Влияние магнитоупругого взаимодействия на формирование пространственно неоднородной фазы в двумерных ферромагнетиках

Ю.А. Фридман, Д.В. Спирин, Ф.Н. Клевец

Таврический национальный университет им. В.И. Вернадского ул. Ялтинская, 4, г. Симферополь, 95007, Украина E-mail: frid@tnu.crimea.ua

Статья поступила в редакцию 20 июня 2002 г, после переработки 5 августа 2002 г.

Изучено влияние магнитоупругого взаимодействия на область существования пространственно неоднородного состояния в двумерном анизотропном ферромагнетике. Рассмотрены фазовые переходы в пространственно неоднородное состояние по магнитному полю и по константе одноионной анизотропии. Показано, что магнитоупругое взаимодействие существенно увеличивает область существования этой фазы и, кроме того, увеличивает ширину домена.

Вивчено вплив магнитопружної взаємодії на область існування просторово неоднорідного стану в двовимірному анізотропному феромагнетику. Розглянуто фазові переходи в просторово неоднорідний стан по магнітному полю і по константі одноіонної анізотропії. Показано, що магнітопружна взаємодія істотно збільшує область існування цієї фази та, крім того, збільшує ширину домена.

PACS: 75.10.-b, 75.30.Kz

1. Введение

Исследованию магнитных свойств ультратонких пленок в настоящее время посвящено много работ [1–12]. Интерес к подобным системам обусловлен их возможным применением в микроэлектронике, технике, лазерной физике. Поскольку такие объекты являются истинно двумерными (толщина пленок составляет 1–10 атомных слоев), теоретические и экспериментальные исследования помогут разъяснить некоторые фундаментальные вопросы физики магнетизма низкоразмерных систем.

Многочисленные исследования показали, что в ультратонких магнитных пленках возможны фазовые переходы, индуцированные как температурой [1,3–5], так и внешним магнитным полем [1]. Причем могут реализовываться как пространственно однородные состояния [1–10], так и неоднородная фаза [1]. Возникновение неоднородной фазы прежде всего связано с диполь-дипольным взаимодействием. Роль диполь-дипольного взаимодействия в двумерных системах подробно обсуждается в работе [11]. Хорошо известно [5,12,13], что в окрестности фазовых переходов существенное влияние на динамику системы оказывает магнитоупругое взаимодействие, которое приводит как к динамическим эффектам (размягчению соответствующей ветви упругих возбуждений), так и к статическим (возникновению стрикционной щели в спектре магнитных возбуждений). Однако вопрос о влиянии магнитоупругого взаимодействия на указанные выше фазовые переходы, как нам кажется, изучен недостаточно.

В качестве объекта исследования выберем монослойную магнитную пленку, не связанную с подложкой [12]. Пленка обладает одноионной анизотропией типа «легкая ось», причем ось легкого намагничения перпендикулярна плоскости пленки. Система находится в однородном внешнем магнитном поле, приложенном параллельно плоскости пленки. Кроме того, будем учитывать магнитоупругое взаимодействие, предполагая, что деформации являются плоскими [14].

В настоящей работе рассматриваются фазовые переходы в пространственно неоднородное состояние как по магнитному полю, так и по материальным константам. Последнее означает, что в отсутствие магнитного поля также возможны фазовые переходы, индуцированные, например, изменением величины одноионной анизотропии. Такое изменение может быть вызвано, например, ростом температуры.

2. Фазовые переходы по магнитному полю

Предположим, что магнитное поле параллельно оси *OY*, тогда плоскостью пленки является плоскость *XOY*. Рассмотрим ферромагнетик с легкоосной одноионной анизотропией, перпендикулярной плоскости пленки. Гамильтониан такой системы можно представить в виде

$$H = -\frac{1}{2} \sum_{\substack{n,n'\\i,j=x,y,z}} [J(n-n')\delta_{ij} + V^{ij}(n-n')] S_n^i S_{n'}^j - H \sum_n S_n^y - \frac{\beta}{2} \sum_n (S_n^z)^2 + \lambda \sum_{\substack{n\\i,j=x,y}} S_n^i S_n^j u_{ij} + \frac{E}{2(1-\sigma^2)} \sum_n [u_{xx}^2 + u_{yy}^2 + 2\sigma u_{xx} u_{yy} + 2(1-\sigma^2)u_{xy}^2],$$
(1)

где $S_n^i - i$ -я компонента спинового оператора в узле n; J(n - n') — параметр обменного взаимодействия; H — внешнее магнитное поле в энергетических единицах; β — константа одноионной анизотропии; λ — константа магнитоупругого взаимодействия; u_{ij} — компоненты тензора упругих деформаций; E — модуль Юнга; σ — коэффициент Пуассона; $V^{ij}(n - n')$ — компоненты тензора магнитодипольного взаимодействия, фурье-образы которых имеют вид [11]

$$V^{xx}(k) = \frac{A_0}{3} - k\Omega_0 \cos^2 \varphi,$$
$$V^{yy}(k) = \frac{A_0}{3} - k\Omega_0 \sin^2 \varphi,$$
$$V^{zz}(k) = -\frac{2A_0}{3} + k\Omega_0,$$

$$V^{xy}(k) = -\frac{k\Omega_0}{2}\sin 2\varphi, \quad V^{xz}(k) = V^{yz}(k) = 0$$
$$A_0 = \frac{2}{3}(g\mu_B)^2 \sum R^{-3}, \quad \Omega_0 = \frac{2\pi(g\mu_B)^2}{a^2}.$$

Здесь введены следующие обозначения: g — гиромагнитное отношение, μ_B — магнетон Бора, a^2 — «объем» плоской элементарной ячейки, φ — угол между направлением волнового вектора **k** и осью *OX*. Двумерность системы учтена при вычислении компонент тензора магнитодипольного взаимодействия. Кроме того, волновой вектор **k** двухкомпонентный и лежит в плоскости пленки.

В случае малых полей, $H < \beta$, система будет находиться в угловой фазе, т.е. вектор намагниченности образует угол θ с осью анизотропии.

Повернем систему координат так, чтобы ось квантования (ось OZ) совпадала с направлением магнитного момента. Компоненты тензора деформаций представим в виде $u_{ij} = u_{ij}^{(0)} + u_{ij}^{(1)}$, где $u_{ij}^{(0)}$ – спонтанные деформации, а $u_{ij}^{(1)}$ – динамическая часть тензора деформаций, описывающая колебания узлов кристаллической решетки.

Спонтанные деформации определяются из условия минимума плотности свободной энергии и в данном случае имеют вид

$$u_{xx}^{(0)} = \frac{\lambda S^2 \sigma}{E} \sin^2 \theta ,$$

$$u_{yy}^{(0)} = -\frac{\lambda S^2}{E} \sin^2 \theta ,$$

$$u_{xy}^{(0)} = 0 ,$$

(2)

где *S* — величина спина магнитного иона.

Компоненты тензора $u_{ij}^{(1)}$ связаны с операторами рождения $b_{k,v}^+$ и уничтожения $b_{k,v}$ v-поляризованных фононов следующим соотношением [15]:

$$u_{ij}^{(1)} = \frac{i}{2} \sum_{\mathbf{k},\nu} \frac{1}{\sqrt{2m\omega_{\nu}(k)}} \left[b_{\mathbf{k},\nu} \mathrm{e}^{i\mathbf{k}\mathbf{r}} - b_{\mathbf{k},\nu}^{+} \mathrm{e}^{-i\mathbf{k}\mathbf{r}} \right] \times \left[e_{\nu}^{i} k_{j} + e_{\nu}^{j} k_{i} \right], \qquad (3)$$

где m — масса магнитного иона, $\omega_v(k) = c_v k$ — спектр невзаимодействующих фононов, \mathbf{e}_v — единичный вектор поляризации фононов. В дальнейшем мы будем рассматривать поперечно поляризованную звуковую волну.

Используя представление Голстейна—Примакова для спиновых операторов [16] и представление (3) для упругих колебаний, запишем гамильтониан (1) в терминах операторов рождения и уничтожения фононов и магнонов:

$$\mathcal{H} = \sum_{k} \left[A_{1k} a_{k}^{+} a_{k} + A_{2k} b_{k}^{+} b_{k} + \frac{1}{2} (B_{1k} a_{k}^{+} a_{-k}^{+} + B_{1k}^{*} a_{-k} a_{k}) + C_{k} (b_{k}^{+} a_{-k}^{+} + b_{k}^{+} a_{k}) + C_{k}^{*} (a_{k}^{+} b_{k} + b_{-k} a_{k}) \right],$$

$$(4)$$

где $a_k^+, a_k, b_k^+, b_k - фурье-образы операторов рож$ дения и уничтожения магнонов и фононов соответственно,

$$\begin{split} A_{1k} &= H\sin\theta + \frac{\beta S}{2} \left(2\cos^2\theta - \sin^2\theta\right) - \\ &- \frac{S}{2} \left(\frac{A_0}{3} + \frac{A_0}{3}\cos^2\theta + \frac{4A_0}{3}\cos2\theta - k\Omega_0\cos2\theta\right) + \\ &+ \frac{\lambda^2 S^3 \sin^2\theta}{E} \left(2\sin^2\theta - \cos^2\theta + \sigma\right) + \alpha Sk^2 \;, \end{split}$$

$$A_{2k} = \omega_t(k), \tag{5}$$

$$B_{1k} = B_{1k}^* = \frac{\beta S}{2} \sin^2 \theta - \frac{S}{2} (A_0 \sin^2 \theta + k\Omega_0 \cos 2\theta) + \frac{\lambda^2 S^3 \sin^2 \theta}{E} (\cos^2 \theta + \sigma),$$

$$C_k = -\frac{i\lambda S\sqrt{Sk\sin\theta}}{2\sqrt{mc_t}}$$

 $\alpha = J_0 R_0^2, R_0$ — радиус обменного взаимодействия, c_t — скорость поперечного звука.

В общем случае величины, входящие в (5), зависят от направления волнового вектора, т.е. от угла φ . Однако можно показать, что наименьшее значение поля фазового перехода из угловой фазы (и наибольшее значение поля при переходе из плоскостной фазы) получается при $\varphi = \pi / 2$. В дальнейшем мы будем рассматривать именно такой случай.

В гамильтониане (4) учтен тот факт, что коэффициент при линейных по операторам рождения и уничтожения слагаемых равен нулю:

$$H - S(\beta - A_0)\sin\theta + \frac{2\lambda^2 S^3}{E}\sin^3\theta = 0.$$
 (6)

Решение этого уравнения позволяет определить угол θ как функцию внешнего поля и материальных констант. Решая это уравнение по теории возмущений, получаем

$$\sin\theta = \frac{H}{S(\beta - A_0)} + \frac{b_0 H^3}{S^3 (\beta - A_0)^4}, \ b_0 = \frac{2\lambda^2 S^2}{E} \cdot (7)$$

Гамильтониан (4) приводится к диагональному виду стандартным *u*-*v*-преобразованием [16]:

$$H^{(2)} = E_0 + \sum_{k} [\omega_1(k)\alpha_k^+ \alpha_k + \omega_2(k)\beta_k^+ \beta_k], \quad (8)$$

где E_0 — энергия нулевых колебаний, $\omega_i(k)$ — энергия *i*-й ветви связанных магнитоупругих волн, определяемая из уравнения

$$\begin{vmatrix} A_{1k} - \omega & B_{1k} & C_k & C_k \\ B_{1k} & A_{1k} + \omega & C_k^* & C_k^* \\ C_k^* & C_k & A_{2k} - \omega & 0 \\ C_k^* & C_k & 0 & A_{2k} + \omega \end{vmatrix} = 0.$$
(9)

Отсюда

$$\omega_{1,2}^{2} = \frac{1}{2} \left\{ A_{1k}^{2} - B_{1k}^{2} + \omega_{t}^{2} \pm \sqrt{(A_{1k}^{2} - B_{1k}^{2} - \omega_{t}^{2})^{2} + 16 |C_{k}|^{2} \omega_{t} (A_{1k} + B_{1k})} \right\}.$$
(10)

Знак «+» соответствует квазимагнонной ветви возбуждений, «-» — квазифононной ветви. Обращение частоты (10) в нуль свидетельствует о фазовом переходе. Ряд несложных преобразований позволяет получить уравнение линии фазового перехода:

$$\omega_t (A_{1k} - B_{1k}) - 4 |C_k|^2 = 0.$$
(11)

С учетом определения скорости поперечного звука [14]

$$c_t^2 = \frac{E}{2m(1+\sigma)}$$

из (11) получаем

$$H\sin\theta + S(\beta - A_0)\cos 2\theta - b_0 S\sin^2\theta(2\cos^2\theta + \sigma) + k\Omega_0 S\cos 2\theta + \alpha Sk^2 = 0.$$
 (12)

Из (12) легко найти значение волнового вектора, который определяет ширину домена:

$$k_1^* = -\frac{\Omega_0 \cos 2\theta}{2\alpha} \,. \tag{13}$$

Переход из угловой фазы в неоднородную происходит при угле θ близком к $\pi/2$, при этом $\cos 2\theta < 0$ и $k_1^* > 0$. Решая (12) по теории возмущений, получим поле перехода из угловой в пространственно неоднородную фазу:

$$H_1 = S(\beta - A_0) - \frac{b_0 S}{2}(3 + \sigma) - \frac{\Omega_0^2 S}{8\alpha}.$$
 (14)

Поскольку мы считаем, что энергия одноионной анизотропии и внешнего магнитного поля намного больше параметров магнитодипольного и магнитоупругого взаимодействий, из (10) легко получить спектры квазифононов

$$\omega_1^2(k) = \omega_t^2(k) \left(1 - \frac{b_0 S(1+\sigma) \sin^2 \theta}{H \sin \theta + S(\beta - A_0) \cos 2\theta - b_0 S \sin^2 \theta \cos 2\theta + k\Omega_0 S \cos 2\theta + \alpha S k^2} \right)$$
(15)

и квазимагнонов

$$\omega_2^2(k) = [H\sin\theta + S(\beta - A_0)\cos 2\theta - b_0 S\sin^2\theta\cos 2\theta + k\Omega_0 S\cos 2\theta + \alpha Sk^2] \times [H + S(\beta - A_0)\cos^2\theta + b_0 S\sin^2\theta(\sin^2\theta + \sigma) + \alpha Sk^2].$$

При $H = H_1$ спектр квазифононов размягчается:

$$\omega_1^2(k) = \omega_t^2(k) \frac{\alpha k^2}{b_0} ,$$

в то время как в спектре квазимагнонов присутствует магнитоупругая щель:

$$\omega_2(0) = S\sqrt{b_0(\beta - A_0)}.$$

Следует отметить, что учет магнитоупругого взаимодействия приводит к слабой перенормировке скорости магнонов. Соответствующие слагаемые в (16) опущены, поскольку изменение скорости не превышает 0,1%. Мы пренебрегли аналогичным слагаемым в знаменателе (13) по той же причине.

Величина $1/k_1^*$ определяет ширину домена [1]. В нашем случае для характерных значений параметров *E*, λ , β , A_0 , Ω_0 и σ [1,7,17] оценка дает $k_1^* \approx 3 \cdot 10^5$ см, а $1/k_1^* \approx 3 \cdot 10^{-6}$ см⁻¹.

Теперь рассмотрим случай, когда внешнее магнитное поле достаточно велико, в результате чего магнитный момент системы укладывается вдоль направления поля. В дальнейшем мы будем называть эту фазу «плоскостной», имея в виду тот факт, что магнитный момент лежит в плоскости пленки. При уменьшении магнитного поля произойдет фазовый переход. Как было показано в [1], этот переход осуществляется в фазу с пространственно неоднородным распределением намагниченности.

Учитывая, что в плоскостной фазе угол $\theta = \pi / 2$, поле перехода можно найти из (12):

$$H_2 = S(\beta - A_0) + b_0 S\sigma + \frac{\Omega_0^2 S}{4\alpha}.$$
 (17)

Нестабильность возникает при

$$k_2^* = \frac{\Omega_0}{2\alpha} \ . \tag{18}$$

Отметим, что ширина домена в этой геометрии немного меньше, чем при переходе из угловой фазы $(k_1^* \approx 3,5 \cdot 10^5 \text{ см}, a 1/k_1^* \approx 2,86 \cdot 10^{-6} \text{ см}^{-1}, т.е. при$ переходе из легкоплоскостной фазы в неоднородную эта величина на 5 % меньше, чем при переходеиз угловой в неоднородную).

Спектры квазичастиц легко получить, подставив $\theta = \pi/2$ в (15) и (16).

Интервал существования пространственно неоднородной фазы можно определить из (14) и (17):

$$\Delta H = H_2 - H_1 = \frac{3}{2} \left[\frac{\Omega_0^2 S}{4\alpha} + b_0 S(1+\sigma) \right].$$
(19)

(16)

3. Фазовые переходы по материальным константам

Рассмотрим фазовые переходы в двумерном ферромагнетике в отсутствие внешнего магнитного поля. Пусть исследуемый ферромагнетик обладает одноионной анизотропией типа «легкая ось», причем ось анизотропии перпендикулярна плоскости пленки. В такой системе возможны фазовые переходы при изменении величины анизотропии: наличие магнитодипольного взаимодействия приводит к появлению эффективной анизотропии типа «легкая плоскость», которая может конкурировать с легкоосной анизотропией. Величина последней может изменяться в зависимости от температуры, давления, концентрации примеси и пр. [18].

Рассмотрим область значений константы анизотропии β близких к параметру магнитодипольного взаимодействия A_0 . Пусть величина легкоосной анизотропии такова, что в системе реализуется фаза с намагниченностью, перпендикулярной плоскости пленки ($\beta > A_0$). Если выбрать ось *OZ* вдоль вектора намагниченности (*XOY* — плоскость пленки), то гамильтониан системы совпадает с (1), если H = 0.

Легко показать, что для такой системы спонтанные деформации отсутствуют, и гибридизация магнитных и упругих возбуждений не происходит. Величина анизотропии, при которой происходит фазовый переход из легкоосной фазы, определяется из условия обращения в нуль щели в спектре магнонов:

$$\beta_1 = A_0. \tag{20}$$

Рассмотрим вопрос о существовании угловой фазы в такой модели. Уравнение (6) в этом случае принимает вид

$$-S(\beta - A_0)\sin\theta + \frac{2\lambda^2 S^3}{E}\sin^3\theta = 0.$$
 (21)

Из (21) следует, что при $\beta < A_0$ существует единственное решение $\theta = 0$. Таким образом, угловая фаза в системе (в отсутствие магнитного поля) не реализуется. Найдем величину анизотропии, при которой происходит фазовый переход из плоскостной фазы в неоднородное состояние. Для этого, очевидно, достаточно положить H = 0 в (17), тогда

$$\beta_2 = A_0 - b_0 \sigma - \frac{\Omega_0^2}{4\alpha} \,. \tag{22}$$

Область существования неоднородной фазы определяется из (20) и (22):

$$\Delta\beta = b_0\sigma + \frac{\Omega_0^2}{4\alpha} \ . \tag{23}$$

4. Влияние магнитоупругого взаимодействия на формирование неоднородных структур

В результате проведенных исследований можно утверждать, что магнитоупругое взаимодействие оказывает существенное влияние на формирование пространственно неоднородной фазы. Причем это влияние проявляется двояко. Во-первых, это «утяжеление» квазимагнонов. Данный эффект сказывается на незначительном уменьшении ширины домена (менее чем на 0,1%).

Кроме того, к существенным эффектам приводит гибридизация магнонных и фононных возбуждений. В результате этого фазовый переход протекает по квазифононной ветви возбуждений, и интервал существования пространственно неоднородной структуры увеличивается. Численные оценки для характерных значений параметров E, λ , β , A_0 , Ω_0 и σ [1,7,17] дают $\Delta\beta$ ≈ 25 Э, ΔH ≈ 40 Э. Учет магнитоупругого взаимодействия приводит к увеличению ∆β приблизительно на 4 %, ∆*H*− на 10 %. Подобное изменение можно было бы считать несущественным, если бы не пренебрежимо малое значение магнитоупругой энергии H_{me} по сравнению с энергиями анизотропии H_a или дипольной энергией H_{dd}: мы полагаем $H_{me} \approx 3$ Э, в то время как $H_a \approx 100$ кЭ, *H_{dd}* ≈14 кЭ. Необходимо отметить, что в рассмотренной нами геометрии с магнитной подсистемой активно взаимодействует поперечно поляризованная фононная мода. Продольно поляризованная звуковая мода с магнитной подсистемой практически не взаимодействует (магнитоупругое взаимодействие лишь немного перенормирует скорость продольного звука).

Таким образом, помимо диполь-дипольного взаимодействия, магнитоупругая связь играет существенную роль в формировании магнитных пространственно неоднородных структур в двумерных ферромагнетиках.

- 1. R.P. Erickson and D.L. Mills, *Phys. Rev.* **B46**, 861 (1992).
- 2. Y. Yafet, J. Kwo, and E.M. Gyorgy, *Phys. Rev.* B33, 6519 (1986).
- D.P. Pappas, K.-P. Kämper, and H. Hopster, *Phys. Rev. Lett.* 64, 3179 (1990).
- 4. Y. Millev and J. Kirschner, *Phys. Rev.* **B54**, 4137 (1996).
- 5. Yu.A. Fridman, D.V. Spirin, and C.N. Alexeyev, *J. Magn. Magn. Mater.* **234**, 174 (2001).
- D. Pescia, M. Stampanoni, G.L. Bona, A. Vaterlaus, R.F. Willis, and F. Meier, *Phys. Rev. Lett.* 58, 2126 (1987).
- 7. P. Bruno, Phys. Rev. B43, 6015 (1991).
- J.J. Krebs, B.T. Jonker, and G.A. Prinz, J. Appl. Phys. 63 (8), 3467 (1998).
- 9. A. Hucht and K.D. Usadel, *Phys. Rev.* **B55**, 12309 (1997).
- A. Moschel and K.D. Usadel, *Phys. Rev.* B51, 16111 (1995).
- 11. С.В. Малеев, ЖЭТФ **70**, 2374 (1976).
- Б.А. Иванов, Е.В. Тартаковская, Письма в ЖЭТФ 63, 792 (1996).
- 13. А.И. Ахиезер, В.Г. Барьяхтар, С.В. Пелетминский, *Спиновые волны*, Наука, Москва (1967).
- 14. Л.Д. Ландау, Е.М. Лифшиц, *Теория упругости*, Наука, Москва (1987).
- 15. Л.Д. Ландау, Е.М. Лифшиц, *Статистическая физика*, Наука, Москва (1976).
- В.Г. Барьяхтар, В.Н. Криворучко, Д.А. Яблонский, *Функции Грина в теории магнетизма*, Наукова думка, Киев (1984).
- Е.А. Туров, А.А. Луговой, В.В. Бучельников, Ю.А. Кузавко, В.Г. Шавров, О.В. Ян, ФММ 66, 12 (1989).
- С. Тикадзуми, Физика ферромагнетизма. Магнитные характеристики и практические применения, Мир, Москва (1987).

The influence of magnetoelastic coupling on the formation of a spatially inhomogeneous state in two-dimensional ferromagnets

Yu.A. Fridman, D.V. Spirin, and Ph.N. Klevets

The influence of magnetoelastic coupling on the formation of spatially inhomogeneous state

near the points of orientational phase transitions in two-dimentional ferromagnets is studied. The phase transitions into the spatially inhomogeneous states are considered in the presence of external magnetic field and single-ion anisotropy. It is shown that the magnetoelastic coupling increases essentially the region of existence of the inhomogeneous state and the domain width.