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Electron transport through Majorana nanowire with strongly asymmetric couplings to normal metal leads is 
considered. In three terminal geometry (electrically grounded nanowire) it is shown that the presence of unbiased 
electrode restores zero-bias anomaly even for strong Majorana energy splitting. For effectively two-terminal 
geometry we show that electrical current through asymmetric Majorana junction is qualitatively different from 
the analogous current through a resonant (Breit–Wigner) level. 

PACS: 74.25.F– Transport properties; 
73.23.–b Electronic transport in mesoscopic systems; 
74.78.Na Mesoscopic and nanoscale systems. 
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1. Introduction 

Last years Majorana fermions attract a great attention in 
solid state physics. Firstly predicted by E. Majorana as a 
fermion particle that coincides with its own antiparticle, 
Majorana fermions reappeared in condensed matter in the 
form of Majorana bound states (MBS)-spinless zero-ener-
gy subgap edge states in topological superconductors (see, 
e.g., [1] or review [2]), useful for fault-tolerant quantum 
computation [3]. By definition the creation and annihilation 
operators of MBS coincide, † = jjγ γ . Being a «half» of 
a Dirac fermion (its hermitian and anti-hermitian parts), 
Majorana fermions obey a Clifford algebra, { , } = 2 .i k kiγ γ δ  
Two MBS localized on the opposite sides of topological 
superconductor form a highly nonlocal Dirac fermion, 

2 † 2
1 2= ( ) / 2, = ( ) = 0c i c cγ + γ . This nonlocality leads to 

unusual electron transport through Majorana bound states. 
In particular, electron tunneling in Majorana systems could 
be very different from resonant level electron tunneling 
even in the case when Majorana hybridization 1 2Mε γ γ  ( Mε  
is Majorana splitting energy) is taken into account and 
MBS are splitted into two fermion levels. The presence of 

substrate superconductor introduces additional (Andreev) 
channel of electron tunneling and supports electron hole 
symmetry. Both those properties result in electron tunnel-
ing through MBS which strongly differs from ordinary re-
sonant electron tunneling described by Breit–Wigner trans-
mision probability. 

Many efforts were spent to theoretically treat these to-
pological modes and distinguish them from «ordinary» 
excitations in experiment which could mimic the properties 
of MBS (see, e.g., review [2]). A promising venue in expe-
rimental observation of Majorana fermion is the tunneling 
experiments where electrons tunnel through MBS which 
provides the only possible channel for a subgap electrical 
current at low bias voltages. 

It is already known that Majorana fermions lead to a new 
transport phenomena — resonant Andreev reflection which 
manifested in zero-bias peak in differential conductance 
for normal metal/topological superconductor junction [5]. 
Although various properties of electron tunnel transport 
through Majorana bound states have been already studied 
for two-terminal [6–8] and three-terminal [9–11] devices, 
we can add to this knowledge new results concerning 
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specific properties of asymmetric Majorana tunnel junction 
with strongly different coupling strengths to the normal 
metal leads. 

For this reasons we consider experimental setup (see 
Fig. 1) where an electrically grounded nanowire (i.e., 1D 
wire on top of s-wave superconductor) is tunnelly coupled 
to a fixed normal metal electrode (L-electrode) and to 
a movable tip of scanning microscope (R-electrode). In 
real experiment Majorana bound states are supposed to be 
hosted at the ends of semiconducting wire on a top of 
ordinary s-wave superconductor when proximity effect, 
strong spin-orbit interaction and external magnetic field 
work together to form effectively spinless regime of elec-
tron transport deep inside the superconducting gap. Our 
purpose here is to study transmission properties of topo-
logical superconductor with two Majorana modes weakly 
coupled to the normal metal leads. For electrically grounded 
superconductor the currents through left (L) and right (R) 
tunnel contacts in the general case of asymmetric junction 

,( ,L R L RΓ ≠ Γ Γ  are the coupling energies) are different 
even for equal biases L Rµ = µ << ∆  (∆ is the supercon-
ducting gap). Each current depends both on LΓ  and RΓ  if 
Majorana splitting energy 0Mε ≠ . For this junction the 
linear conductances Gα  ( = ,L Rα ) at low temperatures and 

= 0Mε  reach maximum value 22 /e h , exhibiting zero-bias 
anomaly in the differential conductance (factor 2 is due to 
the contribution of Andreev tunneling) just like when 

( ) 0L RΓ →  (see Ref. 7). For 0Mε ≠  linear conductances 
are always finite 0Gα ≠  when both coupling energies 

,L RΓ Γ  are finite. In the limit ( ) 0,L RΓ →  0Mε ≠  the linear 
conductance vanishes, ( ) 0R LG → . We show that for strong-
ly asymmetric junction <<L RΓ Γ  and for finite Majorana 
energy splitting Mε  in the range << <<L M RΓ ε Γ  the pre-
sence of the second MBS at the right end of the Majorana 
nanowire coupled to the unbiased R-electrode restores 
zero-bias anomaly in the differential conductance of the 
left contact. 

In the transport regime when Majorana nanowire is 
electrically isolated it is shown that electron current through 
a strongly asymmetric Majorana junction qualitatively dif-

fers from the analogous current through Breit–Wigner 
resonant level. 

2. Equations of motion and partial currents 

At first we calculate electric currents at three terminal 
system consisted of two metal leads and an electrically 
grounded Majorana nanowire. The full Hamiltonian is 
given by three terms = M tH H H Hα

α
+ +∑ , where 

†= k kk
k

H c cα α ααε∑  is the Hamiltonian of normal leads 

with †( )k kc cα α  being the electron annihilation (creation) 

operator for the α lead (L or R), quantum wire with 
Majorana edge states is described by effective low-energy 
Hamiltonian 1 2= ( / 2) ,M MH i ε γ γ  which follows from Kitaev 

toy model [3], here 0exp ( / )M Lε ∝ − ξ  is the splitting be-
tween two zero-energy states (L is the length of the Majora-
na quantum wire and 0ξ  is the superconducting coherence 

length), and tH  is the tunnel Hamiltonian. 

The tunnel Hamiltonian describing coupling between 
= /L Rα  lead and topological superconductor is 

 
,

= h.c.,t k k
k

H V cα α α
α

γ +∑  (1) 

here ( ) 1(2)=L Rγ γ , kVα  is the effective amplitude of tunnel-
ing which appears due to projection of superconductor 
electron-field operator onto the manifold of Majorana 
states, thus tunnel couplings are characterized by energy 
level width (see [2,7]) 

2= 2 ( ) | |k k
k

Vα α αΓ πδ ε − ε∑ . 

The current operator in the α lead reads ( = 1 ) 

 ( )
†

( ) = = 2  Im .kk
k k

k k

dc c
I t e e V c

dt
αα

α α α α− γ∑ ∑  (2) 

By solving the Heisenberg equation of motion for 
( )kc tα  one finds 

 ( )( ) = e e ( )
t

i t i t tk kk k kc t c iV t dt′− ε − ε −∗α α
α α α α

−∞

′ ′− γ∫ . (3) 

Then after substitution it into Heisenberg equation for 
Majorana operators 

 ( ) = [ , ]t i Hα αγ γ  (4) 

we obtain matrix equation for them 

 
( ) 2 ( ) ( )

= ,
( ) 2 ( ) ( )

L L M L L

R M R R R

t t t
t t t

γ − Γ ε γ ξ      
+      γ −ε − Γ γ ξ      





 (5) 

Fig. 1. A schematic picture of Majorana nanowire with control-
lable coupling to the leads. Tip of scanning tunneling microscope 
(STM) at the right end of nanowire enables one to vary the coupl-
ing strenght RΓ . Electrical potentials of the leads = ,eVα αµ  

= ,L Rα  are counted from the electrical potential 0µ =  of the 
electrically grounded topological superconductor. 
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where 

 ( ) = 2 e h.c.i tkk k
k

t i V c − εα
α α αξ − +∑   

After straightforward calculation one finds Majorana ope-
rators 

 2
( ) = e i t Lk RLkL Lk Lk

Lk

i
t V c − ε ε + Γ

γ +
∆∑   

 e h.c.i t MRkRk Rk
Rk

i V c − ε ε
+ +

∆∑ , (6) 

 2
( ) = e i t Rk LRkR Rk Rk

Rk

i
t V c − ε ε + Γ

γ +
∆∑   

 e h.c.i t MLkLk Lk
Lk

i V c − ε ε
+ +

∆∑  (7) 

Here 2 2 22 = [ ( )] ( )k L R L R Miα α∆ ε + Γ + Γ + Γ − Γ − ε . Now 
with the help of Eqs. (2), (3), (6), (7) it is easy to get 
desired expression for the average currents ( )I I tα α= 〈 〉 , 
where ...〈 〉 is the thermodynamic average with the Hamil-
tonian of noninteracting electrons in the leads. The average 
current = ( , )I I Tα αµ  reads ( = 2h π) 

 2= ( ) tanh .
2 B

eI d T
h k T

+∞
α

α α
−∞

 µ − ω
ω ω  

 
∫  (8) 

Here T  is the temperature, = eVα αµ  is the electric poten-
tial counted from the Fermi energy and the transmission 
coefficient 2( )Tα ω  takes the form 

 
2 2 2 2 2

2
2

4(4 )
( ) = ,

( )
L R L R MT α

α
Γ Γ + Γ ω + Γ Γ ε

ω
∆ ω

 (9) 

where 
 2 4 2 2 2 2( ) = 4 ( ) (4 )L R L R∆ ω ω + ω Γ + Γ + Γ Γ + 

 2 2 22( 4 ) .M M L R + ε ε − ω − Γ Γ   (10) 

3. Differential conductance. Zero-bias anomaly 

Differential conductance in the low-temperature limit 
for each equally biased lead reads 

 
22e= ( = )G T eV

hα α ω  (11) 

and when = 0, = 0MV ε  it becomes 2
02 / = 2e h G . We see 

that ( , = 0) 0I T αµ ≡  for arbitrary tunneling rates LΓ  and 
RΓ  as it should be when the leads are not biased with 

respect to the ground. Notice the appearance for spinless 
electrons an extra overall factor 2 in Eq. (11) and hyper-
bolic tangent in the current dependence on temperature and 
chemical potential instead of difference of Fermi distri-
bution functions in the ordinary situation (Landauer–But-
tiker formula). Both these features are related to the pre-
sence of the substrate superconductor in electron transport 
through Majorana quantum wire. Factor 2 is due to appear-

ance of addition channel (Andreev tunneling) in electron 
transport through MBS. Characteristic temperature and 
chemical potential dependence in Eq. (8) is usual for nor-
mal metal–superconductor (MS) junctions. In the limiting 
case of a single MS contact ( = 0LΓ  or = 0, = 0R MΓ ε ) 
our formulae for current and conductance are reduced to 
the corresponding expression in Ref. 7. In general case of 
asymmetric junction ( L RΓ ≠ Γ ) the currents in the left and 
right contacts are not equal, L RI I≠  (see also Ref. 11). It is 
reasonable to consider the limit when the total current to 
the ground vanishes, = = 0G L RI I I+ . Then one can speak 
about definite current from the left to right lead induced by 
voltage bias eV . With the help of our general formulae 
(8)–(10) we reproduce the expression for the current 

= LI I  through a symmetric Majorana nanowire derived 
also in Refs. 9, 10. For asymmetric junction and/or asym-
metric bias | | | |L Rµ ≠ µ  the total current to the ground GI  
is not zero. Here we consider the dependence of dif-
ferential conductance on =L eVµ  in the case when = 0Rµ  
( = 0, = = ( )R G LI I I I V , see also Ref. 11). It is straightfor-
ward to find from our basic equations (8)–(10) the depen-
dence of differential conductance on bias voltage at low 
temperatures 0( ) = 2 ( = )LG V G T eVω . In terms of dimension-
less variables  = / 2 L RV V Γ Γ  and / 2M M L Rε = ε Γ Γ  dif-
ferential conductance ( )G V  takes the form 

 




22 2

22 2 2 2 2 20

1 ( / )( ) =
2 (1 ) [( ) / ]

M L R

M L R L R M

e VG V
G e V

+ ε + Γ Γ

+ ε + Γ + Γ Γ Γ − ε



 

.  (12) 

Particularly in the linear response 0V →  Eq. (12) is simpl-
ified 

 
2

0

4
= .

2 4
L R

L R M

G
G

Γ Γ

Γ Γ + ε
 (13) 

Thus for <<M L Rε Γ Γ  differential conductance is 
0/ 2 1G G → , while (0) = 0,G  when = 0, >>R M LΓ ε Γ . 

It means that zero-bias Majorana signature 0(0) = 2G G  
disappears in a single contact junction if Majorana energy 
splitting >>M Lε Γ . Zero-bias peak is re-established for 
strongly asymmetric double contact junction >>R LΓ Γ  
and <<M L Rε Γ Γ  when the total width of splitted 
Majorana levels exceeds the level splitting. In general the 
presence of even unbiased second contact enhances the 
current at low energies (temperature, bias voltage). 

4. Electrically isolated Majorana nanowire 

Now we consider experimental setup when the super-
conductor which supports Majorana nanowire is electric-
ally isolated and the current through MBS is induced 
by the bias voltage =L R eVµ − µ . For a symmetric junc-
tion ( = =L RΓ Γ Γ) this problem was studied in Refs. 9, 10. 
We have seen already that for symmetric electrically 
grounded junction and for symmetrically biased leads 

= = / 2L R eVµ −µ  (only this case was considered in Ref. 10) 
the total current to the ground = = 0G L RI I I+ . So the cur-
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rents through left and right contacts are equal, | | | |L RI I= . 
It does not matter whether superconductor is electrically 
grounded or not. 

This strategy can be applied also for asymmetric junc-
tion. Now the equations 

 
= ,

( ) = 0, =L R
L R

I eVα α
α

µ µ − µ∑  (14) 

determine electrical potentials αµ  of the leads as a function 
of bias voltage V . It is evident that for small junction 
asymmetry | |<<L R L RΓ − Γ Γ + Γ  the asymmetry in elec-
trical potentials = L RV V Vδ +  is small and weakly influ-
ences the current. In the opposite limit of strong junction 
asymmetry (for definiteness we will assume >>L RΓ Γ ) elec-
trical potentials strongly differ, | | << | |L RV V  for all biases V  
and the current through the electrically isolated Majorana 
nanowire could be different comparing with the analogous 
current through resonant (Breit–Wigner) level. 

At first we consider low-temperature limit 0T →  and a 
sufficiently long nanowire ( 0>>L ξ ) thus Majorana energy 
splitting can be neglected. In this case the problem can be 
easily solved analytically. When = 0Mε  the transmission 
coefficient Tα depends (as it should be) only on its coupl-
ing energy strength αΓ  

 
2

2 2
4

=
4

T α
α

α

Γ

ω + Γ
 (15) 

and the corresponding currents take a simple form 

 2( ) = arctan .
2

e
I α α
α α

α

 Γ µ
µ  π Γ 

 (16) 

For strongly asymmetric junction >>L RΓ Γ  the solu-
tion of Eq. (16) is 

 2 arctan
2L R

R

eV 
µ Γ  Γ 


 (17) 

( =R LeVµ − + µ ) and the current through electrically 
isolated Majorana nanowire is determined by the cor-
responding current through the weakest link 

 2( ) = arctan
2

R

R

e eVI V
 Γ
 π Γ 

. (18) 

According to Eq. (18) the current is saturated at >> ReV Γ  
to the value = ( ) /m RI eΓ   which coincides with corres-
ponding maximum current through Breit–Wigner resonant 
level ( >>L RΓ Γ ). However unlike usual transport where 
saturation occurs at tot = L R LeV Γ Γ + Γ Γ   (for strong-
ly asymmetric junction) in our case the current reaches its 
maximum value at a much more lower energies ReV Γ  
(see Fig. 2(b)). 

Now we consider the influence of finite Majorana splitt-
ing Mε  on current voltage characteristics. Our calculations 
show (see Fig. 2(b)) that «small» values of splitting energy 

<<M Lε Γ  weakly influence I–V curves evaluated for = 0.Mε  

When Mε  is of the order of LΓ  the saturation of current 
curves occurs at energy scale s MeV ε  end this I –V  
characteristic resembles the well-known ( )I V -dependence 
for electron tunneling through an asymmetric single-level 
quantum dot. Specific features of Majorana tunneling dis-
appear. 

One can see the characteristic properties of Majorana 
tunneling also by analyzing the temperature dependence of 
conductance ( )G T . As it is well known (see, e.g., review [12]) 
the conductance at resonant tunneling at high temperatures 

Fig. 2. (a) Differential conductance for electrically grounded 
Majorana nanowire in units 2

0 = /G e h as a function of bias 
voltage normalized by the total width L RΓ + Γ : (i) solid curve 
demonstrates the zero-bias anomaly ( = 0RΓ , STM tip is moved 
to infinity, = 0Mε ); (ii) dotted curve corresponds to the case 
of strong splitting energy = 2M Lε Γ . Majorana signature 

0( = 0) = 2G V G  disappears and conductance peak shifts to non-
zero voltages. When the second contact (right) with high trans-
parency >>R LΓ Γ  is introduced one can observe Majorana 
signature again, line for current dependence in this case coincides 
with solid line. (b) Current–voltage characteristics of electrically 
isolated strongly asymmetric Majorana nanowire / =R LΓ Γ
= 0.001,  = 0Mε  (dash-dot), =M Lε Γ  (solid), = 2M Lε Γ  (dot). 
In strongly asymmetric system ( >>L RΓ Γ ) without level split-
ting ( = 0Mε ), the current saturates at voltages of order of the 
smallest tunnel width RΓ , in contrast to conventional resonant 
tunneling, thus this dependence is highly nonlinear. 
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Fig. 3. Temperature dependence of dimensionless conductance 
2

0( = /G e h) of electrically isolated Majorana nanowire ( = 0)Mε : 
(i) dashed curve corresponds to symmetric junction =L RΓ Γ , 
(ii) solid curve describes strongly asymmetric junction 

3/ = 10R L
−Γ Γ . 
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scales as ~ /G TΓ  (where / ( )L R L RΓ = Γ Γ Γ + Γ ) and 
the crossover temperature from T-independent regime of 
transport to 1/ T -scaling is determined by the total level 
width t L RΓ = Γ + Γ . Our calculations show (see Fig. 3) 
that for strongly asymmetric electrically isolated Majorana 
nanowire crossover temperature is determined by the 
weakest coupling and therefore the conductance is strongly 
suppressed by temperature even at a low temperatures. 

5. Conclusions 

In summary we calculated electrical current through 
Majorana bound states for electrically grounded system 
end effectively electrically isolated Majorana nanowire. 
Our aim was to find specific features of electron tunneling 
in this system in the presence of finite Majorana energy 
splitting Mε  which suppresses zero-bias anomaly in dif-
ferential conductance. We show that the fingerprints of 
Majorana states can be easily revealed in tunneling experi-
ments with strongly asymmetric Majorana junction. 

We suggested experimental setup where the strenght of 
MBS coupling to the leads can be controlled with the help 
of scanning tunneling microscope (STM). For three-ter-
minal geometry (electrically grounded Majorana nanowire) 
it was shown that the presence of unbiased extra electrode 
strongly coupled to the nanowire increases electric current 
through Majorana bound states at low bias voltages. In 
particular in the case when Majorana energy splitting is in 
the range << <<L M RΓ ε Γ  zero-bias anomaly in differ-
ential conductance which is suppressed for two-terminal 
device ( = 0RΓ ) is restored when RΓ  exceeds Mε . 

Unusual tunneling characteristics of Majorana bound 
states (MBS) can be observed even in the limit of vanish-
ingly small Majorana energy splitting 0Mε → . It is known 
(see, e.g., [7]) that in this case transmission coefficient of 
electron tunneling through MBS takes the form of Breit–
Wigner resonant tunneling probability. Therefore the pre-
sence in the system resonant levels at Fermi energy 

(in particular, Kondo resonance) can mimic the properties 
of Majorana fermions. We showed that the tunneling cur-
rent through electrically isolated Majorana nanowire (two-
terminal device) with strongly different couplings to the 
leads is qualitatively distinct from the analogous current 
through resonant (Breit–Wigner) level. For sufficiently 
strong asymmetry the current is saturated at low bias volt-
ages and the measured –I V  characteristics will look like 
a step-function. 
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the NAS of Ukraine (grant No. 4/15-H). A.P. thanks the 
Abdus Salam ICTP (Trieste, Italy) for financial support 
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