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Phonons and rotons of trapped atoms in gravitational field
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The excitations of trapped atoms with a Bose-Einstein condensate in a trap are determined by
the conservation of common phonon and roton numbers of atomic motion, and these properties de-
pend on the presence of gravitational field.
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Introduction

Phonon-like excitations of atoms in traps are ob-
served experimentally. If we rotate a trap, the new
form of atomic motion—rotons—may be expected. In
4He the same maxon–roton excitations are followed
by vortexes. They are defined as a singularity points of
a velocity field rot V r( ) � 0, connected to the condi-
tion for an amplitude � to become zero �( )r � 0 [1,2].
Here we are going to look for the properties of atomic
Bose-Einstein condensate (BEC) in traps in the rota-
tional (potential) stage of non-singular excitations.
We show, that roton properties of a gas in a trap fol-
lows from the conservation of a common number of
photons and rotons, found in our model. The addi-
tional potential energy of trapped atoms is promoted
by coming of atoms outside of BEC via the increasing
of phonon and roton energy due to the gravitational
field, and these contributions are estimated below.

Phonons and rotons

The energies of translations H ph and orbital rota-
tions H rot of atoms can be separated if the origin of
coordinates is taken as the point of «equilibrium»,
such as the centres of a circle (2D) or a sphere (3D).
Each of N atoms in a trap contributes to phonon mo-
tion, provided by an interaction between them, and to
rotations as well. So we represent the Hamiltonian of
N atoms as the sum of translational H ph, rotational
H rot energies and the rotation-translation interaction
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Here � is a rotational energy; kmax is an upper level
of a trap with a potentialU; L are the operators of an
orbital momentum; �k is phonon–roton interaction;
�( )k is the energy of phonon with the momentum k of
an atom in a rectangular trap, expressed by the well
known equation [3]
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where U0 is a potential of a trap and a is a trap
width. Really, phonons and rotons transform to each
other, and a connection between them is given by the
integral of motion M
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of a system (1), represented by Hamiltonian H . It is
possible to use the mapping of rotational variables to
a couple of Fermi operators for each of i N� 1 2, ...
momentum operators by the use of substitution
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(we omit the i numeration and show a very simple
one-particle H � h version of a model in the next
few formulas) . The latter definitions lead to the rela-
tions
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so that the initial h may be written in boson-fermion
variables with L a a b b2 � �� � for each atom in our
mapping
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where the energies � a b, of fermions contain their ki-
netic energies. These relations are truth for a large
kmax, so that a number m0 of traped levels satisfy an
equation m0 1�� , just like it happens in experiment.
If we turn back to the total Hamiltonian H , the
thermodynamical parameters � and � will correspond
the integrals of motion K and M
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for the partition function of a system. The latter may
be represented as the path integral for a large Gibbs
distribution
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over all the boson � �, *(and fermion a a, *, b b, *) tra-
jectories, satisfying the periodical (and antiperio-
dical) boundary conditions on [ , ]0 � for each k (and i).
The Lagrange function L represents all the degrees of
freedom of the system (1) in an ordinary way. Inte-

gral over all fermionic (a b, ) fields in Q may be
calculated exactly as Det ( )�2S [4,5], so we get a
path integral over the variables � k, � k

* with an effec-
tive action Sef for every k
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The quasiclassical equations of motion
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are used for the extremal trajectories ( )*� k
0 and � k

0

that describe an effective translational modes in the
field of roton motion. In the N �� 1 limit the transfor-
mation � �k kN� and � �k kN* *� leads to the
re-normalized action Seff
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so that the equation of motion (3) in a new scale of
boson trajectories looks like
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where a formula ln lnDet SpR Rk k� was used. As K
is an integral of motion for (1), the first bond rela-
tion for a thermodynamical parameters are
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In the same way the second bond relation is found as
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(6)

The calculation of Sp in (4)–(6) is carried out fol-
lowing [4,5] both in the matrix and Path Integral
sense
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The particular time-independent ( )* *� �k
0
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0
0� solution of equations (4)–(6) is similar to

«slow» trajectories in superfluid 4He theory [1], asso-
ciated with the Bose-Einstein condensation (BEC) in
quantum liquid. In the same way � �0 0

*, trajectories
correspond BEC of atoms in a trap, observed experi-
mentally during the last years [6]. Using BEC as-
sumption, we get the approach
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while the equations for integrals of motion K, M ap-
pears as
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These equations determine the BEC ordering in a trap
via the trajectories �0

*, �0 and chemical potentials �,
� in terms of energies �( )k , �, and �k.

The right side of the equation (7) can be repre-
sented  as
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and in the case of a small phonon-roton interaction
� �0 * the approximation
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the inequality
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is valid. It means, that BEC trajectories exist only for
low phonon-roton interaction. It is worthy to note,
that for an interaction � between polar atoms in
segnetoelectric media, expressed by the same model as
(1), the condition of dipol cooperation is expressed
by the inequality [4]

� �2 �� � ,

where � and � stands as the radiation and two-level
system frequencies correspondingly. Just the oppo-
site, the inequality (8) follows from the previous for-
mulas as the condition for the equations (4)–(6) to
have the BEC solution, and the condition of a large
BEC density � �0 0 0| |�� � is also satisfied. The com-
plete line of relations between the parameters of a
theory looks like
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where both the BEC condition (8) and square root
decomposition are taken into account. It can be seen,
that the left side of (9) leads to formula (8).

Trapped atoms in gravitational field

Now we are going to look for the properties of a
trapped atomic (BEC) in gravitational field. Let us
consider a pure phonon Hamiltonian H ph

p (without
the influence of gravitational field) for finite trap po-
tential. In this case the ordinary commutation rela-
tions for phonon operators is broken and can be writ-
ten in the form

[ , ] ( , )+ + + +k k k kf� �� , (10)
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where f k k( , )+ +� is a polynomial function of opera-
tors +k and +k

� . Now the Hamiltonian of gravita-
tional field in coordinate space H q mgz� can be
written in initial double quantized particle operators
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For the case of finite trap (10) the commutator of to-
tal Hamiltonian H H H H� � � �ph rot ph rot

p with
the Hamiltonian of gravitational field H g is not
equal to zero.

[ , ]H H H Hph rot ph rot
p

g� � -� 0.

The deformation of the trap potential is shown on
Fig. 1. Following the paper [7] we can conclude that
the gravitational field manifest itself in decreasing of
upper level kmax and in the shift of energy levels in the
trap. In particular, for ideal bose gas in the trap [7],

the critical temperature and number of condensate
particles are compared for the cases of gravitational
field and in microgravity environment. It was shown,
that the presence of gravitational field leads to the de-
creasing of condensate fraction and increasing of criti-
cal temperature if we keep constant the total number
of particles in trap.

Conclusion

The dilute gas of interacting bosons in magnetic
trap under rotation was considered as a system with
Hamiltonian H (1), (2), which consists of three terms:
phonon Hamiltonian H ph, Hamiltonian of roton exci-
tations H rot and Hamiltonian of phonon-roton inter-
action H ph rot� . The partition function of the system
was written as a path integral over boson and fermion
trajectories with integrals of motion (2). After inte-
gration over fermions, the quasiclassical equations of
motion for boson trajectory in the ground state with
their integrals of motion were obtained. The conclu-
sions on the equations (4)–(9) are as follows:

a) for a given �0 the inequality (8) can be satisfied
for large | |�0 , so the presence of rotons diminishes the
BEC density;

b) the less amount of BEC bosons | |�0
2 we have, the

larger will be a rotational momentum of atom for a
given trap.

These conclusions seems to be in accordance with
the prioriting Popov [1] result, that the zero points of
boson trajectory � � 0 are starting points for a vor-
texes in superfluid 4He. As to the influence of grav-
ity, we note here the point (c) as follows: c) the gravi-
tational field diminishes the BEC density in a trap.
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Fig. 1. The deformation of the trap potential. The dashed
and solid lines for a parabolic trap potential in a free space
( )U0 and in a gravitational field ( , )U U� � .


