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1. Introduction

A conception of the gap (Bragg) soliton has appeared

for the first time in nonlinear optics [1,2]. These solitons

can exist in nonlinear systems with spatial periodicity of

some material parameters and possess the frequencies in

the gap of the spectrum of linear excitations. The interest

to the problem is caused by the fact that the group velocity

of linear waves, linear pulses and solitons tends to zero at

the boundary of the gap. The velocity of optical pulse is

reduced significantly in material domains with modulated

parameters which are inserted into the optical fiber, and

this effect could be used in nonlinear optical devices.

Solitons with the frequencies outside of the gap, the

out-gap solitons, were first studied in [3]. This type of em-

bedded solitons has frequencies inside the band of linear

excitations and nonzero asymptotics at infinity. Therefore

in contrast to the gap soliton the out-gap one has infinite

norm. The gap- and out-gap solitons in discrete systems

with alternating atom or spin characteristics, e.g. in di-

atomic lattices and two-sublattice magnets, were investi-

gated by many authors. A lot of obtained results were sim-

ilar to those for extended systems, while some finite-size

models were solved exactly in special cases. However two

important questions remain still open: (i) how the gap

soliton transforms into the out-gap one at the boundary of

the frequency gap of linear waves («linear gap»), and (ii)

what are stability properties of the gap and out-gap so-

litons.

It is well-known [4] that many aspects of soliton dy-

namics of nonlinear systems can be elucidated in the

framework of models with a finite number of degrees of

freedom. The simplest discrete modulated system which

permits of an existence of analogues of the gap and

out-gap excitations represents the ring of four coupled

nonlinear oscillators with alternating frequency parame-

ters [5]. To date this model is of a great interest for

low-temperature physics due to a topical problem of mag-

netic molecular nanoclusters [6]. It is known that in sys-

tems of finite size or with a finite number of degrees of

freedom quasi-solitons appear in the bifurcation manner

beginning from the moment when the energy or system
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parameters, in particular a depth of the frequency modula-

tion � [5], exceed the threshold values. The scenario of the

birth of the analogue of the gap soliton in the quaternary

model contains two bifurcations: at � c �1707. , where

some new excitations appear in «nonlinear gap» (see be-

low) and at �* .�1750, where analogues of the gap and

out-gap modes appear. This bifurcation pattern was quali-

tatively depicted in the inset of Fig. 3 in [5]. For the first

time these two bifurcations were discovered numerically

by L. Kroon [7] who informed the authors of [5] about his

results before the publication [5]. The exact bifurcation

picture represented numerical results of [7] is shown in

Fig. 1. The main goal of this paper is to reveal details of

the scenario of transformation of the gap soliton analogue

into out-gap soliton one and to analyse a stability of these

nonlinear excitations.

2. The model

Nonlinear dynamics of a ring consisting of four cou-

pled anharmonic oscillators (or classical spins with num-

bers n = 1,2,3,4) with a periodic modulation of the fre-

quency parameter is considered in the framework of

discrete nonlinear Schr�dinger equation (DNLSE) [5]:
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 when index n is an odd (even)

number. In addition to the Hamiltonian (2) also the norm

(excitations number), defined by � �N n

n

� 	 � 2
, is a con-

served quantity for (1). The ratio � � �
 �b a (we suppose

for definiteness � � 1) reflects the depth of modulation.

The transformation � ��n n , � � �
0 0
( ) ( )n n is invok-

ed in normalizing the coupling � to unity. We will discuss

the stationary states of the form � ��
n nt( )( ) � �

� �exp ( )i t� with real amplitudes � n . In the linear limit

(� n  0) the spectrum of normal modes contains only 4

frequencies for inphase and antiphase oscillations with

�min,max �� � � �[( ) ( ) ] /� � � �a b b a�
2 16 2, and for

the gap boundaries solutions with � �� a and with

� �� b . In the limit of a long chain these frequencies do

not change but the domains ( , )min� �a and ( , )max� �b

transform into two bands of the spectrum with the gap

( , )� �a b . That is why we will call in our simple model

this domain as a linear gap. In nonlinear case the frequen-

cies of aforesaid four «main nonlinear modes» decrease

and «linear gap» transform into «nonlinear gap» with

� �a b a b a bN N, , ,( ) � � � 2 (see the lines (a) and (b) in Fig.

1 and Fig. 2). The frequencies �a and �b at the bound-

aries of the gap correspond to the antiphase oscillations

( )� �0 0 and ( )0 0� � , respectively, where the zeros indi-

cate immovable particles and the thickness of the arrows

characterizes the relative amplitude of the oscillations.

The frequencies for nonlinear oscillations depend not

only on the parameter �, but also on the amplitude and,

hence, implicitly on the norm N and the energy E defined

from the Hamiltonian (2). The «spectral» dependence

E E N� ( ) of the system is uniquely determined by the

characteristic � �� ( )N due to the fulfillment of the re-

lation � � dE dN/ for monochromatic oscillations. The

most interesting for us are the upper boundary of the non-

linear gap (line b in Fig. 1) and the analogue of the gap

and out-gap modes (line e in Fig. 2), bifurcating from the

boundary.
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Fig. 1. Stationary solutions in the (�, N) plane for � �175. .

Solid (dotted) lines represent stable (unstable) regions of the

solutions.
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Fig. 2. Stationary solutions in the (�, N) plane for � � 25. ,

which is the threshold for the linear stability of the gap and

out-gap solitons.



3. The stability problem

The stability of the solution � �
n t( )( ) is analyzed

by adding the perturbation � �n nt i t( ) exp ( )� � ��
� � n i t* *exp ( )� to its time-independent amplitude � n .

Linearization of Eq. (1) around the stationary solution

yields the eigenvalue problem
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The linear stability of the stationary solution is equivalent

to all eigenfrequencies � being real.

(i) The stability of b-mode. This problem can be solved

analytically. Introducing the notations A a� �� �, B �
� �� �b , � � �0 2� � �( )a b and the width � 
 � �B A

� �( )� �1 0 of the linear gap, the solution for the upper

boundary of the «nonlinear» gap (b-mode) can be written

as { } { , , , }( )� n
b B B� �0 0 [5] and the eigenvalues � are

found to satisfy the equation

� � � �2 2 2 4 2 28 8 16 0( )( ( ) )� � � � � �A A AB . (4)

The root � � 0 corresponds to «phase mode» and the

roots � � � A are real, whereas the remaining eigenvalues

� � � � � � � � � �( ) ( ) ( )A A AB2 2 28 2 8 4 8 2 (5)

are complex whenever A A A( )3 16 32 0� � �� . Denoting

�� � � � �16 16 16 32 33 � �( ) ( ) the criterion leads to the

oscillatory instability [2] in the region 0 � � �� �A � � ,

which appears through Krein collisions [8] and manifests

itself through resonances of the internal modes. One may

note from Fig. 1 that there exists two windows of instabil-

ity for b-mode. The first one is bounded by the bifurca-

tion point 1 of gap e-mode and the bifurcation point 2 in

Fig. 1. For large � this is the bifurcation point for unstable

d-mode (Fig. 2). A second interval developing for

� � �4 3 3( ), is ruled out by the constraint B A� � �� 0

and is bounded by the point 3 for the bifurcation of

c-mode { }( )� n
c � � � �{ , , , }A B A B [5] at the fre-

quency � �� a (the low boundary of the linear gap). If

AB � �2 0 is satisfied two of the eigenvalues (5) are not

real. Applying the dependence � ��b aN N( ) � � � 2 of

frequency on norm N , inequality gives an interval

� �� �b N( ) ( )� � � �0
22 2� , for which the solutions

{ }( )� n
b is unstable, if and only if � �� 
2 2 c . For large �

(see Fig. 2) c-mode is stable only in the vicinity of

point 3. The lower boundary of nonlinear gap corre-

sponds to a-mode which is linearly stable for all values of

parameter �. (ii) The stability of the gap and out-gap-

modes. First of all we notice that our investigations of the

gap solitons in the systems with 4, 6, 8, 10, 12, 16 partic-

les have shown that the dependence of the gap and

out-gap solution frequency on the norm changes qualita-

tively in the same manner when the number of particles

grows or the parameter � grows. The following result is

the most important: the dependence � �� ( )N does not

embed into the lower zone of linear waves spectrum and

remains inside the nonlinear gap of the spectrum, but it

transforms essentially at the frequency of the lower

boundary of the linear gap (� � 4 in Fig. 2). At this fre-

quency value the transformation of the gap soliton into

the out-gap one takes place. There are not analytical ex-

pressions for the gap and out-gap solitons, except the

case � � 2 5. [9]. We studied the stability of these excita-

tions numerically in the framework of Eqs. (3) with the

use of numerical solutions for � n . The results are shown

in Fig. 3. There exists the window of the Krein

(oscillatory) instability of the gap and out-gap solitons

analogues with nonzero imaginary part of parameter �.

But Im � tends to zero while �  2.5 (large depth of mod-

ulation). This justifies the expectation that the gap and

out-gap solitons are stable in the large modulated sys-

tems. In the inset of Fig. 3 the transformation of the win-

dow of instability is presented: it lies inside the linear

gap, the frequencies of the window and its width decrease

with the growth of parameter �.

4. Conclusion

The analogues of gap- and out-gap solitons have been

studied in the quaternary fragment of discrete modulated

nonlinear system of coupled oscillators. It has been de-

monstrated that transformation of such monochromatic
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Fig. 3. The development of the Krein instability for the gap

and out-gap breathers versus �: 2.47 (1), 2.48 (2), 2.49 (3),

�2.5 (4). For � � 235. the oscillatory instability enters the gap

regions ( )�� 4 and the resonance vanishes finally at � � 25.

( )� � 5 . Close to the threshold of the stability the maximum

value of the imaginary part of � shows a linear scaling in �
(and �).



soliton-like solutions and their stability depend essen-

tially on the value of the modulating parameter �. After

two bifurcations at � �1707. and � �1750. the unified de-

pendence of the soliton frequency �on the norm N for gap

and out-gap solitons is formed. The gap soliton trans-

forms into out-gap one at the lower boundary of the «li-

near gap» of the spectrum, while the dependence � �� ( )N

for these excitations is situated above the lower boundary

of «nonlinear gap». In the region 175 2 5. .� �� there exists

the window of the oscillatory instability of the soliton so-

lution, but for � � 2.5 the gap and out-gap solitons are

stable for all the frequencies.
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