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Homogeneous current states in thin films and Josephson current in superconducting microbridges are

studied within the frame of a two-band Ginzburg–Landau theory. By solving the coupled system of equa-

tions for two order parameters the depairing current curves and Josephson current-phase relation are calcu-

lated for different values of phenomenological parameters � and �. Coefficients � and �describe the coupling

of order parameters (proximity effect) and their gradients (drag effect), respectively. For definite values of

parameters the dependence of current j on superfluid momentum q contains local minimum and correspond-

ing bi-stable states. It is shown that the Josephson microbridge from two-band superconductor can demon-

strate �-junction behavior.

PACS: 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.);
74.81.Fa Josephson junction arrays and wire networks.

Keywords: current states, two-band superconductivity, proximity effect, drag effect, Josephson microbridge,
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1. Introduction

To present day overwhelming majority works on the-

ory of superconductivity were devoted to single gap su-

perconductors. More than 40 years ago the possibility of

superconductors with two superconducting order parame-

ters were considered by V. Moskalenko [1] and H. Suhl,

B. Matthias, and L. Walker [2]. In the model of supercon-

ductor with the overlapping energy bands on Fermi sur-

face V. Moskalenko has theoretically investigated the

thermodynamic and electromagnetic properties of two-band

superconductors. The real boom in investigation of mul-

ti-gap superconductivity started after the discovery of two

gaps in MgB2 [3] by the scanning tunneling [4,5] and

point contact spectroscopy [6–8]. The compound MgB2

has the highest critical temperature Tc � 39 K among su-

perconductors with phonon mechanism of the pairing and

two energy gaps � 1 � 7 meV and � 2 � 2,5 meV at T � 0.

At this time two-band superconductivity is studied also in

another systems, e.g. in heavy fermion compounds [9,10],

borocarbides [11] and liquid metallic hydrogen [12–14].

Various thermodynamic and transport properties of MgB2

were studied in the framework of two-band BCS model

[15–22]. Ginzburg–Landau (GL) functional for two-gap

superconductors was derived within the weak-coupling

BCS theory in dirty [23] and clean [24] superconductors.

Within the Ginzburg–Landau scheme the magnetic pro-

perties [25–27] and peculiar vortices [28–30] were studied.

The aim of this article is to present Ginzburg–Landau

theory of the current carrying states in superconductors

with two order parameters. In the case of several order pa-

rameters the qualitatively new features in superconduct-

ing current state are related to mutual influence of the

modules of complex order parameters as well of the gradi-

ents of their phases. We study the manifestations of these

effects in the current-momentum dependence and in the

Josephson current-phase relation. In Sec. 2 the general

phenomenological description of two-band superconduc-

tors within Ginzburg–Landau theory is given. The Ginz-

burg–Landau equations for two coupled superconducting

order parameters include the proximity and drag effects.

In Sec. 3 the peculiarities of homogeneous current states

in multi-gap superconductors are studied. The depend-

ence of current on superfluid momentum for different val-

ues of parameters is calculated. We demonstrate that for

definite values of parameters it contains local minima and

corresponding bi-stable states in GL free energy. In Sec. 4

the Josephson effect in simple model of weak supercon-

ducting link (generalization of Aslamazov–Larkin theory

[31] on two-band superconductor) is considered and pos-

sibility of �-junction behavior is demonstrated.
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2. Ginzburg–Landau equations for two-band super-

conductivity

The phenomenological Ginzburg–Landau free energy

density functional for two coupled superconducting order

parameters � 1 and � 2 can be written as

F F F FGL � � � �1 2 12

2

8

( )rot A

�
,

where

	 	 	 	F
m

i
e

c
1 1 1

2
1 1

4

1
1

2
1

2

1

2

2
� � � 
 � 
�

�
� �

�
�
 � � � �( )� A , (1)

	 	 	 	F
m

i
e

c
2 2 2

2
2 2

4

2
2

2
1

2

1

2

2
� � � 
 � 
�

�
� �

�
�
 � � � �( )� A , (2)

and

F i
e

c
12 1 2 1 2 1

2
� 
 � � 
 � 
�

�
�

�
�
�

�

��
�� � � � � � �( )* * � A

� � 
�
�
�

�
�
� � � 
�

�
�

�
�
� 
 � 
�

�
�

�
�
�i

e

c
i

e

c
i

e

c
� � �

2 2 2
1 2A A A� �* �

��
.

(3)

The terms F1 and F2 are conventional contributions

from � 1 and � 2, term F12 describes without the loss of

generality the interband coupling of order parameters.

The coefficients � and �describe the coupling of two or-

der parameters (proximity effect) and their gradients

(drag effect) [25–27], respectively.

By minimization of the free energy F =
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�
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with respect to� 1,� 2 and A

we obtain the differential GL equations for two-band su-

perconductor
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and expression for the supercurrent
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In the absence of currents and gradients of order pa-

rameters modules the equilibrium values of order parame-

ters � � !
1 2 1 2

0 1 2
, ,

( ) ,� e
i

are determined by the set of coupled

equations
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For the case of two order parameters the question

arises about the phase difference " ! !� 
1 2 between � 1

and � 2. In homogeneous no-current state, by analyzing

the free energy term F12 (3), one can obtain that for � # 0

phase shift " � 0 and for � $ 0" �� . The statement, that "
can have only values 0 or � takes place also in a current

carrying state, but for coefficient � % 0 the criterion for "

equals 0 or � depends now on the value of the current (see

below).

If the interband interaction is ignored, the Eqs. (4) are

decoupled into two ordinary GL equations with two dif-

ferent critical temperatures Tc1
and Tc2

. In general, inde-

pendently of the sign of �, the superconducting phase tran-

sition results at a well-defined temperature exceeding

both Tc1
and Tc2

, which is determined from the equation:


 
 �1 2
2( ) ( )T Tc c � . (7)

Let the first order parameter is stronger then second

one, i.e., T Tc c1 2
# . Following [24] we represent tempera-

ture dependent coefficients as
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Phenomenological constants a a1 2 20, , and� �1 2, , can be re-

lated to microscopic parameters in two-band BCS model.

From (7) and (8) we obtain for critical temperature Tc :
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For arbitrary value of the interband coupling � Eq. (6) can

be solved numerically. For � � 0 , T Tc c� 1 and for tempe-
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rature close to Tc (hence for T T Tc c2 $ & ) equilibrium

values of the order parameters are �
2
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0
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weak interband coupling, we have from Eqs. (6)–(9) cor-

rections ~ � 2 to these values:

�
�

�
�1

0 2 1

1

2

1
20 2

1
1

1

( )
( )

( )

T
a T

T
a a

T

T

T

Tc

c

c

� 

�

�
��

�

�
�� �


 




1

20a

�

�

�
�
�
�

�

�

�
�
�
�

,

�
�

�
2
0 2 1

1

2

20 2
2

1

1

( )
( )

( ( ))

.T
a T

T
a a

T

T
c

c

� 

�

�
��

�

�
��


 


(10)

Expanding Eq. (9) over 1 1
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tional temperature dependence of equilibrium order pa-

rameters in weak interband coupling limit
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Considered above case (Eqs. (9)–(11)) corresponds to

different critical temperatures T Tc c1 2
# in the absence of

interband coupling �. Order parameter in the second band

�
2
0( )

arises from the «proximity effect» of stronger �
1
0( )

and is proportional to value of � (11). Consider now an-

other situation. Suppose for simplicity that two conden-

sates in current zero state are identical. In this case for ar-

bitrary value of � we have
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3. Homogeneous current states and

Ginzburg–Landau depairing current

In this Section we will consider the homogeneous current

states in thin wire or film with transverse dimension

d T T$$ ) *1 2 1 2, ,( ), ( ) (see Fig. 1), where )1 2, ( )T and*1 2, ( )T

are coherence lengths and London penetration depths for

each order parameter correspondingly without interband in-

teraction. This condition leads to one-dimensional problem

and permits us to neglect self-magnetic field of the system.

The current density j and modules of the order parame-

ters do not depend on the longitudinal direction x. Writing

� 1 2, ( )x as 	 	� � !1 2 1 2 1 2, , ,exp( ( ))� i x and introducing the

difference and weighted sum phases:
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The current density j in terms of phases + and " has the

following form
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and includes the partial inputs j1 2, and proportional to �
the drag current j12.

In contrast to the case of single order parameter [32],

the condition div j � 0 does not fix the constancy of
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superfluid velocity. In appendix we present the Eu-

ler–Lagrange equations for +( )x and "( )x . They are com-

plicated coupled nonlinear equations, which generally

permit the soliton like solutions (in the case � � 0 they

were considered in [33]). The possibility of states with

inhomogeneous phase "( )x is needed in separate investi-

gation. Here, we restrict our consideration by the homoge-

neous phase difference between order parameters

" � const. For " � const from Eqs. (A.4) (see Appendix)

follows that +( )x qx� (q is total superfluid momentum)

and sin" � 0, i.e.," equals 0 or �. Minimization of free en-

ergy for " gives

cos ( )" � �� 
sign �
2 2q . (17)

Note, that now the value of ", in principle, depends on q,

thus, on current density j.

Finally, the Eqs. (14), (16) take the form:
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We will parameterize the current states by the value of

superfluid momentum q, which for given value of j is de-

termined by Eq. (19). The dependence of the order pa-

rameter modules on q determines by GL equations:
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At the beginning we consider the case of small values

of interband coupling � and dragging coefficient �. In the

same manner as for q � 0 (Sec. 2) instead expression (11),

for 	 	� 1 ( )q and 	 	� 2 ( )q we obtain:
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The system of Eqs. (19), (22), (23) describes the

depairing curve j q T( , ) and the dependences 	 	� 1 and 	 	� 2

on the current j and the temperature T. It can be solved nu-

merically for given superconductor with concrete values

of phenomenological parameters.

In order to study the specific effects produced by

interband coupling and dragging consider now the model

case when order parameters coincide at j � 0 (Eqs. (12),

(13)) but gradient terms in Eq. (4) are different.

Eqs. (19)–(21) in this case take the form
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Eqs. (24)–(26) we have the expressions
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which for ~ ~� �� � 0 are conventional dependences for

one-band superconductor [32] (see Fig. 2).
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For k % 1depairing curve j q( ) can contain two increas-

ing with q stable branches, which corresponds to possibil-

ity of bistable state. In Fig. 3 the numerically calculated

from Eqs. (24)–(26) the curve j q( ) and dependences

f j f j1 2( ), ( ) are shown for k � 5 and ~ ~� �� � 0.

The interband scattering (~� � 0) smears the second

peak in j q( ), see Fig. 4

If dragging effect (~� � 0) is taking into account the

depairing curve j q( ) can contain the jump at definite

value of q (for k �1 see Eq. (28)), see Fig. 5. This jump

corresponds to the switching of relative phase difference

from 0 to �.

4. Josephson effect in two-band superconducting

microconstriction

In the previous section GL theory of two-band super-

conductors was applied for filament’s length L , -. Op-

posite case of the strongly inhomogeneous current state is

the Josephson microbridge geometry, which we model as

narrow channel connecting two massive superconductors

(banks). The length L and the diameter d of the channel

(see Fig. 6) are assumed to be small as compared to the or-

der parameters coherence lengths ) )1 2, .

For d L$$ we can solve one-dimensional GL equations

(4) inside the channel with the rigid boundary conditions

for order parameters at the ends of the channel [34].

In the case L $$ ) )1 2, we can neglect in Eqs. (4) all

terms except the gradient ones and solve equations:
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2

2
01 02

2
4sin ( )!

� �
�� � �

�
sign sin!.

(35)

The value of j 0 in (35) can be both positive and negative:

j
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sign , (36),
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m m
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0
1

4

1

4
$ $ 
 �

�

�
��

�

�
��if ( )� �

�
�

�
�

sign . (37)

When the condition (37) for set of parameters for

two-band superconductor is satisfied the microbridge be-

haves as the so-called �-junction (see Ref. 35).

5. Conclusions

We have investigated the current carrying states in

two-band superconductors within phenomenological

Ginzburg–Landau theory. Two limiting situations were

considered, homogeneous current state in long film or

channel and Josephson effect in short superconducting

microconstriction. We used the GL functional for two or-

der parameters which includes the interband coupling

(proximity effect) and the effect of dragging in current

state of two-band system. For the case of two order param-

eters the question arises about the phase difference

" ! !� 
1 2 between 	 	� � !
1 1

1� e
i

and 	 	� � !
2 2

2� e
i

. In

homogeneous no-current state the value of" equals to 0 or

� depending on the sign of interband coupling constant �
[36]. The statement, that " can have only values 0 or

� takes place also in a current carrying state, but for non-

zero drag coefficient � the criterion for " equals 0 or � de-

pends now on the value of the superfluid momentum q,

namely cos ( )" � �� 
sign �
2 2q . The system of coupled

GL equations is analyzed for different values of pheno-

menological parameters. The depairing current expres-

sion contains the term cos" and, in general, depending on

parameters � and � the increasing of momentum q can

switch the value of" from 0 to �. In current driven regime

it leads to existence of two growing branches of j(q),

which both are stable. This bistability is intrinsic property

of two-band superconductor. It is interesting to study the

effects of relative phase switching in magnetic flux driven
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q
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Fig. 5. Depairing current curves for different values of the ef-

fective masses ratio k �1 (solid line), k �15. (dotted line) and

k � 2 (dashed line). Interband interaction coefficient ~ .� � 01 and

drag effect coefficient ~ .� � 05.

( ) ( )
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ø 0 ø exp i÷=
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d

L >> d

Fig. 6. Geometry of S–C–S contact as narrow superconducting

channel in contact with bulk two-band superconductors. The

values of the order parameters at the banks are indicated.



regime in multivalued geometry. The Josephson cur-

rent-phase relation for two band superconducting weak

link j(!) also contains the difference of order parameters

phases " in the banks, j j� 0( ) sin" !. The value of j0 may

be as positive as negative. In the last case we have what is

called the �-junction, again due to intrinsic properties of

two-band superconductivity. In Sec. 2 we restrict our con-

sideration by the homogeneous phase difference between

two order parameters ". The general Eqs. (A4) permit the

possibility of inhomogeneous, soliton-like distributions

"( )x , which will be subject of separate publication.

The authors would like to acknowledge S.V. Kuple-

vakhsky for useful discussions.

APPENDIX: Free energy transformation

Instead of the phases !1 and ! 2 introduce new vari-

ables " and +:

! ! "
! ! +

1 2

1 1 2 2


 �
� �

�
�
 

,

,c c
(A.1)

where coefficients c1 and c2 are chosen as
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Expression for the free energy density in new variables takes a quadratic form on derivatives of + and ":
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Here A B C D, , , are
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Making variation for + and " we obtain equations for spatial dependence of phases " and +:
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(A.4)

In particular case � � 0 (no drag effect) (A.4) coincides with obtained in Ref. 33.

1. V.A. Moskalenko, Fiz. Met. Metallov. 8, 503 (1959).

2. H. Suhl, B.T. Matthias, and L.R. Walker, Phys. Rev. Lett.

3, 552 (1959).

3. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani,

and J. Akimitsu, Nature 410, 63 (2001).

4. F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D.X. Thanh,

J. Klein, S. Miraglia, D. Fruchart, J. Marcus, and P. Monod,

Phys. Rev. Lett. 87, 177008 (2001).

5. M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok,

G.W. Crabtree. D.G. Hinks, W.N. Kang, E.-M. Choi, H.J.

Kim, and S.I. Lee, Phys. Rev. Lett. 89, 187002 (2002).

6. P. Szabo, P. Samuely, J. Kacmarcik, T. Klein, J. Marcus,

D. Fruchart, S. Miraglia, C. Mercenat, and A.G.M. Jansen,

Phys. Rev. Lett. 87, 137005 (2001).

7. H. Schmidt, J.F. Zasadzinski, K.E. Gray, and D.G. Hinks,

Phys. Rev. Lett. 88, 127002 (2001).

544 Fizika Nizkikh Temperatur, 2007, v. 33, No. 5

Y.S. Yerin and A.N. Omelyanchouk



8. I.K. Yanson and Yu.G. Naidyuk, Fiz. Nizk. Temp. 30, 355

(2004) [Low Temp. Phys. 30, 261 (2004)].

9. M. Jourdan, A. Zakharov, M. Foerster, and H. Adrian,

Phys. Rev. Lett. 93, 097001 (2004).

10. G. Seyfarth, J.P. Brison, M.-A. Masson, J. Flouquet, K.

Izawa, Y. Matsuda, H. Sugawara, and H. Sato, Phys. Rev.

Lett. 95, 107004 (2005).

11. S.V. Shulga, S.-L. Drechsler, G. Fuchs, K.-H. M�ller, K.

Winzer, M. Heinecke, and K. Krug, Phys. Rev. Lett. 80,

1730 (1998).

12. N.W. Ashcroft, J. Phys. A129, 12 (2000).

13. E. Babaev, Phys. Rev. Lett. 89, 067001 (2002).

14. E. Babaev, A. Sudbo, and N.W. Ashcroft, Nature 431, 666

(2004).

15. A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y. Kong,

O.K. Andersen, B.J. Gibson, K. Ahn, and R.K. Kremer, J.

Phys.: Condens. Matter 14, 1353 (2002).

16. A. Brinkman, A.A. Golubov, H. Rogalla, O.V. Dolgov, J.

Kortus, Y. Kong, O. Jepsen, O.K. Andersen, Phys. Rev.

B65, 180517 (2002).

17. I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J.

Kortus, A.A. Golubov, A.B. Kuz’menko, and D. van der

Marel, Phys. Rev. Lett. 89, 107002 (2002).

18. A. Nakai, M. Ichioka, and K. Machida, J. Phys. Soc. Jpn.

71, 23 (2002).

19. P. Miranovic, K. Machida, and V.G. Kogan, J. Phys. Soc.

Jpn. 72, 221 (2003).

20. T. Dahm and N. Schopohl, Phys. Rev. Lett. 91, 017001

(2003); T. Dahm, S. Graser, and N. Schopohl, Physica

C408-410, 336 (2004).

21. A. Gurevich, Phys. Rev. B67, 184515 (2003).

22. A.A. Golubov and A.E. Koshelev, Phys. Rev. Lett. 92,

107008 (2004).

23. E. Koshelev and A.A. Golubov, Phys. Rev. Lett. 90,

177002 (2003).

24. M.E. Zhitomirsky and V.-H.Dao, Phys. Rev. B69, 054508

(2004).

25. I.N. Askerzade, Acta Phys. Slovaca 53, 321 (2003).

26. I.N. Askerzade, Physica C397, 99 (2003).

27. H. Doh, M. Sigrist, B.K. Cho, and S.I. Lee, Phys. Rev.

Lett. 83, 5350 (1999).

28. R.G. Mints, Ilya Papiashvili, J.R. Kirtley, H. Hilgenkamp,

G. Hammerl, and J. Mannhart, Phys. Rev. Lett. 89, 067004

(2002).

29. E. Babaev, L.D. Faddeev, and A.J. Niemi, Phys. Rev. B65,

100512 (2002).

30. A. Gurevich and V.M. Vinokur, Phys. Rev. Lett. 90, 047004

(2003).

31. L.G. Aslamazov and A.I. Larkin, JETP Lett. 9, 87 (1969).

32. P.G. De Gennes, Superconductivity of Metals and Alloys,

W.A. Benjamin inc., New York–Amsterdam (1966).

33. Y. Tanaka, Phys. Rev. Lett. 88, 017002 (2002).

34. I.O. Kulik and A.N. Omelyanchouk, Sov. Phys. JETP 68,

1071 (1976).

35. A.A. Golubov, M.Yu. Kupriyanov, and E. Ill’ichev, Rev.

Mod. Phys. 76, 411 (2004).

36. A.A. Golubov and I.I. Mazin, Physica C243, 153 (1995).

Coherent current states in a two-band superconductor

Fizika Nizkikh Temperatur, 2007, v. 33, No. 5 545


