) and Prandtl Prr (b)
numbers in the model fluid with local similarity to 3He
(solid lines) and in 3He (marks) versus �$



ture of lower surface is larger by some magnitude �� .
The parameters � = 0.1, Re = 8.33.103, Pr = 0.814,
�0 = 1.67, M = 10–3 are used. The temperature diffe-
rence � and, consequently, the Rayleigh number Ra
vary. We took � = (5.79–6.11).10–6 (corresponding
to dimensional values �� = 19.2–20.7 �K and Ra =
= 45.0–47.6, respectively. The magnitudes of Ra and
Pr are those to yield the «real» criteria of similarity
Rar and Prr as in experiments.

The integration of the governing equations is
started at the smallest value of � and it lasts until the
steady-state regime is reached. Then the lower surface
is slowly heated to the next value of � and integration
is continued up to another steady-state regime. As a
result, we have a set of stationary solutions at diffe-
rent �. On the basis of these solutions one can receive
the Rayleigh number Rar-onset characterizing the con-
vection onset. We extrapolated the Nusselt number Nu
to the value Nu = 1 where convection is absent. The
Ra r dependence of Nu is supposed to be a linear form
when a fluid starts convecting. The extrapolation
gives the threshold value Rar-onset = 1804. The rela-
tionship between Nu and Ra r is shown in Fig. 3.

The results obtained here are in a good agreement
with experimental [8,9] and theoretical [14] data con-
cerning stability problems in compressible media. As
predicted there the obtained value of Rar-onset is
slightly larger then the classical magnitude in incom-
pressible fluids (equals to 1708) because of the non-
zero adiabatic temperature gradient. These results
show that the general approach to simulation of
near-critical dynamics developed above ensure the ex-
cellent correlation between heat transfer in model and
real fluids under conditions of experiment.

5. Discussion and conclusions

The mathematical model for simulating near-criti-
cal dynamics, fitting to the known experimental data

on helium, the results of simulation of gravity-driven
convection and the approach to realizing obtained re-
sults were presented. Numerical simulation was per-
formed using the novel 2D-numerical code on the basis
of the full Navier—Stokes equations with two-scale
splitting of the pressure and the van der Waals equa-
tion of state. We used the calibration laws to estimate
the «real» criteria of similarity based on the physical
properties of near-critical fluids. It was shown that in
order to simulate the conditions of experiments more
closely, one should agree the «real» Rayleigh and
Prandtl numbers in model and physical media.

Simulation of steady-state Rayleigh—Benard con-
vection in helium near the critical isochore, investi-
gated early experimentally, was performed. The Ray-
leigh number characterizing the convection onset was
defined from obtained numerical data. This number is
shown to be in a good agreement with known experi-
mental and theoretical values.

However, the «real» Rayleigh and Prandtl num-
bers, as known, describe dynamics and heat transfer
completely only in the case of incompressible fluid (in
Oberbeck—Boussinesque model). The analysis of si-
mulated near-critical convection in common case is
supposed to require further development taking into
account the compressibility of medium. It was re-
vealed [14] that in a near-critical fluid the influence
of compressibility and adiabatic temperature gradient
in Rayleigh—Benard convection enhances with ten-
ding to the critical point and leads to dominating role
of the Schwarzchild criterion. The expression of the
adiabatic temperature gradient for the van der Waals
gas has done in [15]. Notice that we determined here
the convection onset only at one sufficiently large re-
duced temperature � = 0.1. Experiments [9] have
shown, that the role of the Schwarzchild criterion is
not significant at this distance from the critical point.
That is why no parameter of compressibility is in-
volved into the calibration laws and the Schwarzchild
number is not considered, but it should be taken into
account for analysis of the closest near-critical neigh-
borhood.

But nevertheless, the applied mathematical model,
effective numerical code, and developed approach to
realizing obtained results provide good possibilities to
simulate and analyse the complex dynamic problems
in near-critical fluids close to experimental condi-
tions. This way allows to investigate numerically some
characteristics of near-critical dynamics which are
faced with difficulties in experiments. For example,
the «piston effect» revealed in enclosures with a
source of heating [16] is known to be very important
in unsteady near-critical heat transfer. This effect may
change the thermal and dynamic patterns sufficiently,
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Fig. 3. The Nusselt number Nu versus the «real» Rayleigh
number Rar (marks) and fitting linear curve (solid line)
near the convection onset.



but its influence is not always controlled experimen-
tally. This problem may be solved numerically leading
to well-studied and controlled conditions of experi-
ments and understood results. All discussed points
will be made out further.
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