Внутреннее давление в сверхпроводниках, создаваемое кислородом

В.Ф. Хирный

НТК «Институт монокристаллов» НАН Украины, пр. Ленина, 60, г. Харьков, 61001, Украина E-mail: khirnyi@isc.kharkov.ua

Статья поступила в редакцию 28 января 2015 г., после переработки 2 июня 2015 г., опубликована онлайн 25 сентября 2015 г.

Аналитическим методом впервые определены и исследованы свойства внутреннего (химического) давления P_i , создаваемое кислородом в ВТСП YBa₂Cu₃O_{7-y} и Tl₂Ba₂CuO_{6+x} образцах. Предсказаны критические температуры T_c , значения величины dT_c/dP_i для главных кристаллографических осей, а также возможность синтезировать соединения YBa₂Cu₃O_{7-y} и Tl₂Ba₂CuO_{6+x}, у которых T_c равна 166 и 92,3 К соответственно.

Аналітичним методом вперше визначено та досліджено властивості внутрішнього (хімічного) тиску, створюваного киснем в ВТНП YBa₂Cu₃O_{7-y} і Tl₂Ba₂CuO_{6+x} зразках. Передбачені критичні температури T_c , значення величини dT_c / dP_i для головних кристалографічних вісей, а також можливість синтезувати сполуки YBa₂Cu₃O_{7-y} і Tl₂Ba₂CuO_{6+x}, у яких T_c дорівнює 166 та 92,3 К відповідно.

РАСS: 74.62.Fj Эффекты давления;

74.72.- h Купратные сверхпроводники;

74.72.Jt Другие купраты, включая Tl и купраты на основе ртути.

Ключевые слова: внутреннее (химическое) давление, критические температуры, производная температуры по давлению, купраты.

1. Введение

Поиск и обнаружение новых сверхпроводников невозможны без выяснения влияния на критическую температуру Т_с высокого давления Р и легирования образцов металлами или другими веществами [1]. Это происходит из-за того, что, несмотря на почти тридцатилетнюю историю изучения ВТСП, отсутствует теория этого явления, которая предсказывала бы появление сверхпроводимости в том или ином веществе. Поэтому большое количество теоретических и экспериментальных работ по изучению сверхпроводимости посвящены определению вида зависимостей dT_c/dP и dT_c/dx , где х — концентрация легирующей примеси. Наглядным примером изменения T_c в результате применения внешнего давления Р служит сверхпроводящее соединение $YBa_2Cu_3O_7$. Так, в работе [2] найдено, что P == 2 ГПа повышает величину T_c на 1–1,5 К. Такая слабая зависимость $T_{c}(P)$, как это было предположено в работе [2], обусловлена влиянием на Т_с сильного внутреннего («химического») давления, которое возникает в образце из-за малого размера радиуса иона иттрия.

Во многих случаях изменение давления внутри YBa₂Cu₃O_{7-v} образцов создают легированием. В зависимости от размера примеси можно получать положительные или отрицательные давления. Внедрение в образцы атомов с малым радиусом, меньшим, чем радиус атомов хозяина, по воздействию на кристаллическую решетку эквивалентно положительному внешнему давлению. При введении же атомов с большим радиусом появляются отрицательные давления [3]. Были выполнены многочисленные эксперименты по замене элементов в манганитах, кобальтитах и ВТСП образцах. Полученные результаты часто объясняли, привлекая концепцию внутреннего давления P_i. Так, в работе [4] исследовали свойства сверхпроводящего соединения $Y(Ba,M)_2Cu_3O_{9-y}$ при легировании его металлами M = Sr, La. Примеси могли селективно замещать Ва до 35% без произвольной замены Y на Sr или La. Замена Ba на Sr создавала обычное химическое давление. Подстановка же La привносила в кристаллическую решетку дополнительный кислород, создающий добавочное внутреннее давление к тому, которое появлялось после замены Ва на La.

Величину внутреннего давления *P_i* выражают в виде [5]

$$P_{i} = (1/k_{i}) \left[1 - a_{i} \left(x \neq 0 \right) / a_{i} \left(x = 0 \right) \right], \qquad (1)$$

где k_i — коэффициенты сжимаемости: объемный — k_v , и линейные — в направлении сжимаемости вдоль главных кристаллографических осей «*a*» — k_a , «*b*» — k_b , «*c*» — k_c ; a_i — параметры кристаллической решетки *a*, *b*, *c* или объем элементарной ячейки *V*. Через *x* обозначено количество легирующей примеси (M) в Y(Ba_{1-x}M_x)₂Cu₃O_{7-v} соединении.

Исследование свойств купратных ВТСП с кислородной нестехиометрией имеет ключевое значение в плане понимания механизма сверхпроводимости [6–9]. Тем не менее до сих пор изменение внутреннего давления, создаваемого легированием кислорода в оксидных купратах при их переходе в ВТСП состояние, не исследовалось. Это сделано аналитически в настоящей работе для ВТСП YBa₂Cu₃O_{7–у} и Tl₂Ba₂CuO_{6+x} по аналогии с работами [1,5] и др., в которых обнаружено, что с увеличением степени легирования металлами в YBa₂Cu₃O_{7–у} изменяется внутреннее (химическое) давление, а в работе [4] отмечено и появление кислорода. Исходное давление кислорода без учета его давления, как координаты, в несверхпроводящем YBa₂Cu₃O_{7–у} равно 0,21 атм. [10].

2. Внутреннее давление в YBa₂Cu₃O_{7-v} соединении

2.1. Модель

При определении внутреннего давления, создаваемого кислородом, необходимо знать соотношение между кислородным индексом, постоянными кристаллической решетки и ее объемом. Для УВа2Си3О7-и оно было определено с помощью рентгеновских исследований при 300 К, например в работе [11], где (7 - y)изменяли от 6,2 до 6,9. В результате оказалось, что постоянные а и с уменьшались, а b увеличивалось. Наступало искажение кристаллической решетки с деформацией. Вдоль направлений осей а и с происходило сжатие, а вдоль оси b — растяжение. Понятия «сжатие» и «растяжение» в данном случае являются относительными, поскольку, предполагая, что (7-у) изменяется от 6,9 до 6,2, получаем противоположный по знакам результат, т.е. это скажется лишь на знаках P_i , dT_c / dP_i и др. с варьированием (7 - y).

Внутреннее давление, создаваемое кислородом в сверхпроводящем YBa₂Cu₃O_{7-у}, в настоящей работе определяли при изменении кислородного индекса от 6,2 до 6,9 с интервалом 0,1. При этом следовали методике, применяемой в работах [1,5], т.е. предполагали, что нет принципиального различия в способе создания химического давления легированием катионами или анионами. Поэтому в формуле (1) величины $a_i (x \neq 0)$ заменяли на $a_i(7-y)$, а $V(x \neq 0)$ на V(7-y), полученные в работе [11] для отмеченных выше значений кислородного индекса. $a_i(0)$ и V(0) принимали равными а, и V в образце YBa₂Cu₃O_{6,3} [11]. Значения коэффициентов сжимаемости k_i даны в работе [12] для соединений $YBa_2Cu_3O_{6,6}$ и $YBa_2Cu_3O_{6,93}$. Так как k_V линейно увеличивается с уменьшением (7-у) от 7,0 до 6,0 и $k_V = k_a + k_b + k_c$ [12], то было установлено (см. табл. 1), что каждое из этих слагаемых также линейно зависит от (7-у). Чтобы их определить, выполняли линейную экстраполяцию. Через два известных значения k_i соединений YBa₂Cu₃O_{6.6} и YBa₂Cu₃O_{6.93} при (7-у), равных 6,6 и 6,93 [12], проводили прямую линию.

Таблица 1. Линейные коэффициенты сжимаемости вдоль главных кристаллографических осей $YBa_2Cu_3O_{7-y}$ образцов, определенные для различных значений (7 - y)

7 – y	$k_V, 10^{-3}$	$k_c, 10^{-3}$	$k_a, 10^{-3}$	$k_b, 10^{-3}$	Ссылки
	ГПа ⁻¹	ГПа ⁻¹	ГПа ⁻¹	ГПа ⁻¹	
6,93	8,1	3,0	2,9	2,3	[9]
6,8	8,4	3,04	2,94	2,41	Эта работа
6,7	8,6	3,07	2,97	2,5	_''_
6,6	8,8	3,1	3,0	2,6	[9]
6,5	9,0	3,13	3,03	2,74	Эта работа
6,4	9,1	3,17	3,06	2,81	_"_
6,3	9,5	3,2	3,1	2,9	_''_
6,2	9,6	3,25	3,13	3,04	_"_

На рис. 1 даны графики зависимостей от кислородного индекса внутреннего давления, создаваемого кислородом, направленного вдоль главных осей a, b и c P_a , $(-P_b)$, P_c , а также объемного внутреннего давления P_V при T = 300 K, рассчитанные по видоизмененной формуле (1). Знак минус обозначает, что происходит

Рис. 1. Изменения внутреннего давления P_i с варьированием кислородного индекса. P_a (1), P_c (2), (P_b) (3) — знак минус обозначает расширение и P_V (4).

растяжение вдоль оси *b* и сжатие вдоль осей *a* и *c*, так как рассматривается случай, когда количество легирующей примеси кислорода в образце увеличивается. На рис. 1 видно, что внутреннее давление изменяется неравномерно, о чем сообщалось ранее для образцов $Ge_{1-x}Y_xBa_2Cu_3O_{7-\delta}$ при легировании их Y [3]. Отметим появление на графиках рис. 1 особенности в виде изменения наклона прямых при (7 - y) = 6,5.

Известно [11], что соединение УВа₂Си₃О_{7-ν} существует в трех модификациях. Это сверхпроводящая орторомбическая-І фаза, у которой (7-у) = 7,0-(6,8-6,75) и $T_c \cong 90$ К. Орторомбическая-II фаза с $T_c = 60 - 40$ К, характеризующаяся изменением (7 - y) от 6,65 до 6,4. И тетрагональная несверхпроводящая модификация с выполнением условия 6,0 < (7 - y) < (6,25 - 6,3). Структурные превращения в YBa₂Cu₃O_{7-v} происходят без скачкообразного нарушения параметров решетки, состава и свойств образцов. Их относят к фазовым переходам второго или более высокого порядка. Поэтому особенность на рис. 1, по-видимому, появляется в результате перехода орто-І-орто-ІІ. Переходу соответствует изменение кривизны у кривых зависимостей a_i от (7-у) [11], что особенно заметно при варьировании $a_i (x \neq 0)$ с x в легированных металлами образцах, см., например, в образцах $YBa_2(Cu_{1-x}Fe_x)_3O_{7-\nu}$ [13].

Имеется несколько моделей [8], предложенных с целью определения вида носителей электрического заряда в купратах. Если воспользоваться концепцией «кислород–дырка», то внутреннее давление есть давление газа носителей положительных электрических зарядов — дырок, которое, по аналогии с давлением газа электронов в металлах, запишем в виде [14]:

$$P_i = 0, 4nE_F^i, \tag{2}$$

где *n* — эффективная концентрация подвижных дырок, определенная из измерений эффекта Холла [15,16], а E_{F}^{i} — энергия Ферми дырок. Предполагаем идентичность поведения энергии Ферми у электронов и дырок, т.е. практическую неизменность Е_F с температурой. Тогда из формулы (2) следует взаимная зависимость между внутренним давлением и концентрацией подвижных дырок, а P_i можно принять как давление газа дырок при T = 0 К. То есть, зная изменение *n* от величины (7 - y) [16] и слабое ее изменение с температурой, из формулы (2) можно оценить E_F (без учета взаимодействия между электронами) и ее зависимость от дефицита кислорода, см. рис. 2. Это очень грубая оценка (завышена на порядок [14]), но она качественно показывает, что энергия Ферми в соединении YBa2Cu3O7-у зависит от концентрации кислорода и его давления.

В YBa₂Cu₃O_{7-у} ВТСП образцах наблюдается универсальная корреляция T_c с количеством кислорода, который находится в этих соединениях [11]. Следовательно, можно определить зависимость T_c от P_i (см.

Рис. 2. (Онлайн в цвете) Изменение E_F с варьированием величины (7-y): $E_F^V(1)$; $E_F^b(2)$; $E_F^a(3)$ и $E_F^c(4)$.

рис. 3) и dT_c^i / dP_i в интервале значений кислородного индекса от 6,3 до 6,9. Здесь в качестве і фигурируют постоянные кристаллической решетки a, b, c и V. До этого было установлено [1,17] влияние на производную dT_c / dP изменения содержания кислорода в образцах, подвергнутых внешнему давлению Р. Однако в работах [1,17] не учитывали, что в результате воздействия внешнего давления меняется суммарное внутреннее давление и кислородный индекс. Поэтому будут разные значения величины dT_c/dP , если внешнее давление применяют до начала измерений при комнатной, а затем повторно при низких температурах [18]. На рис. 4 показаны скорости изменения Т_с с варьированием P_i для различных значений (7-у). Из рис. 4 следует, что величина dT_c^V / dP_V , когда (7 - y) = 6,5-6,6, на два порядка, а при 6,8 на три порядка больше, чем dT_c / dP . Так, у соединения YBa₂Cu₃O₇ $dT_c/dP = 0.5$ К/ГПа (теория) и 0,4 К/ГПа (эксперимент), и лишь у PrBa₂Cu₃O₇ $dT_c / dP = 3,5$ К/ГПа [19], см. также работу [3].

Согласно рис. 4, $dT_c^a/dP_a > 0$, $dT_c^c/dP_c > 0$ и $dT_c^V/dP_V > 0$, а $dT_c^b/d(P_b) < 0$. Знак производной изменяется с поло-

Рис. 3. Зависимости T_c от P_i : P_V (1), P_b (2), P_a (3) и P_c (4).

Low Temperature Physics/Физика низких температур, 2015, т. 41, № 11

Рис. 4. Изменение производных dT_c^i / dP_i с варьированием показателя кислородного индекса (7-y): dT_c^a / dP_a (1), dT_c^c / dP_c (2), dT_c^b / dP_b (3) и dT_c^V / dP_V (4).

жительного вдоль осей а и с на отрицательный вдоль направления оси b, оставаясь положительным для случая объемного внутреннего давления P_V. На рис. 4 имеются два максимума, разделенные узким минимумом при (7 - y) = 6,7. Первый — широкий и низкий со значением в максимуме $(dT_c^V/dP_V)_{\text{max}} \cong 65 \text{ K} / \Gamma\Pi a$ расположен в области существования орто-ІІ фазы. Второй — узкий и высокий с $(dT_c^V/dP_V)_{max} = 166,7$ К/ГПа находится в районе фазы орто-І. Следовательно, можно достигнуть значения $T_c \cong 166 \text{ K}$ в образцах $YBa_2Cu_3O_{7-y}$, и в зависимости от степени окисления, количества ионов легирующей примеси и размера их радиусов будет наблюдаться то или иное изменение производных dT_c^i / dP_i (см. рис. 4). Производные dT_c^i / dP_i будут увеличиваться или уменьшаться. Если образец существует в орто-II модификации, то при увеличении (7-y) от 6,4 до 6,5, dT_c^i / dP_i растут. Затем эти производные, уменьшаясь, достигают минимума при (7 - y) = 6,7. С дальнейшим ростом (7 - y) от 6,7 до 6,8 они опять будут увеличиваться. Однако при (7 - y) = 6,8 и в максимуме dT_c^i / dP_i при малейших изменениях количества кислорода, легирования и/или P_i, производные начнут уменьшаться, т.е. вести себя нестабильно. Из рис. 4 следует, что для каждого из направлений главных кристаллографических осей существует свое предельное значение критической температуры T_c^i : $T_c^c \cong 108 \, \text{K}$, $T_c^a \cong 125 \text{ K}, \text{ и } T_c^b \cong 139 \text{ K}.$

С изменением T_c в образцах YBa₂Cu₃O_{7-у} универсально изменяется и число дырок n_h на элементарную ячейку [15]. На рис. 5 даны зависимости n_h^i от P_i . Видно, что при малых значениях P_i имеется пороговое давление P_i^n . Для главных кристаллографических осей пороговые давления равны $P_a^n = P_c^n = 1,55$ ГПа, $P_b^n = 1,25$ ГПа, а для случая объемного внутреннего давления $P_V^n == 0,5$ ГПа. Начиная с этого момента под влиянием внутреннего давления, создаваемого кислородом, заметно изменяется число дырок на элементарную ячейку со скоростью dn_h^i / dP_i . Количество дырок

Puc. 5. Зависимости числа дырок на элементарную ячейку n_h^i от $P_i: n_h^V$ от $P_V(1), 2) n_h^b$ от $P_b(2), n_h^a$ от $P_a(3)$ и n_h^c от $P_c(A)$

вдоль осей *a*, *c* и во всем объеме растет, а вдоль оси *b* убывает. С увеличением числа дырок n_h^i уменьшается k_i . О пороговом эффекте в экспериментах с применением внешнего давления *P* сообщалось в работе [1].

На рис. 6 даны скорости dn_h^i / dP_i изменения числа дырок на элементарную ячейку, зависящие от величины (7-у). Как и ожидалось, их вид коррелирует с поведением зависимостей dT_c^i/dP_i от кислородного индекса. Поэтому все, что было сказано о поведении dT_c^i / dP_i , относится в некоторой мере и к dn_h^i / dP_i . Экспериментально было обнаружено [1,17] существование только одного максимума при (7 - y) = 6,8 в зависимости dn/dP, где n — концентрация подвижных дырок в плоскостях CuO2. Различие происходит по следующей причине. В настоящей работе учтено влияние на T_c всех дырок n_h. Поэтому T_c почти линейно изменяется с n_h [15]. А в работах [1,17] учитывались только подвижные дырки *n*, находящиеся в сверхпроводящих плоскостях CuO₂. В этом случае соотношение между T_c и n имело вид перевернутой параболы. При $n^{\min} = 0,06$ дырок на плоскость CuO2 образец YBa2Cu3O7-v ---

Рис. 6. Зависимости скорости изменения числа дырок на элементарную ячейку dn_h^i / dP_i от изменения кислородного индекса. dn_h^a / dP_a (1), dn_h^c / dP_c (2), dn_h^b / dP_b (3) и dn_h^V / dP_V (4).

не металл и не сверхпроводник [20] с $T_c = 0$. T_c растет с увеличением n и достигает максимального значения T_c^{\max} при оптимальном значении $n^{\text{opt}} = (n^{\min} + n^{\max})/2 = 0,25$ дырок на CuO₂. С дальнейшим ростом $n T_c$ уменьшается и стремится к нулю при $n = n^{\max}$. Изменение T_c с варьированием n(7-y) в работе [20] было записано в виде $T_c = a(n - n^{\min}) \times (n^{\max} - n)$, где α — коэффициент, учитывающий влияние внешнего давления.

Следовательно, за появление сверхпроводимости (в орто-II фазе) ответственны дырки, которые находятся в цепочках CuO. С дальнейшим окислением в механизм сверхпроводимости (в орто-I фазе) включаются подвижные дырки, расположенные в плоскостях CuO₂, а цепочки CuO становятся резервуарами зарядов. Подобным образом будут изменяться свойства YBa₂Cu₃O_{7-y}, если рассматривать вариации dn_h^i / dP_i , см. рис. 6.

2.2. Обсуждение

В настоящей работе не рассматривается влияние на внутреннее давление и величину Т_с внешнего давления из-за значительной сложности этого явления, поскольку отсутствуют данные по влиянию внутреннего давления на термодинамические и кинематические факторы и, следовательно, на зависимость $T_c(P)$. Поэтому возможно только качественное рассмотрение. Это следует, в частности, из работы [3], в которой в образцах $Ge_{1-x}Y_xBa_2Cu_3O_{7-\delta}$ в зависимости от концентрации У экспериментально определено влияние внешнего (физического) и внутреннего (химического) давлений на кристаллическую структуру и сверхпроводящие свойства. Выбор такого легирующего элемента был обусловлен тем, что радиусы ионов У меньше, чем у ионов Ge. Согласно рентгеновским данным, происходило сжатие решетки в такой же степени, как при внешнем давлении до 16 кбар. Оказалось [3], что только расстояние Cu(2)-O(2) внутри плоскости CuO_2 имеет качественно различное поведение в случае внешнего и внутреннего давлений. В первом случае оно уменьшалось, во втором оставалось постоянным или увеличивалось. Параметры решетки с ростом х монотонно уменьшались, а сильнее, чем b и c. Но в этой области давлений наблюдалось различное поведение Т_с. Под влиянием гидростатического давления $\Delta T_{c}(P)$ оказалось равным 0,2 К, а под воздействием внутреннего давления $\Delta T_c(x)$ составляла 2 К. Для обоих давлений наблюдалась лишь корреляция между изменением длины связи Cu(2)-O(4) и ΔT_c [3], отражая динамику апикальных атомов O(4), управляемую внешним давлением, которая играет важную роль в контролировании вида зависимости T_c от давления. Теоретически объяснение этим особенностям дано в ряде работ (см., например, [21-23]). В выводах работы [3] подчеркивалось, что со структурной точки зрения применение химического давления эквивалентно воздействию внешнего, однако с точки зрения сверхветствие с экспериментом, поскольку максимумы барической производной dT_c/dP от (7-y) наблюдаются в сильно недодопированных иттриевых образцах [24]. Одним из возможных объяснений такого несоответствия будет то, что зависимость критической температуры (и других свойств) от давления можно представить в виде суммы зависимостей от внешнего давления и внутреннего (химического): $dT_c/dP_{\Sigma} = dT_c/dP + dT_c/dP_i$. Чем больше dT_c / dP_i , тем меньше нужна добавка dT_c / dP_i и наоборот, чем меньшее dT_c / dP_i , тем больше dT_c / dP для того, чтобы достигнуть необходимого эффекта. Кроме того, несовпадение происходит из-за влияния на изменение $T_{c}(P)$ не только величины внутреннего давления, созданного кислородом, но и различных термодинамических и кинематических факторов, что было учтено в работе [20], в которой зависимости $T_c(P)$ и *dT_c / dP* были даны для YBa₂Cu₃O_{7-y} соединения в виде: max)

проводящих свойств их действие противоположно. В

настоящей статье также имеется качественное несоот-

$$T_{c}(P) = T_{c} + \left(T_{c} / T_{c}^{\max}\right) \Delta T_{c}^{\max}(P) + T_{c}^{\max}(P) \beta \left[2\left(n^{\text{opt}} - n\right) - \Delta n(P)\right] \Delta n(P), \quad (3)$$

$$dT_{c}(P) / dP = dT_{c}^{\max}(P) / dP +$$

+ $T_{c}^{\max} 2\beta \left[n^{\text{opt}} - n - \Delta n(P) \right] dn(P) / dP,$ (4)

где T_c – максимальное значение T_c в этом соединении с количеством *n* дырок при P = 0, $\beta = 1/(n^{\min} + n^{\max})^2$, $T_c^{\max}(P) = T_c^{\max} + \Delta T_c^{\max}(P)$, a $n(P) = n + \Delta n(P)$.

Второе слагаемое в формулах (3) и (4) характеризует вклады от изменения параметров решетки, связей между слоями и т.д., т.е. «истинный» эффект давления. Третье учитывает изменение количества носителей заряда в CuO₂ плоскостях под влиянием внешнего давления. Это «релаксационный» эффект, обусловленный перераспределением лабильного кислорода. В работах [1,17], а в [20] из уравнения (4) при $P \rightarrow 0$ было получено максимальное значение dn (P)/dP при (7 - y) = 6,8, что совпадает с полученным в этой статье. Поэтому для объяснения аномального роста $dT_c / dP(7-y)$ необходимо привлечь третье слагаемое в уравнениях (3) и (4), т.е. учесть перераспределение лабильного кислорода.

Таким образом, с предположением, что не только подвижные, но и все дырки в YBa₂Cu₃O_{7-у} образцах влияют на T_c , предсказано, что: 1) можно обнаружить сверхпроводящий материал с $T_c \cong 166$ K; 2) производные dT_c^i / dP_i изменяют свою величину при различном внутреннем давлении кислорода, определяемом начальными окислением, легированием и/или внешним давлением и 3) для каждого из направлений главных кристаллографических осей существует свое T_c .

3. Внутреннее давление в Tl₂Ba₂CuO_{6+x} соединении

Выбор таллиевого образца обусловлен отличием его свойств от свойств соединений YBa2Cu3O7-v. Так, Tl₂Ba₂CuO_{6+x}.(Tl-2201) образцы имеют большой отрицательный коэффициент давления [25]. Было предположено [25,26], что под влиянием внешнего давления Т_с уменьшается в результате увеличения концентрации дырок в двумерных CuO2 плоскостях. В таких образцах переход от металлического несверхпроводящего состояния к сверхпроводящему происходит в результате уменьшения содержания кислорода х. Сверхпроводящие свойства теряются в результате легирования дополнительными дырками в этом нестехиометрическом соединении, содержащем CuO₆ октаэдры. В работах [27,28] сообщалось об увеличении длины главной кристаллографической оси с с ростом T_c, тогда как ось а изменялась на величину на два порядка меньшую. Кроме того, у образцов Tl₂Ba₂CuO_{6+x}, полученных всего лишь при различных условиях, « $T_c(x)$ не является однозначной функцией» [29]. Учитывая изложенное выше, для оценки внутреннего давления Р_с, создаваемого вдоль оси с кислородом и, фактически, в объеме образца, использовали зависимости длины оси с и изменения концентрации дырок на атом меди Δn_h^c от T_c и x, полученные в работе [28].

Как и в разд. 2.1, величину линейного коэффициента сжимаемости k_c брали из работы [12], а P_c определяли по видоизмененной формуле (1). На рис. 7 дана зависимость P_c от (6 + x), где имеется особенность при 6,05. На рис. 8 и 9 построены графики зависимостей $-dT_c^{\ c}/dP_c$ и скорости изменения числа дырок вдоль оси *c* в зависимости от кислородного индекса, $d\Delta n_h^c/dP_c$ от (6 + x), на которых при этой же концентрации кислорода наблюдаются максимальное значение производной $(-dT_c^{\ c}/dP_c)_{max} = 92,3$ К/ГПа и минимальное $(d\Delta n_h^c/dP_c)_{min} = 0,08$ дырка/ГПа, соответственно. С ростом x при 6 + x = 6,07 появляется минимум в производной $(-dT_c^{\ c}/dP_c)_{min} = 55$ К/ГПа, см. рис. 8, и максимум $(d\Delta n_h^c/dP_c)_{max} = 0,20$ дырка/ГПа, см. рис. 9. Такое взаимное изменение этих величин — уменьше-

Рис. 7. Изменение внутреннего давления *P_c* с варьированием кислородного индекса. Знак минус обозначает расширение.

Рис. 8. Изменение производной $(-dT_c / dP_c)$ с варьированием показателя кислородного индекса y = 6 + x.

Рис. 9. Зависимости скорости изменения концентрации дырок $d\Delta n_h^c / dP_c$ в плоскостях CuO₂ от изменения кислородного индекса 6 + x.

ние T_c с увеличением числа дырок и увеличение T_c с уменьшением n_h получено, следуя работе [28].

4. Заключение

Таким образом, в настоящей работе впервые определено внутреннее давление, создаваемое кислородом (дырками), и изучены его свойства в сверхпроводящих купратах YBa₂Cu₃O_{7-у} и Tl₂Ba₂CuO_{6+x}. Показано, что внутреннее давление играет важную роль в механизме появления сверхпроводимости. В процессе объяснения свойств сверхпроводников, находящихся под внешним давлением, необходимо учитывать внутреннее давление в образцах, которое создается не только из-за несоответствия размера заменяемого и легирующего ионов, но и кислородом. В реальном эксперименте с высокими давлениями все усложняется из-за влияния внутреннего и внешнего давлений друг на друга и на вид различных термодинамических и кинематических зависимостей.

 Keizo Murata, Yoshiki Honda, Hiroyki Oyanagi, Yoshikazu Nishihara, Hideo Ihara, Norio Terada, Ryoji Sugise, Masayuki Hirabayashi, Madoka Tokumoto, and Yoichi Kimura, *Bull. Electrotech. Lab.* 53, 37 (1989).

- P.H. Hor, L. Gao, R.L.Meng, Z.J. Huang, Y.O. Wang, K. Forster, J. Vassillious, and C.W. Chu, *Phys. Rev. Lett.* 58, 1143 (1987).
- A.A.R. Fernandes, J. Santamaria, S.L. Bud'ko, O. Nakamura, J. Guimpel, and Ivan K. Shuller, *Phys. Rev. B* 44, 7601 (1991).
- H. Fjellvag, P. Karen, A. Kjekshus, and A.F. Andressen, *Physica C* 162, 49 (1989).
- 5. N. Nikseresht, A. Khajehnezhad, H. Hadipour, and M. Akhavan, *Physica C* **470**, 285 (2010).
- 6. В.Ф. Хирный, А.А. Козловский, УФН 173, 679 (2003).
- 7. В.Ф. Хирный А.А. Козловский, *УФН* **174**, 285 (2004).
- В.П. Семиноженко, В.Ф. Хирный, Диссипативные состояния и нелинейные эффекты в неоднородных сверхпроводниках, Институт монокристаллов, Харьков (2006).
- 9. Виталий Хирный, Владимир Семиноженко, *Резистивные состояния гранулированных сверхпроводников*, Palmarium Academic Publishing, Saarbrucken, Германия (2012).
- В.Б. Лазарев, И.С. Шаплыгин, Э.А. Тищенко, Труды І Всесоюзного совещания «Физикохимия и технология высокотемпературных сверхпроводящих материалов» Москва, 13–15 сентября 1988, Наука, Москва (1988), с. 10.
- J.D. Jorgensen, H. Shaked, D.G. Hinks, B. Debrowski, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, W.K. Kwok, L.Y. Nunez, and H. Claus, *Physica C* 153–155, 578 (1988).
- A.I. Cornelius, S. Klotz, and J.S. Schiling, *Physica C* 197, 209 (1992).
- H. Ubara, E. Cyanagi, and K. Murata, *Jpn. J. Appl. Phys.* 27, 1603 (1988).
- Н. Ашкрофт, Н. Мермин, Физика твердого тела, Мир, Москва (1979) (N.W. Ashcroft and N.D. Mermin, Solid State Physics, Holt, Rinehart and Winston, NY (1976)).
- Z.Z. Wang, J. Clayhold, N.P. Ong, J.M. Tarascon, L.H. Greene, W.R. McKinnon, and G.W. Hull, *Phys. Rev. B* 36, 7222 (1987).
- Д.Т. Макерт, Я. Даличауч, М.Б. Мейпл, в сб.: Физические свойства высокотемпературных сверхпроводников, Д.М. Гинзберг (ред.), Мир, Москва (1990) (Physical Properties of High Temperature Superconductors, D.M. Ginsderg (ed.), World Scientific (1989)).
- C.C. Almasan, S.H. Han, B.W. Lee, L.M. Paulius, M.B. Maple, B.W. Veal, J.W. Downey, and A.P. Paulikas, Z. Fisk, and J.E. Schirber, *Phys. Rev. Lett.* 69, 680 (1992).
- 18. J. Sieburger and J.S. Schilling, Physica C 173, 403 (1991).

- 19. X.J. Chen, C.D. Gong, and Y.B. Yu, *Phys. Rev. B* **61**, 3691 (2000).
- 20. R.P. Gupta and M. Gupta, Phys. Rev. B 51, 11760 (1995).
- 21. И.В. Берман, Н.Б. Брандт, ФНТ 16, 1227 (1990) [Sov. J. Low Temp. Phys. 16, 702 (1990)].
- В.М. Гвоздиков, ФНТ 19, 1285 (1993) [Low Temp. Phys. 19, 914 (1993)].
- А.П. Сайко, В.Е. Гусаков, ФНТ 22, 748 (1996) [Low Temp. Phys. 22, 575 (1996)].
- W.H. Fietz, R. Quenzel, H.A. Ludwig, K. Grube, S.I. Schlachter, F.W. Nornung, T. Wolf, A. Erd, M. Klaser, and G. Muller-Vogt, *Physica C* 270, 258 (1996).
- N. Mori, H. Takahashi, Y. Shimakawa, T. Monako, and Y. Kubo, *J. Phys. Soc. Jpn.* 59, 3839 (1990).
- 26. F. Izumi, Physica C 190, 35 (1991).
- 27. Y. Shimakawa, Y. Kubo, T. Monako, H. Igarashi, F. Izumi, and H. Asano, *Phys. Rev. B* **42**, 10165 (1990).
- Y. Shimakawa, Y. Kubo, T. Manako, and H. Igarashi, *Phys. Rev. B* 40, 11400 (1989).
- Н.Н. Колесников, М.П. Кулаков, М.Ф. Нефедова, В.Г. Тиссен, *СФХТ* 6, 281 (1993).

The internal pressure in superconductors created by oxygen

V.F. Khirnyi

The internal (chemical) pressure P_i created by oxygen in YBa₂Cu₃O_{7-y} and Tl₂Ba₂CuO_{6+x} samples is determined for the first time using the analytical method, its properties are studied. Predicted are the critical temperatures T_c , the values of dT_c / dP_i for the main crystallographic axes, as well as the possibility to synthesize the compounds YBa₂Cu₃O_{7-y} and Tl₂Ba₂CuO_{6+x} with $T_c \cong 166$ and 92 K, respectively.

PACS: 74.62. Fj Effects of pressure;

74.72.–h Cuprate superconductors;

74.72. Jt Other cuprates, including Tl and Hg-based cuprates.

Keywords: internal (chemical) pressure, critical temperatures, derivative of temperature with respect to pressure, cuprates.