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The electronic specific heat C as a function of temperature T is calculated for a
mesoscopically disordered s-wave superconductor treated as a spatial ensemble of domains
with continuously varying superconducting properties. Each domain is characterized by a cer-
tain critical temperature Tc0 in the range [0,Tc] and is supposed to have a size L > �, where � is
the coherence length. Specific calculations are performed for exponential and Gaussian distri-
butions of Tc0. For low T, the spatially averaged C T( ) is proportional to T2, whereas the
anomaly at Tc is substantially smeared even for small dispersions. For narrow gap distribu-
tions there exists an intermediate T range, where the curve C T( ) can be well approximated by
an exponential Bardeen–Cooper–Schrieffer-like dependence with an effective gap smaller
than the weak-coupling value. The results obtained successfully reproduce the salient features
of the C T( ) data for MgB2, where a wide superconducting gap distribution has been observed
previously in the tunneling, point-contact, photoemission and Raman spectra. The conclusion
is reached that the multiple-gap behavior of superconducting MgB2 is due to the spatial distri-
bution of dissimilar domains. Intrinsic nonstoichiometry of the compound or possible elec-
tronic phase separation may be the origin of the mesoscopic inhomogeneities. The same model
describes the low-T heat capacity of cuprates, although the sources of inhomogeneity are dif-
ferent from those in MgB2 .

PACS: 74.20.–z, 74.25.Bt, 74.80.–g

1. Introduction

After the discovery of the superconducting com-
pound MgB2 with a critical temperature Tc � 40 K
[1] it became clear that high Tc‘s may be brought
about not only by various exotic mechanisms such
as spin-fluctuation-driven Cooper pairing [2]. In-
deed, in MgB2 the electron–phonon origin of su-
perconductivity seems highly plausible [3–10],
phonon anharmonicity probably playing a decisive
role [11]. As for the symmetry of the superconduct-
ing order parameter, the available data are rather
controversial, although the main body of the data
correlate better with the isotropic s-wave behavior.
In any case, the Cooper pairing per se as the back-

ground of superconductivity in MgB2 is beyond
question, as stems from the existence of the
Josephson effect in break junctions [12]. Moreover,
coherent peaks in the optical conductivity [13] and
spin–lattice relaxation [14] (the latter results were
disputed in Ref. 15) are indicative of conventional
Bardeen–Cooper–Schrieffer (BCS) s-wave pairing
in MgB2. Nevertheless, the low-temperature (low-
T) properties of MgB2 deserve further attention,
since genuine BCS-like asymptotics of various
quantities are never observed. The situation resem-
bles that for high-Tc oxides, where a predominantly
dx y2 2� -wave symmetry of the superconducting or-
der parameter is inferred both from phase-sensitive
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experiments and phase-insensitive ones, including
measurements of low-T asymptotics [16]. However,
it was shown earlier that the power-law behavior of
the electronic contribution to the heat capacity
C T( ), thermal conductivity, NMR spin–lattice re-
laxation, ultrasound attenuation, or magnetic field
penetration depth may be equally well explained
by the spatial averaging of these quantities over a
random spatial distribution of superconducting do-
mains with different Tc‘s and energy gaps [17–19].
This analysis was qualitative, and to describe the
diverse experimental data for MgB2 a more rigor-
ous quantitative approach has been developed and
is given below.

Before proceeding further to the model, it is ne-
cessary to give a short summary of the measure-
ments of different properties appropriate to MgB2
with a special emphasis on the inferred electron
spectrum gapping in the superconducting state.

The low-T asymptotics of the magnetic field pe-
netration depth �( )T was shown by muon spin-rota-
tion [20], microwave surface resistance [21], and
optical [13] measurements to be a power-law one.
This was interpreted as either unconventional su-
perconductivity or at least as a highly anisotropic
s-wave pairing. On the other hand, resonant tech-
nique investigations of MgB2 wires [22] and c-axis
oriented films [23] revealed the exponential de-
crease of the T-dependent term ��( )T in �( )T , with
the pertinent superconducting energy gap �( )T
much smaller than is required by the weak-coupling
BCS theory in view of the large resistively deter-
mined Tc of the substance. Actually, similar results
were obtained by muon spin-rotation [24], mutual
inductance [25], and resonance [26–28] techniques.
Nevertheless, those authors ascribed the apparent
deviations from the BCS theory to a two-gap cha-
racter of superconductivity in MgB2. We should
stress that those experiments, giving averaged
quantities, can not justify precisely this scenario,
although clearly indicating that a simple conven-
tional description is not adequate. As for the im-
provement of fitting on the basis of the two-gap ap-
proximation, its merits should be considered with
caution too, since in this case at least two extra free
parameters are added. On the other hand, �( )T
measurements are particularly sample-dependent
[29,30], which is very important for the inter-
pretation. Namely, a single-coil mutual inductance
technique showed [29,30] that for sintered pellets
��( )T T� 2, whereas for thin films ��( )T �
� �exp ( )� L/T , with � L reduced in comparison
with the BCS-inferred value (the Boltzmann con-
stant kB �1). Alternatively, the data for bulk sam-

ples of MgB2 can be fitted well by the superposi-
tion of two s-wave-gap contributions, previously
used to describe properties of YBa Cu O2 3 7�y [31].
The authors of Refs. 29, 30 also make the important
point that the magnitudes of �( )0 and the �( )T
curves near Tc differ substantially for samples made
in the same batch.

The results of thermoelectric power S T( ) studies
reveal the complexity of the electronic properties of
MgB2. In Ref. 32 measurements of S T( ) and the re-
sistivity �( )T of Mg Al B1 2�x x above Tc were carried
out, and a predominately hole character of the cur-
rent carriers was found, the deviations from linea-
rity at higher temperatures being attributed to the
electron-like sheets of the Fermi surface (FS). The
existence of both holes and electrons in MgB2 with
a considerable change of transport properties above
150 K also follows from the S T( ) measurements car-
ried out in Refs. 33–35. The thermal conductivity
	( )T in polycrystalline samples of MgB2 shows a
superconducting gapping below Tc [33], apparently
with smaller � than is consistent with the
weak-coupling BCS value. On the other hand, ex-
periments on single crystals [36], followed by the
subsequent subtraction of the lattice term 	ph( )T
from the overall 	( )T , led those authors to the con-
clusion that the electronic part 	el ( )T of the ther-
mal conductivity is fitted well by a combination of
two BCS-like terms with smaller and larger gaps,
� S ( ) .0 165� meV and � L( ) .0 5 3� meV.

The optical data are more ambiguous than their
transport counterparts. Specifically, in the infrared
reflectance [37,38], transmission [39,40], and Ra-
man [41] spectra only one s-wave-like supercon-
ducting gap manifests itself. It also turns out that
the quasiparticle scattering rates 
�1 strongly ex-
ceed the relevant � amplitudes, so that the dirty
limit is achieved (the Planck’s constant � �1). This
is at variance with estimates of the mean free path l
from transport phenomena [42–44], according to
which MgB2 is a well-defined clean supercon-
ductor. High-resolution photoemission studies [45]
also found one isotropic gap with �(T � �15 K)
� 4 5. meV and a T dependence of the BCS type.

Other Raman [46], optical transmission [47] and
reflectance [47,48] measurements, as well as
photoemission studies [49], testify that a two-gap
description in this case is more adequate than a con-
ventional one, involving a single gap. In Ref. 38 it
is concluded that the single gap � � �15 2. meV
found there is a minimal value of the anisotropic
gap covering the multi-sheet FS of MgB2 .

Thermodynamic measurements might be decisive
in determining the low-T symmetry-based supercon-

Fizika Nizkikh Temperatur, 2002, v. 28, No. 11 1127

Heat capacity of mesoscopically disordered superconductors: implications for MgB2



ducting properties of MgB2 because the minority
phases or grain boundaries do not affect the results
substantially, in contrast to transport phenomena,
for example. The behavior of the electronic heat ca-
pacity C T( ) near Tc is also of great importance for
elucidating the nature of superconductivity here.
And, indeed, there have been many specific heat in-
vestigations for MgB2 performed by various groups
[50]. Unfortunately, the isolation of the current-
carrier contribution to the overall heat capacity is
obscured by (i) phonon anharmonicity, (ii) the in-
volvement of low-T Einstein optical modes, espe-
cially for compounds containing light elements,
(iii) the Schottky term due to paramagnetic impu-
rities, and (iv) the complex electronic band struc-
ture of MgB2, leading to at least two important
electron-DOS-driven terms [51]. In this connec-
tion, it should be stressed that although the two-
band approximation involving two Sommerfeld
constants � S [51] turns out to be a satisfactory fit-
ting procedure, it cannot be true from a fundamen-
tal point of view because an almost continuous set
of energy gaps is observed in different point-con-
tact spectra of the same polycrystalline MgB2 pel-
let for varying locations of the Pt needle [52]. Such
apparently random distribution of gaps has been
observed, e.g., in the tunneling spectra of Nb3Sn
[17,53].

The main features of the data for C T( ) are (i)
small values of the phase transition anomaly
�C C Cs n� � at Tc [50,54–56] in comparison to
the BCS case [57], when the ratio

�
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Here the subscripts s and n correspond to the
superconducting and normal states, respectively,
N( )0 is the electron DOS at the Fermi level, and
� 0 is the energy gap value at T � 0. As indicated
above, for MgB2 it is necessary to take into
account a possible T dependence of the Sommerfeld
«constant». The deviations from Eq. (3) may be
twofold: power-law-like � T2 [54] and of the form

� �� �exp A/T [56,58,59], where the constant A is

much less than �� � ��T Tc c�176. , the value inherent
to the weak-coupling superconductor [57], and
� �17810. ... is the Euler constant. Thus, the raw
specific heat data do not give definite answers to
the problems of the order parameter symmetry and
the underlying mechanisms of superconductivity.

In this article, on the basis of the experimentally
proved distribution of energy gaps we show that
both main features of the bulk property C Ts ( ) can
be explained by the conventional s-wave supercon-
ductivity, so that these data can be easily recon-
ciled with other observations [13,14]. The adopted
approach, being an outgrowth of the earlier one
[17–19], is phenomenological because the origin of
the gap distribution is not known precisely. How-
ever, in accordance with the tunneling data [60],
the gap distribution is considered to occur in real
space rather than in k space, as was suggested, e.g.,
in Refs. 50, 54. The theoretical description of such
spatially disordered superconductors depends on
the ratio between the characteristic superconduc-
ting domain size L and the coherence length � [61].
If L� �, the superconducting properties are deter-
mined by local values of the order parameter �.
Our approach corresponds to these so-called large-
scale inhomogeneities, whereas the small-scale in-
homogeneities correspond to the reverse inequality
L� � [62,63]. The quantity � is T-dependent and
tends to infinity at Tc. Hence, in the close vicinity
of Tc, strictly speaking, all inhomogeneities become
small-scale ones, and a divergent correction propor-
tional to ( ) /T /Tc � �1 1 2 appears in the expression
forC Ts ( ) [62]. Nevertheless, it can be easily shown
that for conventional superconductors including
MgB2 the relevant T range is very small, so that its
influence on the phase transition smearing is ne-
gligible. Moreover, it has been disclosed recently
that the correction for three-dimensional supercon-
ductors is actually finite [63]. Therefore we can
identify � with the T-independent coherence length,
dependent on the Pippard coherence length
� �0 � v /F � and the mean free path l [57]. Here vF
is the Fermi velocity. For MgB2, which can be con-
sidered a clean superconductor [42,44], the quanti-
ties of interest are � �� �� �0 600l Å, although
there is a significant scatter of the values of �0 in-
ferred from different experiments and for different
kinds of samples [6,64], so that we may estimate
this quantity as lying in the range from 25 to
120 Å. This dispersion of �0 qualitatively correlates
with the broad spectra of gaps in tunnel and
point-contact spectra [6,50,52,60].

A competitive theory [65–72] was put forward
to reconcile the numerous transport, optical, micro-
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wave, and thermodynamic experimental data and
the almost obvious s-wave and phonon-driven cha-
racter of superconductivity in MgB2 . It is based on
the idea of multi-gap superconductivity with the
gap diversity on the different sheets of the Fermi
surface, i.e., in momentum k space. This is an ex-
tension of the well-known two-band superconduc-
tivity concept [73], which, in turn, approximates
the complex anisotropy of the electron spectrum in
MgB2 [6,74–77]. A more direct version of the
anisotropic s-wave superconductivity in MgB2 has
also been considered [78,79].

The expected observable results of our theory
and the two-band model differ in the sense that in
the latter case there should be two different gap pa-
rameters connected by interband scattering matrix
elements or gaps clustered into two groups [68].
On the other hand, we suggest that the gap distri-
bution should be quasi-continuous due to the pro-
ximity effect. Since our theory is phenomenolo-
gical, it may be also directly applied to other
substances, including cuprates. This will be done in
subsequent publications.

2. Theory

Let us examine a T-independent configuration of
mesoscopic domains, with each domain having the
following properties:

(A) at T � 0 it is described by a certain supercon-
ducting order parameter � �0 0� max;

(B) up to a relevant critical temperature
T /c0 0 0( ) ( )� �� � � , it behaves like an isotropic
BCS superconductor, i.e., the superconducting or-
der parameter �( )T is the Mühlschlegel function
� � �( ) ( , )T TBCS� 0 [57]; and the electronic spe-
cific heat is characterized in this interval by the
function C Ts ( )� ;

(C) at T Tc� 0 it transforms into the normal
state, and the relevant property is C Tn ( ).

At the same time, the values of � 0 scatter for
different domains. The current carriers move freely
across domains and acquire appropriate properties
inside each domain. The adopted picture is espe-
cially suitable for superconductors with small co-
herence lengths �0 [50], where even nanoscale in-
trinsic inhomogeneities may comprise domains of
the sort discussed above.

In other words, each domain above its Tc0 is in
the normal phase, and its specific heat is [57]

C T N Tn ( ) ( )�
�2

3
0 . (4)

For simplicity we restrict ourselves to the situa-
tion when the whole sample above Tc is electroni-
cally homogeneous, i.e., is characterized by a com-
mon, approximately constant N( )0 value. Below
Tc0 for a given mesoscopic domain, a corresponding
isotropic gap appears on the Fermi surface. The mi-
croscopic background of the assumed scatter in Tc0
may be diverse but ultimately manifests itself as a
variation either of the magnitude of the elec-
tron–phonon interaction or of the local values of
the Coulomb pseudopotential.

In the framework of our phenomenological ap-
proach, superconductivity (if any) inside a chosen
domain is described by the relevant parameters � 0
and Tc0. They are bounded from above by � 0

max and
Tc, respectively. These � 0 may or may not group
around a certain crowding value � 0

* , depending on
the sample texture. The existence of such two pos-
sibilities is in accordance with the varied data for
MgB2 [6,50–52,60]. The specific gap distribution
is described by the function f0 0( )� .

Thus, for all T in the interval [ , ]0 Tc , where
T Tc c� max 0, the superconducting sample consists
of superconducting (s) and nonsuperconducting (n)
grains more or less homogeneously distributed over
the sample volume. The critical temperature Tc de-
fined in such a manner may not necessarily coincide
with the resistively determined Tc

res governed by
percolation networks in the disordered samples
[80,81].

The measured C Ts ( ) is an averaged sum of con-
tributions from both phases,

C T C T C Tn s( ) ( ) ( )� � , (5)

which depends on the distribution function f T( , )�
of superconducting domains and on the normal-
phase fraction �n T( ) [17–19]:

C T C T Tn n n( ) ( ) ( )� � , (6)

C T C T f T ds

T

s( ) ( , ) ( , ) .

max( )

� �
0

�

� � � (7)

Here � � �max max( ) ( , )T TBCS� 0 , and f T( , )� is a
result of the thermal evolution of the initial (at
T � 0) distribution function f0 0( )� .

It is convenient to normalize all temperatures by
Tc and all energy parameters by � 0

max:

t T/T /c� �, max� � � 0 , (8)

with relevant indices retained, and to consider
C Ts ( ) and C Tn ( ) together with their averaged
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counterparts, normalized by the C Tn c( ) value, i.e.,
for example,

c t
C T

C Ts n
s n

n c
,

,( )
( )

( )
� . (9)

Then one can easily find that for each domain,
characterized by the parameter �0 at t � 0, the
dimensionless heat capacity is either

c t t tn ( ) � for > �0 (10)

or

c t c
t

s BCS( ) �
�

�
��

�

�
���

�0
0

for t � �0 , (11)

where c xBCS ( ) is a well-known normalized heat-
capacity function for a standard BCS supercon-
ductor [57]. The parameter N( )0 , due to the as-
sumption N( )0 � const, disappears from the nor-
malized dependences (10) and (11).

For a surmised domain ensemble a distribution
function f T( , )� for finite T is defined by the for-
mula

f T d f d( , ) ( )� � � �� 0 0 0 . (12)

Then Eq. (7) can be rewritten as

c t c
t

f ds
t

BCS( ) ( )�
�

�
��

�

�
���

1

0
0 0 0 0�

� � � . (13)

To obtain the low-T asymptotics, we introduce a
new integration variable z t/� �0. Then,

c t t
dz

z
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��2
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Expanding the function f
t
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we arrive at
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The first term in the right-hand side is the sought
asymptotics

� �c t t f
dz

z
c z f ts BCS( ) ( ) ( ) . .& � ��0 0 2 45 02

0 3
0

1

0
2

(17)

Note that in our previous works [17–19], to esti-
mate the numerical coefficient in the asymptotic
term we used the dependence C Ts

asympt ( ) instead of
C TBCS ( ), which led to the result c ts ( )& �0
� 0 54 00

2. ( )f t .
The dependence of the next term in the expan-

sion for c ts ( ) can be estimated in the limit t & 0
by substitution of the normalized expression (3) for
c zBCS ( ). Then

dz

z
c z

tBCS

t

3
0

2

3 2 7
2

( ) ,�
�

�
��

�

�
���

�

� �

�
�

' . (18)

For small t this expression decreases as
O t t[ exp ( )]/5 2 � � � � . At the same time, the conver-
gence of the series in Eq. (16) for t & 0 is O t( )4 if
the function f0 0( )� has an extremum at �0 0� (then
the coefficient B1 0� ), or O t( )3 otherwise.

Now, in the same low-T region let us take a look
at the contribution c tn ( ) of the continuously ex-
panding normal phase. At any T, all domains with
� � �0 � ( )/ T (i.e., �0 � t) are nonsuperconducting,
with the total normal-phase fraction being

� � � �n n

t

t f d( ) ( ) ( )� � �0
0

0 0 0 . (19)

For simplicity, below we restrict ourselves to the
case when all domains at t � 0 are superconducting,
i.e., �n ( )0 0� . The generalization to the case
�n ( )0 0( is obvious: at each temperature there
exists an additional contribution from the normal
phase. Then the function f0 0( )� should be
normalized by 1 0� �n ( ), and all averaging-driven
effects would accordingly decrease. Moreover, if
�n ( )0 0( , the observed heat capacity c t( ) must
include an extra linear contribution �n t( )0 in the
true superconducting state exhibiting the Meissner
effect. On the other hand, the observation of the
resistive macroscopic superconductivity depends on
the crossing of the percolation threshold by the
superconducting domain fraction.

As to the second term in Eq. (19), the approxi-
mation of f0 0( )� by its limiting value f0 0( ) demon-
strates that the main temperature-dependent contri-
bution to �n t( ) is linear in t. Since c tn ( ) is also a
linear function of t, the apparent contribution
c tn ( ) of the normal phase to the total specific heat
c t( ) is quadratic in t for small t, similarly to
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c ts ( ) . Thus, in the proposed model of a disordered
superconductor with a broad continuous spatial dis-
tribution of domains possessing different Tc0‘s, the
normal and superconducting contributions to ther-
modynamic quantities are functionally indistin-
guishable from each other.

3. Numerical results

In addition to the low-T asymptotics the overall
T dependence of the heat capacity C up to Tc is also
of considerable interest. It is especially important
to trace the smearing of the anomaly �C by the
same disorder effect that leads to the transforma-
tion of the intrinsic exponential low-T behavior of
C Ts ( ) into power-law behavior. These objectives
were met by numerical calculations.

For this purpose, two model distribution func-
tions f0 0( )� , namely, exponential

) )
f

d
E

0 0
0 0

( ) exp
*

�
� �

� �
� 

!

"
"

#

$

%
%

(20)

and Gaussian

f
d

G
0 0

0 0
2

22
( ) exp

( )*
�

� �
� �

� 

!
"

#

$
% (21)

were used. The parameter �0
* designates the peak

position, which may vary from 0 to 1. By changing
the parameter d we control the dispersion of the
domain superconducting properties: the sharper the
function f0 0( )� , the more homogeneous the en-
semble. Nevertheless, for any d both functions are
nonvanishing in the limit �0 0� and their Taylor
series (15) begin with the relevant constants as the
main terms. Only for highly improbable distri-
bution functions such that f0 0( )� extends to �0 0�
and also satisfies the condition f0 0 0 0( )� � � can
the Taylor series begin with the next term,
resulting in the asymptotics C T Ts ( ) � 3.

Figure 1 shows the influence of the choice of dis-
tribution function on c ts ( ) for �0 1* � (a) and
�0 0* � (b). In all cases, for larger d the curves con-
verge towards a common limit which corresponds
to the uniform distribution fU

0 0( )� � const. For
smaller d the curves approach opposite homoge-
neous bounds: the discontinuous curve for a clean
BCS superconductor (Fig. 1,a) and the straight
line, coinciding with the abscissa, for a normal
metal (Fig. 1,b). Thus, on Fig. 1,b the curves be-
come more and more flat. As to Fig. 1,a even for
d � 01. [i.e., when f /f0 0

60 1 4 5 10( ) ( ) .� * � for the
exponential distribution and � * �19 10 22. for the
Gaussian] the resulting curves are no longer discon-

tinuous: the jump transforms into a hump. In
addition, with variation of the parameter d the
peak positions on the two panels shift in opposite
directions.

Thus, the substantial spreading of the anomaly
�C readily seen in Fig. 1 seems quite natural in
view of the results for MgB2 [50,54–56]. However,
the concomitant superposition of various domain
contributions causes distortion of the overall curves
C Ts ( ) and C T( ), which is much less trivial. This
very superposition may lead for low T to the
power-law behavior whose the asymptotics was an-
alyzed above.

Figure 1 also evidences that different distribu-
tions lead to similar results for each set of parame-

Fizika Nizkikh Temperatur, 2002, v. 28, No. 11 1131

Heat capacity of mesoscopically disordered superconductors: implications for MgB2

Fig. 1. Temperature dependences of normalized (see the
text) electronic heat capacity c ts( ) of superconducting
phase fraction for exponential and Gaussian distribu-
tions of the parameter �0 over the inhomogeneous en-
semble of domains. The panels correspond to the maxi-
mum position at �0 1* � (a) and �0 0* � (b). For d � 01. —
exponential (■), Gaussian (�); d � 025. — exponenti-
al (●), Gaussian (�); d �1 — exponential (▲), Gaus-
sian (�).



ters, and it would be the more so if we plotted the
relevant c t( ) curves. Hence, hereafter we confine
ourselves to the Gaussian distribution.

The dependences c t( ) are depicted in the
Fig. 2,a for �0 1* � and different dispersion values d.
The low-T parts of the c t( ) curves are displayed
on a log–log scale in Fig. 2,b. The dotted straight
lines correspond to the pertinent T2 asymptotics for
each curve. It is clear that the validity range of the
asymptotics extends with the increase of d. Al-
though intervals where the T2 approximation holds
good exist for any d, for small d this is merely of aca-
demic interest, because both temperatures and heat
capacities become too tiny to be experimentally sig-
nificant. On the other hand, for higher T in this

case the averaged curves c t( ) lie rather close to
the exponential curve inherent to the BCS theory
(the dashed curve). Such transitional parts of the
dependences c t( ) describe well the exponential
low-T behavior for some samples of MgB2 [56,58]
with smaller exponents than in the BCS case.

For large d, when the Gaussian distribution
function f G

0 0( )� becomes almost uniform (such a
random dense, although quasi-discrete, distribution
of gaps was found in point-contact spectra [52]),
the quadratic asymptotics are valid at least up to
t � 01. (for the uniform distribution fU

0 0( )� the rela-
tive error of the t2 asymptotics is � 0 6. % at t � 01.
and � 5% at t � 0 2. ), which agrees with the measure-
ments [54]. For intermediate d the experimental
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Fig. 2. Temperature dependences of normalized total
electronic heat capacity c t( ) in comparison with the
BCS dependence of the superconducting-phase fraction.
Gaussian distributions with �0 1* � (a). Low-temperature
portions of the relevant curves on a log–log scale toge-
ther with their t2 asymptotics (b). For d � 01. (�),
d � 025. (�), d �1 (�).

Fig. 3. Temperature dependences of normalized total
electronic heat capacity c t( ) for Gaussian distributions
with �0 0* � (a). Low-temperature portions of the rele-
vant curves on a log–log scale together with their t2

asymptotics (b). For d � 01. (�), d � 025. (�), d �1
(�).



data in the relevant T range may be satisfactorily
represented by power-law curves C T Tn( ) � with
n + 2.

Figure 3 demonstrates the dependences c t( ) for
�0 0* � . The overall behavior remains the same as for
�0 1* � , but the validity range of the asymptotics ex-
tends because now f0 0( )� has a maximum at �0 0� ,
in full agreement with the analysis given above (see
Sec. 2).

One can make another important conclusion
from the numerical data shown in Figs. 2 and 3.
Specifically, a one-parameter fitting explains both
the smearing of the heat-capacity anomaly at Tc
and the appearance of the power-law asymptotics.
The latter reproduces the results appropriate to su-
perconductors with order parameters of dx y2 2� -
wave [82] or extended s-wave with uniaxial aniso-
tropy [50,54] symmetry. The patterns displayed in

these figures explain well the experimental heat ca-
pacity dependences C T( ) for MgB2, which
demonstrate power-law behavior for lowest attain-
able T [50,54] or above the exponential low-T tail
[58]. At the same time, the reduction of the anom-
aly �C at Tc with the increase of d, traced in Fig.
2,a, adequately describes the �C magnitudes in-
ferred from the analysis of the observed total heat
capacity of MgB2, with allowance made for the
crystal-lattice and impurity components. Namely,
� �113. [56], 0 82. [50,54], 0 7. [55], so that the ex-
perimental specific heat jump is substantially
smaller than the BCS value �BCS (see Eq.(2)).

A comparison of Figs. 2,a and 3,a shows that for
wide enough distribution functions the resulting
c t( ) curves are almost identical. They lie very
close to the corresponding curve for the uniform
distribution. The latter has a gentle maximum at
about t � 0 9. , so that the actual t dependence in the
interval 0 8 1. � �t may be readily overlooked. It is
clear that the peak position �0

* has no meaning in
this case. At the same time, for small d, if the pa-
rameter �0

* changes from 1 to 0, the curves trans-
form from ones possessing well-pronounced maxima
to almost monotonic ones. Such a transformation
«process» is depicted in Fig. 4. In particular, the
results show an interesting feature: if the distribu-
tion over � 0 is characterized by a small dispersion
and a maximum position at about � 0 2max/ , the ap-
parent dependence C T( ) should demonstrate «os-
cillating» behavior in the superconducting tempera-
ture region. For example, for d � 01. it would
happen above t � 0 4. , according to Fig. 4,a. These
departures from the BCS electronic specific heat
describe qualitatively the deviations of the experi-
mental C T( ) from their counterparts measured in
strong magnetic fields, when superconductivity is
suppressed [51,54,55].

4. Discussion and conclusions

The results obtained here are of a quite general
nature and fit well the observed heat capacity de-
pendencies both for cuprates and magnesium
diboride. Our main assumptions are the s-wave
symmetry of the superconducting order parameter
and the proposed large scale (L > �0) spatial
inhomogeneities of � (and Tc). As for cuprates, the
origin of those heterogeneities was discussed in our
previous publications [17,18]. On the other hand,
in MgB2 large enough inclusions (they influence
the heat capacity!) of different phases or planar de-
fects may be the most probable cause of the �
spread. One can mention, e.g., observed MgB4
grains and stacking faults [83] or nonstoichiometry
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Fig. 4. Influence of the peak position �0
* in the Gaussian

distribution function on the behavior of c t( ) .
Dispersion d � 01. (a) and d � 025. (b). �0

* varies from 0
to 1 in steps of 0.1.



modeled by Mg B1 2�� phases [84]. Mg vacancies or
B interstitials as well as some degree of oxidation
may be the inhomogeneities leading to conspicuous
scatter of Tc [85]. X-ray analysis shows that MgB2
can be microscopically nonstoichiometric up to
5–10% [86]. Nonstoichiometry is most likely an in-
trinsic phenomenon, since pressure dependences of
Tc are substantially different for various specimens
[10,87]. However, we can not also exclude a purely
electronic phase separation [81,88–94], because the
substance concerned is on the verge of an electronic
topological transition [74,77,95] or a structural one
[87,96].

Bearing in mind these inhomogeneities of sin-
tered, single-crystal, and thin-film MgB2 samples,
we applied our theory to calculate the spatial-
ly averaged electronic heat capacity C T( ) . The
low-T asymptotics was shown to be a power-law
one � T2, the anomaly �C at Tc being simulta-
neously smeared. These very features are appropri-
ate to the heat capacity of MgB2. The existence of
regions (domains) with varying Tc undoubtedly
manifests itself in the photoemission, Raman, po-
int-contact, and tunneling spectra [6,46,49,52,60,
97–104]. Usually the two-gap description is suffi-
cient to fit the observations, but we should stress
that it may be only a crude approximation of the
actual really multiple-gap picture. For example, a
three-gap structure was also seen in the same tun-
neling spectrum [105].

We suggest that the observed multiple-gap su-
perconductivity in MgB2 originates from some kind
of a phase separation or an intrinsic nonstoichio-
metry rather than from the existence of several
groups of current carriers in the same volume
[65–68,70,72]. The proposed theory may be also in-
voked to explain the low-T properties of cuprates
[17–19], although the microscopic background of
the multi-gapness may be quite different in both
cases.

One more circumstance should be highlighted to
distinguish between various scenarios of apparent
two-gap (or, better to say, multiple-gap) manifes-
tations. It is often claimed [49,98] that for MgB2
both gaps close at a common Tc. But even a cursory
examination of the relevant data shows that the in-
strumental errors in the neighborhood of Tc and the
obvious uncertainties of applied fittings are too
large to ensure the validity of such a conclusion.
Indeed, some point-contact spectra could be ex-
plained on the basis of two gaps, one vanishing at
the bulk Tc while the other closing at � 0 7. Tc [52].
Also the differential conductivities of MgB Ag2/
and MgB In2/ junctions have been interpreted in

terms of two gaps with energies 4 and 2 6. meV,
which close at 20 and 38 K, respectively [99]. This
alleged anticorrelation between the �‘s and Tc‘s
seems doubtful and apparently is a consequence of
the two-gap prescription. On the other hand, the
experimental results [49,98,99] can be naturally
described in the framework of the scheme adopted
here with a continuous set of gaps and critical tem-
peratures rigidly bound to them. Hence, the two-
gap fitting procedure is only a first approximation
to the actual multiple gap superposition. Aside
from the formal aspect of the problem consisting in
the selection of a proper fitting procedure, our
point of view is favored by the direct simultaneous
experimental observations of more than two gaps
for a number of samples [52,60].
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