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In this work we consider several exactly solvable models of magnetic impurities in critical
quantum antiferromagnetic spin chains and multichannel Kondo impurities. Their ground
state properties are studied and the finite set of nonlinear integral equations, which exactly
describe the thermodynamics of the models, is constructed. We obtain several analytic
low-energy expressions for the temperature, magnetic field, and frequency dependences of im-
portant characteristics of exactly solvable disordered quantum spin models and disordered
multichannel Kondo impurities with essential many-body interactions. We show that the only
low-energy parameter that gets renormalized is the velocity of the low-lying excitations (or
the effective crossover scale connected with each impurity); the others appear to be universal.
In our study several kinds of strong disorder important for experiments were used. Some of
them produce low divergences in certain characteristics of our strongly disordered critical sys-
tems (compared with finite values for the homogeneous case or a single impurity). For weak
disorder, or for narrow distributions of the local Kondo temperatures, our exact results reveal
the presence of Kondo screening of disordered ensembles of magnetic impurities by low-lying
excitations of the host. We point out that our results qualitatively coincide with the data of
experiments on real disordered quasi-one-dimensional antiferromagnetic systems and with the
similar behavior of some heavy metallic alloys.

PACS: 75.10.Jm, 75.20.Hr, 75.10.Nr, 75.30.Hx

1. Introduction

The study of the behavior of magnetic impurities
coupled to paramagnetic hosts remains one of the
most interesting problems of the many-body phys-
ics. The Kondo effect [1], which describes the ex-
change interaction between the spin of a magnetic
impurity and the spins of itinerant electrons, is, per-
haps, the best known example in which modern the-
oretical methods like renormalization group (RG)
theory, Bethe ansatz, bosonization, conformal field
theory, etc. have manifested their strength [2–4].
The crossover from the strong coupling to the weak
coupling regime is one of the most famous examples
of nonperturbative effects in condensed matter
theory.

In the last few years the interest in the
non-Fermi-liquid (NFL) behavior of magnetic sys-
tems and metallic alloys has grown considerably. A

large class of conducting nonmagnetic materials
does not behave as usual Fermi liquids (FL) at low
temperatures. One of the best-known examples of
such behavior is the Kondo effect for multi (n)
channel electron systems: For an impurity spin less
than n 2 a NFL critical behavior results [5]. The
critical behavior of a single magnetic impurity can
also be connected with a quadrupolar Kondo effect
or non-magnetic two-channel Kondo effect [6].
However, for most dirty metals and alloys in which
the NFL behavior has been observed (see, e.g., the
recent reviews [7–10] and Refs. 11–20), the mag-
netic susceptibility � and low-temperature specific
heat c usually manifest logarithmic or weak power
law behavior with temperature T. The resistivity de-
creases linearly with temperature, showing a large
residual resistivity. That is different from the pre-
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dictions of the theory of the overscreened Kondo ef-
fect [4,5].

The last property together with the alloy nature
of compounds suggests that the disorder (a random
distribution of localized f electrons or a random cou-
pling to the conducting electron host) may play the
main role in the low-temperature NFL character of
such systems. The idea of (nonscreened) local mo-
ments existing in disordered metallic systems has al-
ready been formulated recently [21–23]. It was pro-
posed that near metal—insulator transitions (or for
sufficiently alloyed systems far from the quantum
critical point) disordered correlated metals contain
localized moments. The change in the interactions
between impurity sites and host spins can be consid-
ered as a modification of the characteristic energy
scale, the Kondo temperature TK . At that scale the
behavior of the magnetic impurity manifests the
crossover from the strong coupling regime (for
T h TK, �� , where h is the external magnetic field)
to the weak coupling regime T h TK �� , . The impu-
rity spin behaves asymptotically free in the weak
coupling case, and it is screened by the host spins in
the strong coupling case. The random distribution
of magnetic characteristics of the impurities (i.e.,
their Kondo temperatures) may be connected either
with the randomness of exchange couplings of itin-
erant electrons with the local moments [22], or with
the randomness of the densities of conduction elec-
tron states [21]. In fact, both types of randomness
renormalize the single universal parameter — the
Kondo temperature — which characterizes the state
of the magnetic impurity. In Ref. 16 the results of
the measurements of the magnetic susceptibility,
nuclear magnetic resonance (NMR) Knight shift,
and low-temperature specific heat have been re-
ported. To explain the observed features it was nec-
essary to assume some disorder, with a Gaussian dis-
tribution of the Kondo temperatures. However, the
model used for the explanation of the experiment
was oversimplified by an inadequate representation
of the Kondo magnetization by the simple replace-
ment T T bTK� � in the Brillouin function,
B ah T bTK( )� , with which the magnetization of a
single magnetic moment was approximated (a b, are
some constants). It was noted [16] that the data for
the specific heat and Knight shift did not agree with
the predictions of that simple theory, especially for
nonzero values of the magnetic field. The inhomo-
geneous magnetic susceptibility was confirmed re-
cently [24] by muon spin rotation experiments. The
role of the long-range Ruderman—Kittel—Ka-
suya—Yosida (RKKY) coupling between the local
moments was taken into account recently [25,26]

(Griffiths phase theory), and the model was found
to exhibit properties qualitatively similar to those
of models with noninteracting local moments [24].
In addition, the presence of the spin—orbit interac-
tion in some disordered heavy fermion alloys de-
mands the study of magnetic anisotropy, which can
play an essential role in the physics of disordered
spin interactions [25,26].

Another interesting topic of research, which is re-
lated to the one mentioned above, is the behavior of
disordered magnetic impurities in one-dimensional
(1D) antiferromagnetic (AF) spin chains. Here we
can mention several experiments on spin chains
[27–30]. The theoretical works devoted to the de-
scription of disordered magnetic impurities in criti-
cal spin chains have mostly involved the approxi-
mate RG treatment of the problem [31–35].
Recently, however, we proposed an exact solution
to the problem of the behavior of spin-1 2 AF quan-
tum spin chain coupled to disordered magnetic im-
purities [36–38], which was later generalized to the
description of disordered magnetic impurities in cor-
related electron chains [39].

It is known that the physics of a single magnetic
impurity in a 1D AF Heisenberg spin S � 1 2 chain
and that of a single Kondo impurity in a 3D free
electron host are described by similar Bethe ansatz
theories [2,3,40,41], e.g., the magnetization and the
low-temperature magnetic specific heat of the impu-
rity for the two models coincide. The Heisenberg
model is the seminal model for correlated
many-body systems. Most of its static properties are
exactly known. A single spin-1 2 magnetic impurity
in the AF spin chain and the Kondo impurity mani-
fest total screening with the (marginal) FL-like
low-temperature behavior of the magnetic suscepti-
bility and specific heat, i.e., the finite values of
�( )T and c T T( ) in the low-temperature limit
[2,3,41,42]. In other words, the moment of the im-
purity is quenched by the localized host spins or by
the spins of the conduction electrons, respectively.
The magnetic anisotropy of the Kondo exchange in-
teraction between the impurity spin and the spins of
the free electron host was also taken into account
exactly for the single Kondo impurity [3,43] and for
a magnetic impurity in a AF spin chain [44,45]. It
was pointed out that the magnetic anisotropy does
not change drastically the Kondo effect of a single
impurity. On the other hand, for the integrable lat-
tice models one can incorporate a finite concentra-
tion of magnetic impurities [46,47] without destroy-
ing the exact solvability. Hence, for the random
distribution of magnetic impurities we can suppose
that low dimensionality is not essential for the
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Kondo screening. The absence of magnetic ordering
in the NFL Kondo systems [7,9,10] also confirms
this assumption.

The goal of our present study is to find exactly
the ground state and thermodynamic characteristics
of disordered ensembles of spin- �S magnetic impuri-
ties in magnetically uniaxial spin-S chains in the
critical region, i.e., in the domain of values of the
magnetic anisotropy where excitations of the homo-
geneous host are gapless. As a byproduct, we find
the exact solution to the behavior of random ensem-
bles of multichannel Kondo impurities, coupled lo-
cally to the free-electron host with an «easy-plane»
magnetic anisotropy of that coupling. We allow for
various random distributions of the impurity—host
couplings for arbitrary values of external magnetic
field and temperature. The magnetic anisotropy pa-
rameter is assumed to be homogeneous for the host
spins and for the impurity spins. In this paper we
show that for several kinds of strong disorder of the
impurity—host couplings the (Kondo) screening is
absent, but for a weaker disorder the quenching per-
sists, but with a NFL temperature behavior of the
magnetic characteristics. We also show that the
magnetic field lifts the degeneracy and effectively
enhances the quenching of the impurity spins, hence
decreasing the effect of disorder.

This paper is organized as follows. After the intro-
duction in Sec. 1, the Hamiltonians for the spin
chains studied are introduced in Sec. 2. Section 3 is
devoted to the standard Bethe ansatz equations of
the problem, and to the connection with the multi-
channel Kondo case. In Sec. 4 we present the ground
state properties of the systems considered. The ther-
modynamic Bethe ansatz is introduced in Sec. 5 for
random ensembles of magnetic impurities in the
«easy-plane» spin chains and the multichannel
Kondo situation, by use of the «quantum transfer
matrix» approach. In Sec. 6 we present our results
for the temperature and magnetic field dependence of
the magnetic susceptibility and the specific heat ob-
tained analytically and compare them with numeri-
cal calculations of the nonlinear integral equations.
Section 7 contains concluding remarks.

2. Bethe-ansatz solvable Hamiltonians

In our treatment we shall use the Bethe ansatz
method (for a review, see, e.g., the monograph [48]
and references therein). Let us start with
R u

i i
i i

� �
	 	 �1 ( ), the standard R matrix of a spin S chain

with uniaxial «easy-plane» anisotropy (see, e.g.,
[44,45,49]). The indices � i and � i denote states of
the spin at site i (acting in the Hilbert space Vi ),

and 	 denotes states in the auxiliary space (Hilbert
space Va). The R matrix has the form
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where u is the spectral parameter, � is the parameter
of the («easy-plane») magnetic anisotropy, the op-
erator P permutes the spaces Vi and Va , and
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where S S iSx y� � � , and which in the limit of the
SU(2)-symmetric system (� � 0) simplifies to
S Si a S S� �( )1 . The R matrices satisfy the
Yang—Baxter (triangle) relations [3,48]. The
row-to-row (from the viewpoint of the associated
statistical 2D problem), «standard» transfer matrix
��
� ( )u has the form of the trace over the auxiliary

space of the product of R matrices with the same
values of the spins (S) in sites i

� � ��
�

� �
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i i
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�
�
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where L is the length of the quantum chain and � i
are the inhomogeneity parameters, which are shifts
of the spectral parameter. The R matrices satisfy
the Yang—Baxter equations, and, hence, the trans-
fer matrices with different spectral parameters com-
mute [48]. The Hamiltonian of the uniaxial spin-S
quantum chain with impurities of the same spin S is
obtained as the derivative of the logarithm of the
transfer matrix with respect to the spectral parame-
ter (taken at u = 0) [49].

The Hamiltonian of the uniaxial spin-S chain
with spin-S� impurities is obtained as the derivative
of the logarithm of the transfer matrix, which is the
trace over the auxiliary space of the product of R
matrices with different values of spin (S for host
sites and S� for impurity sites) in the spaces Vi, with
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respect to the spectral parameter (at u = 0). Notice
that R matrices with different values of the spins for
the quantum and auxiliary spaces mutually satisfy
the Yang—Baxter relations. The Hamiltonian has
the form

H H H Hj j
j

� � �� 
2 1, imp imp imp

(the host exchange constant J is set to 2). In gen-
eral, the form of the lattice Hamiltonian is very
complicated; it depends on S, S�, �j, and the aniso-
tropy �. We can directly write down several impor-
tant limiting cases of the Hamiltonian to clarify the
situation. For example, for a spin-S� impurity intro-
duced into the spin-1 2 Heisenberg chain we have
Hj j j j, � ��1 1S S . The impurity part of the Hamil-
tonian has the form, say for the jth impurity
situated between sites m and m+1 of the host
[36,41,50]

H S H Hj mimp imp imp,m+1� � � � � �
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where [.,.] ({.,.}) denotes the (anti)commutator.
One can see that � j � 0 and � �S 1 2 corresponds to
the simple inclusion of an additional site coupled to
the system by the bulk interaction. On the other
hand, for � j � � one obtains an impurity spin to-
tally decoupled from the host. For the «easy-plane»
spin-1 2 chain with spin-1 2 impurities we have [38]
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where the operator �Bj modifies the Heisenberg-like
interaction by multiplying the transverse terms by
cosh� j . For the isotropic SU(2)-symmetric spin-S
host the structure of the Hamiltonian is more com-
plicated (without the impurity it corresponds to
the Takhtajan—Babujian chain [51,52]) with

H a,b
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x a b m ma b� � �S S ( , , , )1 imp , and 2 1x j jj � � 
( )

 � 
 � � �S S S S( ) ( ).1 1 Note that in this case the

overall multiplier is [ ( ) ]�2 2 1� � � 
S S and the
coefficient in front of Hm m, �1 becomes

 � � � 
 � �2 1 2S S S S( ) ( ) . For the anisotropic ca-
se one has to replace x by � ,,Xm m�1 cf. Eq. (2), and
xj by the appropriate coefficients from Eq. (1).

If two impurities are situated between two neigh-
boring host sites, they can interact directly, e.g., for
the isotropic case the impurity—impurity part of the
Hamiltonian is H Jj

j
imp imp imp

j
1
 � �2 H +j, j
; for il-

lustration, see Fig. 1. These impurity—impurity cou-
plings can model, e.g., a RKKY interaction (being
short-range though) between the impurities in concen-
trated metallic alloys. In the following we shall study
the case with a small number of such neighboring
impurities.

One can independently incorporate any number
of impurities, described above, into the host spin
chain. Each of them will be characterized by its own
coupling to the host, i.e., by its own � j . The lattice
Hamiltonian has additional terms, which renor-
malize the coupling between the neighboring sites of
the host, and three-spin terms. However, it has been
shown [50] that in the long-wave length limit such
a lattice form of the impurity Hamiltonian yields
the well-known form of the contact impurity—host
interaction, similar to that of the usual Kondo prob-
lem [2,3]. The contact impurity coupling in this
(conformal) limit is also determined by the same
constant � j . We also point out that it was shown
that the magnetic behavior of the impurities in the
bulk and the magnetic behavior of the impurity
situated at the edge of the chain (where the
renormalization of the coupling between the neigh-
boring sites of the host and three-spin terms can be
eliminated, and the only interaction between the
impurity and the host is the standard two-spin ex-
change interaction) coincide [41,53]. Finally, we
would like to note that all the impurities considered
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Fig. 1. Illustration of the impurity—host and impu-
rity—impurity interactions. Here in the simplest case of
the isotropic Heisenberg interaction the local impu-
rity—host exchange constant J S Sj� � � � 
2 2 2 1[ ( ) ]� and
�J Jj~ 2 2� in units of the host exchange constant 2.



in our work are elastic scatterers, i.e., each excita-
tion only changes its phase when scattering off each
impurity, but is not reflected. It is worthwhile to
note the same property holds for the theory of a
standard Kondo impurity in a free-electron host
[2,3]. Equally important to mention is that we are
studying a lattice model, hence all two-particle
scattering processes, in particular, from one Fermi
point to the other (backscattering), are taken into
account in our work. However, we emphasize again
that our model (as well as the exact solution for the
Kondo problem in metals [2,3]) does not describe
reflecting impurities.

The Hamiltonian and other integrals of motion,
which can be constructed in a similar way as
higher-order logarithmic derivatives, commute with
the transfer matrix.

3. Bethe ansatz and relation to the Kondo
problem

The eigenvalues and eigenstates of the above
mentioned problem are parametrized by the quan-
tum numbers (rapidities) { }u j j

M
�1, where M is re-

lated to the z projection of the total spin as
S S S c L Mz � � � 
( )imp , where L is the total
length of the chain (including the impurity sites)
and cimp is the concentration of impurities. Notice
that the Hamiltonian commutes with the z projec-
tion of the total spin; hence, M enumerates all pos-
sible states. We shall consider not very large con-
centrations of impurities. Those rapidites are the
solutions of the Bethe equations

e u e u us j j
j

L

j k
k

M

2
1

2
1

( ) ( )
 � 
 

� �
� �� , (7)

where j M� 1,..., ,

e x
x in

x inn ( )
sinh ( )
sinh ( )

�
�




�

�
,

s S� for the host sites (with � f � 0) and s S� � for
impurity sites, where � f can be nonzero. The en-
ergy of the state with the z projection of the total
spin, characterized by M, is equal to
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This formula is valid for the cases in which lengths
of the clusters of neighboring impurities, which in-
teract with each other, are small.

It is easy to show that the behavior of the ensemble
of multichannel (with 2S channels) Kondo impuri-
ties, each of which with coupled to the free-electron

gas via its own «easy-plane»-anisotropic local ex-
change interaction, with the Hamiltonian
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where ck l, ,�
† creates an electron of channel l with the

spin � and impurities are situated at sites xj , can be
also described within the Bethe ansatz scheme. In
the scaling limit for small magnetic anisotropy one
has Jj j

par � 2 � � �, J Jj j j
perp par� 
( )1 3� , and

� j j jJ� 
 par � 3, where � � �j j� �( ) ( )2 22 8 and
� is the density of states of conduction electrons at
the Fermi level. In this case the low-energy spin be-
havior (which is the most important one for the
Kondo impurities) is determined by the solution of
Eqs. (7), while the energy is determined via

E L i
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sin( )
ln ( )

�
. (10)

The condition of the applicability of the Bethe
ansatz scheme for ensembles of disordered impuri-
ties is the presence of large enough numbers of mag-
netic impurities with equal exchange constants,
while those constants for other impurities can be
randomly distributed. For small enough impurity
concentrations the probability of having long clus-
ters of impurities connected by the direct impu-
rity—impurity interactions is small, and in the
thermodynamic limit L � � one can neglect the
contribution of such clusters. In this case the con-
tribution of each impurity (or of each small cluster
of directly coupled impurities) is additive, and we
can solve the problem for each impurity (cluster),
determined by the local exchange coupling con-
stant, related to � j , and, then, introducing the dis-
tribution of � j over the chain (in the volume of the
metal for the case of the Kondo impurities), aver-
age the answers for thermodynamic characteristics.
Such an additive property is the consequence of the
exact integrability of the problem and is strictly
connected with the structure of the Hamiltonians
considered. It turns out, however, that in the
long-wavelength limit the «triangular» structure of
the impurity—host interaction actually produces a
local contact impurity—host interaction [36–38,50],
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and the «fine-tuning» structure of the couplings be-
tween magnetic impurities and the host becomes
nonessential.

4. The ground state behavior

Let us first study the ground state behavior of
the systems considered. In the absence of magnetic
field the ground state energy of the impurity is
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and the total ground state energy is equal to
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where the sum is taken over all the sites (for sites
without impurities we get e0 0( )). Notice that for
� j � 0 and for � �S S the impurity is just an addi-
tional site of the host, the ground state energy per
site of which is
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For the Kondo impurities Eq. (11) can be used
with the overall multiplier 1 2.

The coupling of the impurity to the host ( )Jimp
j

is determined by the constant � j . We can show (see
also [41,50]) that precisely this constant determines
the effective Kondo temperature of the impurity in a
spin chain via TjK j* 
exp( )�� . For energies
higher than this crossover Kondo scale one has the
asymptotically free impurity spin S, while for lower
energies the impurity spin is underscreened for
� +S S (with the Curie-like behavior of the remnant

effective spin � 
S S), totally screened for � �S S
(with the usual marginal FL-like behavior persist-
ing with the finite susceptibility and linear tempera-
ture dependence of the specific heat at low tempera-
ture, and, hence, finite Wilson ratio in the ground

state) and overscreened for � �S S (with the critical
non-FL behavior of a single spin [5]). It is similar to
the findings in the theory of a Kondo impurity in a
free-electron matrix [2,3]. In other words, � mea-
sures the shift off the Kondo resonance (higher val-
ues of � j correspond to lower values on the Kondo
scale) of the impurity level with the host spin exci-
tations, similar to the standard picture of the Kondo
effect in the electron host. The difference between
the two models is that in the free-electron host the
spins of free electrons screen the magnetic impurity,
while in the spin chain the low-lying spin excita-
tions (spinons for the AF chain) quench the spin of
the impurity.

Let us illustrate this with the help of the ground
state behavior of impurities in small magnetic field
h. The ground state energy per site is equal to (we
shall consider small enough � �� 2S)
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for � .S S. Here y � ( )� is the positive part of the so-
lution of the equation

y u du y u J u u
h

( ) ( ) ( )� � � 
 � 
 �

�

�
0

2

�
��

�
 

!

"
#
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�

�
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sin( )

cosh
( )

( ) (
2

4 0

S

S
u B

du y u J u u 2B),

(16)

where the Fourier transform of J x( ) is
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and B is connected with the value of the external
magnetic field. Notice that for the Kondo problem
the right-hand side of Eq. (16) is small and is usu-
ally dropped (see, however, [54]). Equation (16)
for small fields can be solved as the sequence of
Wiener—Hopf equations. It also gives the connec-
tion between h and B:

h
S

S
S S

B a

�

�
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&&
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&&

'
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�...,

(18)

where a is some nonuniversal constant.
For � �S S we close the contour of integration in

Eq. (15) through the upper half plane (the main
pole is of cosh( )�� 2 ) and have

e h e
S S h

S T
j j

jK
0 0

2 2

3

2 2

2 2
( , ) ( )

( )

sin( )
� �

� � �

� �
� 








 

� 
Ah
T

S

jK

2 2 2� � �( )
..., (19)

for h TjK�� , where for small �, T vjK
/j�



e

� � �

( sin( )v S S� � � �2 2 is the Fermi velocity of low-ly-
ing excitations) plays the role of the «local» Kondo
temperature, and A is some nonuniversal constant.
Each single magnetic impurity is totally compen-
sated for h TjK, . The susceptibility of a single im-
purity is finite as h � 0 and is renormalized by a
factor of TjK with respect to the host susceptibility.
Again, the total ground state energy is the sum of
energies of all impurities and host spins (the latter
with � j � 0, i.e., T vjK � ). We shall show below
(see Sec. 4) that the strong disorder in the distribu-
tion of the local Kondo temperatures can lead to
the divergent magnetic susceptibility for h � 0,
i.e., to the NFL behavior.

It turns out that some studies connect the multi-
plier ( )1 2
 � �S with the renormalization of the ef-
fective g factor of the spins [3], while other works
relate such a change to the NFL behavior caused by
the magnetic anisotropy [43,44].

For � +S S the main contribution to the integral
arises from the poles at � � �� i (and then
� � � �� 
2 2/ S( )) which produces for h TjK��

e h e
S S h

Sj j0 0( , ) ( )
( )
( )

� �
�
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 -�
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� 






$

%
&
&

'

(
)
)

�




Ch
h

TjK

/ S2 2� � �( )

..., (20)

whereC is a nonuniversal constant. We can see that
for h � 0 the magnetization is finite for a single
impurity, and spins of single impurities are
underscreened to the value � 
S S by host low-lying
excitations.

Finally, for � �S S and h TjK�� we have

e h e C h
h

Tj j
jK

S

0 0

1

( , ) ( ) ...,� �� 
 �
$

%
&
&

'

(
)
)

� (21)

for S + 1, where �C is a nonuniversal constant, and
for S S� � �1 1 2, we have

e h e
h

T
T hj j

jK
jK0 0

2

3

2 2

4 2
( , ) ( )

( )

sin( )
ln( ) ..� �

� � �

� �
� 




� .

(22)

Hence, for � �S S the spins of single impurities are
overscreened, and that produces the NFL behavior.

5. Thermodynamics and the «quantum transfer
matrix» approach

For our 1D inhomogeneous quantum spin system
at finite temperature we choose a suitable lattice
path integral representation by a mapping which
preserves integrability. For a general formulation of
the Trotter—Suzuki decompositions used in our
approach we refer to Refs. 55–58. As usual, we
study the associated 2D classical vertex model
instead of the direct treatment of the 1D quantum
system.

One can introduce R matrices of different types,
related to the initial one by a counterlockwise rota-
tion R u R u��

	2
2	
��( ) ( )� and ~ ( ) ( )R u R u��

	2
	2
��� by a

clockwise rotation. The transfer matrix � �( , { } )u i
L
�1

can be constructed in a way similar to the case of �.
Then we substitute u J NT� 
 sin � , where N is the
Trotter number. We find

[ ( ) ( )] ( )� �u u O NN H T2 1� �
e . (23)

Hence, the partition function of the quantum 1D
system is identical to the partition function of an
inhomogeneous classical vertex model with alter-
nating rows on a square lattice of size L N� :

Z
N

�
��

lim Tr [ ( ) ( )] 2� �u u N . (24)
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The interactions on the 2D lattice are four-spin in-
teractions with coupling parameters depending on
( )NT 
1 and interaction parameters � i , where i is the
number of the column to which that particular ver-
tex of the lattice belongs. Note that the interactions
are homogeneous in each column, but vary from col-
umn to column. This is similar to the McCoy—Wu
model [59], which is the Ising model with disorder.
(However in its 1D realization the Hamiltonian of
the McCoy—Wu model can be mapped on the qua-
dratic fermion form by means of the Jordan—Wigner
transformation, i.e., there are no interactions in that
model. Our models definitely reveal an essential cou-
pling between particles.) We study this system in the
thermodynamic limit N L, � � using an approach
which is based on a transfer matrix describing trans-
fers in the horizontal direction. The corresponding
column-to-column transfer matrices are referred to as
«quantum transfer matrices» (QTMs) (where an ex-
ternal magnetic field h is included by means of
twisted boundary conditions):

� � 	

	
QTM j

h Tu( , ) � �e 1

� �

 


 �

�
�R u i R

i i
i i

i i
i i

j
i

N

� �
	 	

� �
	 	�

2 1 2 1
2 1 2

2 2
2 2 1

1

2

( ) ~ (u i j
 � ). (25)

See Fig. 2 for an illustration of the transfer matri-
ces of the associated 2D statistical model.

In general all QTMs corresponding to the L col-
umns are different. However, all these operators
commute pairwise. Therefore, the free energy per
lattice site of our 1D quantum system can be calcu-
lated from the largest eigenvalues of the quantum
transfer matrices (corresponding to only one
eigenstate). The free energy per site f of the 1D
inhomogeneous quantum spin chain is given by only
the largest eigenvalue of the quantum transfer
matrix 3QTM as

f
T
L

u
L N

i

L

QTM i� 

�� ��

�
lim lim ln ( , )

1

3 � , (26)

where u J TN� 
 sin � and the dependence on N is
understood implicitly.

Let us consider the hierarchy of QTMs acting on
the subspace 4N

SV2 (the index specifies the spins
of the scatterers) with Tn being a member of such
hierarchy with the auxiliary subspace Vn (here the
index n specifies the spin of the auxiliary particle,
i.e., the auxiliary particle with spin n/ S2 � � scat-
ters off N spins S). By means of a Bethe ansatz pro-

cedure we find the eigenvalue of the quantum
transfer matrix to be given by

3

3

QTM i

S
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N

p
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ip
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�
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2

2

1

2

2

(27)

and

3p l
p

l

p

x x( ) ( )( )�
�

�

5
1

1

,

5 6l
p

l
p /x x( ) ( )( )� �
e ( +2 2 )h p l T
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Q x i p Q x i p

Q x i l p Q x i l p
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1 1
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,

6 l
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p l
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�φ− 2 2
1

1
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 �φ+[ ( )]x i p S z2 2 2
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�φ−[ ( )]x i p S z
z

l

1

1

2 2 2

� � 
 
φ+[ ( )]x i p S z2 2 (28)

with p . �2 10, 3 and

31 2 1 2 1( ) [ ( )] [ ( )]x x i S x i S h T� 
 
 
 � �φ φ+ − e
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Fig. 2. The classical 2D model with four-spin interac-
tion around vertices and alternating coupling parame-
ters from column to column, related to the quantum 1D
chain.



�
�

� � 
 � � �
Q x i

Q x
x i S x i S

( )
( )

[ ( )] [ ( )]
2

2 1 2 1φ φ− +

�


e h T Q x i

Q x

( )
( )

2
. (29)

Here we have dropped the dependence on u and � i ,
which are fixed, and consider the dependence on
the spectral parameter x explicitly. We have used

φ� �
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with «renormalized» � �u u2 �. Here { }xj j
m
�1 is the

set of Bethe ansatz rapidities which are subject to
the «local» Bethe ansatz equations

φ φ

φ φ
− +

+ −
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( )
, (31)

where m is the number of the roots of the «local»
Bethe ansatz equations, being different for different
eigenstates of the QTM. For the largest eigenvalue
we have to take m NS� . However we shall not
solve Eqs. (31) directly, but rather shall be inter-
ested in the functional properties of the eigenvalue
of the transfer matrix. Note that 30 1� and

3 3 3 3p p p p px i x i f x x x( ) ( ) ( ) ( ) ( ),� 
 �� 
 �1 1
(32)

where p . 1 and

f x x i n S jn
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��
�� φ 2 2 1

1

� � 
 � ��φ [ ( )].x i S n j2 2 1 (33)

For this purpose we introduce auxiliary functions
y xn ( ), Y x y xn n( ) ( ),� �1 b x( ), b x( ), B x( ) �
� �1 b x( ), and B x b x( ) ( )� �1 by

y x x x f x nn n n n( ) ( ) ( ) ( ),� .
 �3 31 1 1,
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where n . 1. Then one can straightforwardly check
that (y0 0� )

y x i y x i Y x Y xn n n n( ) ( ) ( ) ( )� 
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 �1 1 ,

32 2 1
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Notice that the first set of equations is nothing else
than the fusion hierarchy (so-called Y system). Let
us use the first 2 2� 
S equations of the Y system as
they are. In the equation for y S2 1� 
 we replace
Y xS2 � ( ) by B x B x( ) ( ), due to

Y x B x B xp ( ) ( ) ( )� , (36)

i.e., we have

y x i y x i Y B x B xS S S2 1 2 1 2 2� 
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Then we obviosly have
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Q x i S

Q x iS
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2 2
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(38)

and

3 3k k k kx i x i Y x f x
 
 
 

 � �1 1 1 1( ) ( ) ( ) ( ),

(39)

which are consequences of the definitions.
What do these additional functions describe? We

can understand it by taking into consideration only
the SU(2)-symmetric case, i.e., � � 0. Here accord-
ing to Ref. 60 the scattering matrix of excitations of
the quantum spin-1/2 system factorizes into the
matrix of the spin-1/2 SU(2)-symmetric model and
the matrix of the level-2S sl2-symmetric RSOS (re-
stricted solid-on-solid) model [61,62] (consistent
with the quantum field theory prediction that the
conformal field theory (CFT) is the le-
vel-2S Wess—Zumino—Novikov—Witten (WZNW)
model, which can be approximately presented by the
sum of a Gaussian sector with the central charge
c � 1 and the Z S2 parafermionic sector with
c S S� 
 �( ) ( )2 1 1 [63]). In the scaling limit Zk
parafermionic theory is approximately equivalent to
the sl2 RSOS model. Hence the functions b, b, B,
and B describe the spinon sector (spinons of the spin
S � 1 2 model), which pertains to the Gaussian for
the SU(2)-symmetric case, while the y j functions
(with the additional condition yk � 0) describe the
RSOS sector.

One can see that these auxiliary functions are
analytic, nonzero, and have constant asymptotic
behavior for the strip 
 � ,1 0Im x for b x( ) and
B x( ), for the strip 0 1, �Im x for b x( ) and B x( ),
and for the strip 
 . .1 1Im x for yn and Yn .
Introducing a x b x i /( ) ( ( ) )� �2 º � and a x( ) �
� 
b x i /( ( ) )2 º � (infinitesimal º + 0), taking the
logarithmic derivative of these functions, then
Fourier transforming the equations, eliminating the
functions Q x( ), and finally inverse-Fourier
transforming, we obtain the final set of nonlinear
integral equations. Eventually, we take the limit
N � �. Proceeding in this way we find for our
system the following set of nonlinear integ-
ral equations for the «energy density» functions of
spinons a a, , A a� �1 , A a� �1 , yn and Yn in
dependence on the spectral parameter x:

ln ( ) ( )ln ( )y x k x y Y y dy1 2� � 
� ,

ln ( ) ( )ln [ ( ) ( )] ,y x k x y Y y Y y dyj j j� � 
� 
 �1 1

2 2 1, , � 
j S ,

[ ( )ln ( ) ( )ln ( )� 
 � � 
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k x y Y y k x y i A yS2 2 º
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k x y i A y dy y xS( )ln ( )] ln ( ),º 2 1
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k x y i Y y dyS( )ln ( )]º 2 1
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 �� 
k x y i Y y dyS( )ln ( )]º 2 1
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ln ( )
cosh ( )

a x
v

T x
h

T
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(40)

with kernel functions

k x d
S/ S x

/
( )

sinh [( ( ) ) ] cos ( )
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2
2 1
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2

�
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�� sinh ( ( ) )S /�� � � �
�
(41)

and

� � �k x d
x

/
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cos ( )
cosh ( )

1
2 2 2�

�
�

��
. (42)

The free energy per site f is given by

f x e x
T A y dy

x y i
( ) ( )

ln ( )
cosh ( )

� 
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�0 2� º




 
�

T A y dy

x y i2�
ln ( )

cosh ( )
,

º
(43)

where e0 is the ground state energy. The free energy
of the total chain with impurities is

F f i S Sj
j

� � � 

�

�
 

!

"
# �

�
� �( ) , (44)

where the sum is taken over all the sites (for sites
without impurities we get f( )0 ).

The free energy per impurity of the multichannel
Kondo problem of the ensemble of disordered
impurities fK is given by
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f x e x
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�
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sinh( )ln ( )

cosh ( )
,

º

º
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where e K0 is the ground state energy. Notice that
for � �S S one has to put lnY S2 � into Eqs.
(43)–(45) instead of ln AA, see Eq. (36). The free
energy of the total ensemble of Kondo impurities is
equal to

F f i S SK K j
j

� � � 

�

�
 

!

"
# �

�
� �( ) , (46)

where the sum is taken over all the impurities. It
turns our that for large arguments, which are im-
portant for the low-temperature characteristics, the
behaviors of the kernels of Eqs. (43) and (45) are
similar. The difference appears to be important for
the energies of order of the values of local exchange
constants and higher, cf. Fig. 3.

These equations can be easily solved numerically
for arbitrary magnetic field values and temperatures.
The random distribution of the values � j can be
described by a distribution function P j( )� . It is
worthwhile to emphasize here the simplicity of the

derived equations. For each impurity there are only
two parameters, the real and imaginary shifts of the
spectral parameter in the formula for the free energy
per site, Eqs. (43),(45). Then the exact solvability
of the problem for any number of impurities permits
one to introduce the distribution of these shifts (the
strengths of the impurity—host couplings pertinent
to the local Kondo temperatures and the spins of the
impurities). We have only 2 1� �S nonlinear integral
equations, Eqs. (40), to solve, and the answer can in
principle be obtained for arbitrary temperature and
magnetic field ranges.

6. Disordered ensembles of magnetic
impurities

One can see from Eqs. (40)–(46) that for low T
the temperature behavior of the magnetic sus-
ceptibility and specific heat of single impurities
strongly depends on relative values of the host spins
S and impurity spin �S .

For S S+ � the impurity is underscreened by
low-lying excitations of the chain (in the case of the
Kondo impurity — by spins of conduction elect-
rons). The magnetic susceptibility � j of such an
impurity is divergent at h � 0 for T � 0. The specific
heat cj exhibits the Schottky anomaly, related to the
undercompensated spin of the impurity. The entropy
of a single impurity at T h� � 0 becomes nonzero,
S j S S S� � � 
 
ln [1 2 ( ) ( 2 )]� � �/ . A finite mag-
netic field lifts the degeneracy and the remnant
entropy becomes zero. Naturally, the total
low-temperature magnetic susceptibility of any
disordered ensemble of such impurities is also diver-
gent at low temperatures.

On the other hand, for � �S S the spins of
low-lying excitations of the antiferromagnetic
critical chain (spins of itinerant electrons for the
multichannel Kondo case) overscreen the spin of a
single magnetic impurity. This yields the critical
behavior, which reveals itself in the divergences of
the T � 0 magnetic susceptibility of a single
magnetic impurity and of the low-T Sommerfeld
coefficient of the specific heat c /Tj for h � 0. In this
case one has a remnant T h� � 0 entropy of each
impurity

S j
S S

S
�

� � � �

�
ln

sin [ (2 1) (2 2)]
sin [ (2 2)]

�

�

/
,

which is removed by a finite magnetic field that
lifts the spin degeneracy of the system. It is not dif-
ficult to show by solving Eqs. (40)–(43) that at
low T one has c T T/Tj j jK

/ S* �� ~ ( ) ( )2 1 for
S + 1, and T c /T T T /TjK j jK j jK* � ~ ln ( ) for
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Fig. 3. The behavior of the kernels of Eq. (43) (dashed
line) and Eq. (45) (solid line).



S � 1 2 at zero magnetic field h � 0. The total
low-temperature � j and the Sommerfeld coefficient
of any disordered ensemble of such impurities are
also divergent at low temperatures.

Here the disorder of the distributions of the im-
purity—host couplings (local exchanges between
Kondo impurities and conduction electrons) does
not yield any qualitative changes but introduces
only specific additional features of the NFL behav-
ior of the system, which is already present for a sin-
gle magnetic impurity.

A more interesting situation arises in the case
� �S S. Here the solution of Eqs. (40)–(43) can be

obtained [62] analytically. We know that at suffi-
ciently low temperatures the functions a and ln A
manifest a sharp crossover behavior, reminiscent of
a step function: a �� 1 and ln A �� 1 for
x T /TjK� ln � , and a, ln ( )~A O 1 for
x T /TjK+ ln � , where � is some constant and TjK
was introduced in Sec. 4. We can introduce [37] the
scaling functions

ln ln { [ ln ( )]}a a x T /TjK
� � � � � ,

ln ln { [ ln ( )]}a a x T /TjK
� � � � � ,

ln ln { [ ln ( )]}A A x T /TjK
� � � � � ,

ln ln { [ ln ( )]},A A x T /TjK
� � � � �

ln ln { [ ln ( )]},y y x T /Tp p jK
� � � � �

ln ln { [ ln ( )]},Y Y x T /Tp p jK
� � � � �

where p S� � 
1 2 1, ..., . In terms of those scaling
functions Eqs. (40) are renormalized in such a way
that the driving terms (those which do not depend
on functions a a yp, ,..., and Yp) in the last two
equations for h � 0 become proportional to
v x iexp ( )
 � º (where small corrections of order
O(T) were neglected). Hence only the asymptotic
behavior of A and A at large spectral parameter is
essential [62]. Following the procedure described
in [62] we obtain the low-temperature behavior of
the free energy per site (for h � 0)

f ej j( ) ( )� �� 
0
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(47)

In the presence of a weak magnetic field h T�� we
can calculate the temperature corrections to the
free energy per site

f e h
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�T /T
O T

jK

(48)

For a single impurity P T T TjK jK K( ) ( )� 
� we
immediately recover the famous Kondo behavior of
the asymptotically free spin (characteristic for a
Kondo impurity in a free-electron host [2,3] and for
a single impurity in a Heisenberg AF chain [41]).
For the homogeneous case we put � j � 0 (which
means that T vjK � , where v is the Fermi velocity
of spinons). Naturally our result in this case coin-
cides with the Bethe ansatz solution [58] and with
the field theoretical prediction [64]. It turns out
that the central charge of the CFT is c S S� �3 1( )
and does not depend on the parameter of the impu-
rity � j . One can see that only one parameter gets
renormalized in the disordered case — the Fermi ve-
locity of the U(1)-symmetric low-lying excitations:
spinons (the Kondo scale plays the role of a «local
Fermi velocity» for an impurity [37]).

Our models permit averaging over a distribution
of � j (or «local» Fermi velocities) because of the
factorization of the free energy of the system. This is
a consequence of the integrability of our models
(i.e., of the only elastic scattering off impurities).
Note that the � j dependence present in the low-en-
ergy characteristics results only in the universal
scales TjK (that is not so for higher energies, but the
latter are irrelevant for the low-temperature disor-
der-driven divergences). Hence for low energies we
can use distributions of TjK , which are also more ap-
propriate in connection to the experiments
[11–20,27–29]. That is why the main features of the
low-energy characteristics of our disordered spin
chain are determined by the distributions of the ef-
fective Fermi velocities for the impurities. Let us
consider the strong disorder distribution, which
starts with the term P T G TjK jK( ) ( )* 
 
5 5 1 ( )5 � 1
valid till some energy scaleG for the lowest values of
TjK (that distribution was shown to pertain to real
disordered quantum spin chains [27–29] and some
heavy fermion alloys [11–20,25], see Figs. 4, 5,
curves 3, for which we took 5 � 0.7 and G = 2. Now
we can calculate the low-temperature behavior of the
average magnetic susceptibility �, the Sommer-
feld coefficient of the specific heat, and the correla-
tion length of the form (the lower limit of the inte-
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gral over the distribution of TjK gives a regular
contribution)

� 5 5* 
 
c

T
G T~ 1 . (49)

These formulas definitely manifest the low-T diver-
gences of � and c T and strong renormalization
in the disordered spin chain as compared to the ho-
mogeneous situation. The ground state average
magnetization displays M h Gz ~ ( )5 behavior,
also different from the homogeneous case.

Other important characteristics of our disordered
spin chain, e.g., the dynamic magnetic susceptibility

��� �( , )T , can be calculated. We can use the stan-
dard ansatz for the relaxational form of the suscepti-
bility of a single magnetic impurity [22,23]

�� �
�

� � �
�

�
( , ) ( )

( )

( )
T T

T

T

/

/2 2
, (50)

in which one supposes that the relaxation rate (pro-
portional to the half-linewidth of the resonance
line) / does not depend on the frequency �. That
ansatz automatically satisfies the Kramers—Kronig

relation. At low temperatures the use of the Shiba
approximation [22,23] determines the first ( )T � 0
term in the expansion of /( )T via

lim
( , )

( )
�

� �

��
�

��

��
�

0
2 02 . (51)

That gives the low-temperature dependence of the
relaxation rate per site for the disordered spin chain
/( ) ~T TjK . Hence we get

�� 
 
� � �5( , ) ( ) ( )~T G G/T g /T1 1 (52)

with g being the universal scaling function deter-

mined by g x x dy/y x y( ) ( )� �

�

� 5 1 2 2

1

, which dif-

fers drastically from the homogeneous case. Similar
calculations, e.g., for the variation of the Knight
shift and for the NMR relaxation rate yield
� �� � 5K K T* 
~ 2 (where �A denotes the mean

square deviation of A due to the distribution of TjK

and T G G/T g /T1
1 1 1
 
 
~ ( ) ( )5 � .
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Fig. 4. Distributions, as functions of the local exchange
constant (with � � 2), used in this study, which produce
the NFL behavior of the ensembles of spin-S impurities
in the spin-S host: 1 — the Lorentzian distribution of
� j; 2 — the log-normal distribution of � j; 3 — the
power-law distribution. Very small values of the ex-
change constant are excluded.
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Fig. 5. Distributions, as function of TK, used in this
study, which produce the NFL behavior of the ensemb-
les of spin-S impurities in the spin-S host: 1 — the
Lorentzian distribution of � j; 2 — the log-normal dist-
ribution of � j; 3 — the power-law distribution. Notice
that we used only small values of TK.



For the important marginal case 5 � 1 the loga-
rithmic T divergences appear. Here one has the dis-
tribution P T PjK( )� � �0 00 valid till G. Then av-
eraging the low-temperature part of the
susceptibility and Sommerfeld coefficient, we obtain

�
�

�* 
 � �
c

T

P G
T

G
T

~ [ln ln ln ...].0

2
1
2

(53)

Here we again see the zero-temperature divergences
of � and c /T (weaker, though, than in the previ-
ous case). We can also calculate the low-field
ground state magnetization:

M hP h G h/C Gz ~ [ ln( ) ln(ln( )) ...]0 
 
 � � .

We obtain for the dynamic magnetic susceptibility
the scaling behavior

�� 
 
� � � ��( , ) [( ) tan ( . )]~T P / GT/0
12 2 0 41

(which is again in drastic contrast to the homoge-
neous case).

The weak power law or logarithmic dependence
pertains to the Griffiths singularities in the
proximity of the critical point T � 0 (cf. [25,26]).
For these distributions of TjK the Wilson ratio at
T � 0 is equal to 2 32� / , characteristic for a FL-like
situation. It turns out that our above-mentioned
results for low temperatures are also valid for
random ensembles of � �S n 2 (where n is the number
of channels) multichannel Kondo impurities with a
local anisotropic, generally speaking, interaction of
the latter with conduction electrons, because at low
temperatures the difference between the energy of
the spin chain and the spin subsystem of the Kondo
system is small (cf. Fig. 3).

We can illustrate our analytic results by
numerical calculations for the solutions of Eqs.
(40)–(44) (for accurate numerical calculations see
Ref. 38). In Fig. 6 the temperature dependences of
the magnetic susceptibility and the Sommerfeld
coefficient for the most usual AF spin magnetically
isotropic spin S � 1 2 chain are depicted. The solid
lines show the finite values of the low-T � and c T in
this case. However, the dashed and dotted lines
present the answers for the distributions of � j
(which, in turn, corresponds to the distributions of
either the impurity—host exchange constants, see
curves 1 and 2 of Fig. 4, or local effective Kondo
temperatures, see Fig. 5, which presents results for
� � 2) with strong disorder. The latter means that
the wings of the distributions are large enough
compared to the maxima of the distributions. The
dotted line corresponds to the Lorentzian distri-
bution P /j j( ) [( ) ]� � � �� � 
2 2 2 1. The dashed line

pertains to the so-called logarithmically normal
distribution [65]

P
/

/
j

j

j

( )
exp( [ln( ) ] )

( )
�

� �

� � �
�


 � �

�







2 10 1 4

2 10

6 2

6
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which is also characteristic for strong disorder. One
can see the qualitative difference between the be-
havior of � �S S magnetic impurities with the
strong disorder of the distribution of their cou-
plings to the host as compared to the isotropic spin
chain. The magnetic susceptibility and the
Sommerfeld coefficient diverge strongly at T � 0
for the strongly randomly distributed parameters of
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Fig. 6. Magnetic susceptibility (a) and the Sommerfeld
coefficient c T (b) at h = 0 for the isotropic spin-1 2
antiferromagnetic chain with spin-1 2 magnetic impuri-
ties. The exchange constant of the host is 2. The solid
line shows the homogeneous chain; the long-dashed
line — the Gaussian distribution; the dashed line — the
log-normal distribution; the dotted line — the Lorentzian
distribution of � j.



the impurity—host couplings (note that in Ref. 37
we have shown that at low temperatures only the
TjK determine the scaling behavior of local impuri-
ties). This is in stark contrast with the homoge-
neous case. It turns out that the low-temperature
asymptotics of the log-normal case of the disorder
are [38]

c T T~ {ln( ) exp([ln ln( )] } ,1 1 2 1


� ~ { ln ln( ) exp([ln ln( )] } ,T T T1 1 2 1
 (54)

while for the Lorentzian distribution one has

c T T T~ ~[ln( )] , [ ln( )]1 12 1
 
� . (55)

The latter case is similar to the situation present for
the so-called Griffiths phase [26] at very low tem-
peratures.

In Fig. 7 similar behaviors are seen for the mag-
netic susceptibilities and Sommerfeld coefficients of
the homogeneous case and the cases with the log-nor-
mal and Lorentzian distributions (strong disorder)
and the Gaussian distribution (weak disorder, see be-
low) for the mostly anisotropic «easy-plane» case
� �� 2 (for S � 1 2 this corresponds to the XX
model, which for the homogeneous case pertains to
the free spinless fermion gas). One can see that the
changes due to the nonzero magnetic anisotropy of
the «easy-plane» type are only qualitative. This is
clear, because such an «easy-plane» magnetic aniso-
tropy does not produce gaps for the low-energy exci-
tations (i.e., it is a marginally irrelevant perturba-
tion from the RG viewpoint), and, hence, the system
remains in the critical regime.

On the other hand, the weak disorder does not
produce such qualitative changes in the behavior of
random ensembles of disordered magnetic impuri-
ties. By weak disorder we mean a narrow distribu-
tion of � j . The long-dashed lines of Figs. 6 and 7
depict the temperature behavior of the ensemble of
magnetic impurities with the weak Gaussian distri-
bution of � j (which is close to a single impurity dis-
tribution P j j( ) ( ))� � �� . One can obviously see
that such a narrow distribution (weak disorder)
does not yield the divergences of the low-tempera-
ture magnetic susceptibility and the Sommerfeld co-
efficient of the specific heat.

The reason for such a different behavior of wide
and narrow distributions of the parameters, which
defines the impurity—host couplings (or
strong—weak disorder, respectively), is clear. At
low energies the local Kondo temperature define the
crossover scale for the behavior of the magnetic im-
purity. For the case � �S S a single magnetic impu-
rity is screened by low-lying excitations of the host

for T TjK� , and is not screened for T TjK+ (with
the Curie-like behavior of the unscreened remnant
spin). For the ensembles of magnetic impurities
with the weak disorder the temperature is larger
than the average Kondo temperature of the ensem-
ble of impurities, and, hence, the total magnetic
susceptibility and the Sommerfeld coefficient are fi-
nite for T � 0. For the strong disorder, on the con-
trary, many local Kondo temperatures are less than
the temperature. Those impurities remain un-
screened by the low-lying excitations of the host,
and, hence, the total magnetic susceptibility and
the Sommerfeld coefficient become divergent for
T � 0.
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Fig. 7. Magnetic susceptibility (a) and the Sommerfeld
coefficient c/T (b) at h � 0 for the anisotropic � �� 2
spin-1 2 antiferromagnetic chain with spin-1 2 magnetic
impurities. The solid line shows the homogeneous chain;
the long-dashed line — the Gaussian distribution; the
dashed line — the log-normal distribution; the dotted
line — the Lorentzian distribution of � j.



Finally we would like to show how the magnetic
field lifts the degeneracy. In Fig. 8 the temperature
behavior of magnetic susceptibilities and the
Sommerfeld coefficients for the isotropic cases for
the log-normal and Lorentzian distributions (cf.
Fig. 6), but for the nonzero magnetic field h � 0.2
are depicted. One can clearly see that such a field
removes the divergences in the low-T susceptibili-
ties and Sommerfeld coefficients for the models
with strong disorder. As an example, the tempera-
ture dependences of the same values for h � 0 2. are
shown for the homogeneous chain. It turns out that
the weak magnetic field does not yield any qualita-
tive changes in the temperature behaviors, as ex-
pected.

For higher values of spins the changes, compared
to the case � � �S S 1 2, are only quantitative. For
example, the values of � and c become larger for
larger spin values. However, there are no drastic
changes in the behavior of disordered ensembles of
impurities, in comparison with the case discussed
above. This seems to be natural, because only
low-lying excitations (which have Dirac seas in the
ground state) are responsible for the Kondo-like
screening of spins of impurities, while other excita-
tions (the quasienergies of which are described by
yp and Yp), are higher-energy. In other words,
spinons, which describe the SU(2) (or U(1)) sym-
metries of the system (or the Gaussian of the
WZNW model) are essential for the process of
screening of magnetic impurities, while excitations
that describe the sl2 symmetry of the RSOS sector
(or parafermions of the WZNW model) do not play
a qualitative role in that process.

We point out again that for low temperatures
(T � 2) the numerical data are applicable to the
behavior of the ensembles of Kondo impurities with
«easy-plane» magnetic anisotropy (and, naturally,
without it) of the local exchange interaction bet-
ween magnetic impurities and conduction electrons.

7. Conclusions

Summarizing, in this work we have considered a
number of exactly solvable models of magnetic impu-
rities in critical quantum antiferromagnetic spin
chains and multichannel Kondo impurities. We have
studied their ground state properties and constructed
the finite set of nonlinear integral equations which
exactly describe the thermodynamics of the models.
We have obtained several analytic low-energy ex-
pressions for the temperature, magnetic field, and
frequency dependences of important characteristics
of the exactly solvable disordered quantum spin
models and disordered multichannel Kondo impuri-
ties with essential many-body interactions. We also
have analyzed the data of numerical calculations of
those nonlinear integral equations. We have shown
that the only low-energy parameter that gets
renormalized is the velocity of the low-lying excita-
tions (or the effective crossover scale connected with
each impurity); the others appear to be universal.
[Note that the finite size corrections to the ground
state behavior of our disordered spin chains can be
obtained just by replacing ( )G T L� .] We used
several kinds of strong disorder important for experi-
ments. Some of them produce low divergences in cer-
tain characteristics of our strongly disordered critical
systems (compared with the finite values for the ho-
mogeneous case or a single impurity). They pertain
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Fig. 8. Magnetic susceptibility (a) and the Sommerfeld
coefficient c T (b) at h � 0.2 for the isotropic spin-1 2
antiferromagnetic chain with spin-1 2 magnetic impuri-
ties. The solid line shows the homogeneous chain; the
dashed line — the log-normal distribution; the dotted
line — the Lorentzian distribution.



to the wide distributions of the local Kondo tempera-
tures, i.e., to a strong disorder in the system. On the
other hand, for a weak disorder, or, in other words,
for narrow distributions of the local Kondo tempera-
tures, our exact results reveal the presence of the
Kondo screening of the disordered ensembles of
magnetic impurities by low-lying excitations of the
host. We point out that our results qualitatively co-
incide with the data of experiments on real disor-
dered quasi-1D quantum AF systems [27–29] with
5 ~ 0.26–0.42. Also, qualitatively similar behavior
has been observed in the 3D heavy metallic alloys
[11–20] with 5 ~ 0.60–0.85. It is interesting to note
that similar results were recently obtained in which
the distributions of Kondo temperatures used in this
work were derived either from the proximity to a
phase transition point in the Griffiths phase approxi-
mation (cluster percolation) [26] or from the Ander-
son localization effects in the infinite-dimensional
statistical dynamical mean field theory approxima-
tion [66]. Also our results can be useful for the de-
scription of the Kondo necklace model [67,68]. All
these similarities can be considered as the manifesta-
tion of generic features of the behavior of concen-
trated disordered magnetic systems for temperatures
higher than a critical temperature in our effectively
one-dimensional exactly integrable quantum models.
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